
1Scientific RepoRts | 5:11744 | DOi: 10.1038/srep11744

www.nature.com/scientificreports

Magnetization due to localized 
states on graphene grain boundary
Sudipta Dutta1,2 & Katsunori Wakabayashi1,3

Magnetism in graphene has been found to originate from various defects, e.g., vacancy, edge 
formation, add-atoms etc. Here, we discuss about an alternate route of achieving magnetism in 
graphene via grain boundary. During chemical vapor deposition of graphene, several graphene 
nucleation centers grow independently and face themselves with unusual bonding environment, 
giving rise to the formation of grain boundaries. We investigate the origin of magnetism in such 
grain boundaries within first-principles calculations, by letting two nucleation centers interact with 
each other at their interface. We observe formation of unprecedented point defect, consisting of 
fused three-membered and larger carbon rings, which induces net magnetization to graphene 
quantum dots. In case of periodic lattices, the appearance of array of point defects leads to the 
formation of magnetic grain boundaries. The net magnetization on these defects arises due to the 
deviation from bipartite characteristics of pristine graphene. We observe magnetic grain boundary 
induced dispersion less flat bands near Fermi energy, showing higher localization of electrons. These 
flat bands can be accessed via small doping, leading to enhanced magnetism. Moreover, the grain 
boundaries can induce asymmetric spin conduction behavior along the cross boundary direction. 
These properties can be exploited for sensor and spin-filtering applications.

Introduction of magnetism in graphene in terms of defects has been gaining tremendous impetus in 
recent times, owing to their application possibilities towards spin transport and sensor devices1–9. The 
basic idea of this magnetism lies in Lieb’s theorem for bipartite lattice10, which says: the inequality 
between two sublattice points, A and B, i.e., NA ≠ NB introduces net magnetic moment. Being a bipartite 
lattice, this theorem is valid in case of graphene as well. The graphene unitcell consists of two sublattice 
points, A and B that prefer opposite spin occupancies, making the over all net magnetization zero  
(see Fig.  1a). Therefore, it is expected that, the vacancy defects can introduce inequality between NA 
and NB, making the two-dimensional graphene magnetic11–18. However, the formation of zigzag edges, 
a defect, introduced by finite termination of graphene along a certain crystallographic direction can 
also introduce net magnetization, in spite of NA =  NB

19–22. This magnetization in semi-infinite zigzag 
edge graphene can be attributed to the formation of peculiar edge localized states near Fermi energy 
and the spins tend to align parallelly on the same sublattice points along the same edge, giving rise to a 
long-range ferrimagnetic coupling23–25. However, formation of another parallel zigzag edge in a ribbon 
like geometry results in total zero magnetization by putting the spins in opposite polarization on the 
other sublattice points along the opposite edge. In spite of such antiferromagnetic alignment of spins 
between two opposite edges, the local spin moments along the edges remain robust. These edge local-
ized states have been studied within different theoretical formalisms and very recently, they have been 
confirmed experimentally within scanning tunneling spectroscopy26. Moreover, introduction of holes 
can induce net magnetization in zigzag edge graphene nanoribbons27–29. In this paper, we will show 
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another origin of the magnetism in graphene, i.e., unusual bonding and hybridization. This is owing to 
the catenation property of carbon, which allows diverse hybridization possibilities, especially during the 
chemical vapor deposition (CVD) growth of graphene.

Although, there exist few experimental techniques, like mechanical exfoliation30–33 or graphene oxide 
reduction34,35 for preparation of graphene, the CVD technique has been proved to be the most efficient 
way of preparing transferrable large area graphene samples36–46. Moreover, the CVD grown graphene 
has recently been demonstrated for transparent and flexible device applications37, indicating a huge 
technological leap. However, the growth of wafer scale graphene within this technique often results in 
several kinds of defects like point defects (PDs) or grain boundaries (GBs) among pristine graphene 
domains with different crystallographic orientations47–52. These PDs and GBs can significantly modify 
the electronic and transport properties of graphene samples. Therefore, the knowledge of these defects is 
essential for the realization of their applications. Moreover, the bipartite characteristics may collapse over 
these defects (see Fig. 1b), giving rise to unusual magnetic properties. In this paper, we have theoretically 
simulated the formation of several PDs and GBs between two pristine graphene domains during CVD 
growth and have shown the appearance of defect-induced magnetism.

During diffusive growth of graphene on some substrate, there is formation of several nucleation centers 
that grow independently until they merge finally at their interface with smooth or mismatched crystallo-
graphic angle47,50,51. To simulate the CVD growth of graphene computationally, we start with a minimal 
approximation. We first consider two small segments of graphene (as shown in Fig. 2a), as if they are part 
of two nucleation centers and let them interact with each other. Note that, the valency of the sp2 hybridized 

Figure 1. Schematic representation of Lieb’s theorem on bipartite lattice. (a) The graphene lattice with 
rhombus unit cell (dashed box) consisting of two distinct sublattice points, A and B that prefer to localize 
opposite spins, making the whole system antiferromagnetic with same number of A and B sublattice points, 
i.e., NA =  NB. Note that, each A (B) sublattice point is connected to three B (A) sublattice points.  
(b) One commonly known defect in graphene, namely Stone-Well’s defect consisting of fused five and seven 
membered rings. The bipartite characteristic collapses in such defects due to undefined sublattice nature 
emphasized by the “?” marks, giving rise to unusual magnetic properties.
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carbon atoms along the edges is passivated with hydrogen, except in the shaded region. This approxima-
tion ensures that, the graphene segments are part of big single crystalline graphene domains with all sat-
isfied valencies and they can only interact within themselves along their interface region (shaded region) 
with active carbon atoms of unsatisfied valencies. Now, the structural relaxation results in merging of two 
domains with or without defects. Here defect refers to the formation of non-hexagonal carbon rings. Since, 
we consider quantum dot like small segments in Fig. 2a for computational ease, the defects should be con-
sidered as point defects (PDs), due to their non-periodic nature. However, we shall bring in the discussions 
about the formation of grain boundaries (GBs) in between periodic graphene domains in later sections.

Note that, we have not considered the underlying substrate explicitly in our calculations. However, we 
believe that, the simulation technique of surface diffusion of carbon atoms as adopted here can mimic the 
CVD growth of graphene on Cu surface45. Very low solubility of carbon atoms in Cu even at very high 
temperature restricts the diffusion of carbon atoms in the bulk of metal substrate as observed in case of 
Ni or Co substrates. Consequently, during the CVD growth, carbon atoms diffuse on Cu substrate surface 
to produce mainly single layer graphene45. Moreover, in our calculations, the faces of the CVD grown 
graphene domains have been considered to be zigzag as observed experimentally and predicted by the-
oretical calculations53–55. In addition to that, the growth of graphene on Cu(111) plane results in highly 
uniform orientation of hexagons due to the symmetry match between graphene and the underlying 
substrate53,56, as has been considered in the present study. However, the structural and electronic aspects 
of the grain boundaries within these oriented graphene domains are still not explored satisfactorily.

Results
We perform structural relaxations with several starting geometries varying the position and number of 
carbon atoms at the interface of two quantum dot like graphene segments and present four representative 
structures, namely S1, S2, S3 and S4. Our calculations always result in planar structures with varying 
geometry and bonding at the interface, as depicted by the shaded region in Fig. 2a1–a4. In case of S2, 
the two graphene segments merge smoothly with formation of hexagonal carbon rings at the interface. 
In all other cases, we observe formation of PDs with non-hexagonal carbon rings. That is why; we ana-
lyze the stability of the PDs in comparison with the defect free S2 structure in Fig,  2b. Here we plot, 
the stabilization energy per carbon atom (Δ S / C atom) for all the relaxed structures, which have been 
calculated by the following equation,

Δ / = ( )/ ( )– –C atom E N *E N *E N 1TotalS C C H H C

where, ETotal, EC and EH are the energies of the relaxed structures (S1, S2, S3 and S4), one carbon atom 
and one hydrogen atom, respectively and NC NH is the number of carbon (hydrogen) atoms in the 
system. Note that, the stabilization energy of S2 as shown in Fig.  2b is calculated after passivating the 
dangling bonds of two edge carbon atoms at the interface (shaded region). This is to make sure that, 
the benchmark geometry S2 really reflects the defect free energy. As can be seen, the PDs in S1 and S4 
show the formation of five and seven membered carbon rings, which have been observed experimentally 
in the existing literature. However, the observation of three membered ring surrounded by larger rings 
with 8–10 carbon atoms in S3 is unprecedented. We observe the formation of such PDs in several other 
geometrical relaxations also. As we know, the stability of isolated three membered carbon ring is less 
compared to the hexagonal rings, owing to the lack of aromatic stability. Therefore, the lesser stability of 
S3 is expected (see Fig. 2b). However, the presence of larger rings around the three membered ring pro-
vides some stability to this kind of PDs. To check the stability of such PD in larger graphene domains, we 
keep adding carbon atoms surrounding the PD and subsequently relax the whole structures. We observe 
that, the PD remains unchanged even in larger domains with little deformation of the larger rings (see 
Fig. 2c). Moreover, the stabilization energy increases with increase in the quantum dot size as can be seen 
for S3’. These observations indicate that, the formation of such PDs in large graphene domain is possi-
ble. Although, the thermodynamic stabilities of such PDs are less compared to the defect free graphene, 
they can be formed with kinetic stability during the CVD growth. This is due to the fact that, the lateral 
movements or rotations of large graphene nucleations are arrested due to their larger size and may result 
in undesired defects at the interface with unusual bonding characteristics.

Now it is obvious that, the bipartite nature of pristine graphene collapses at such defects and discrim-
ination of NA and NB becomes impossible. That may lead to asymmetric distribution of up and down 
spins and may induce net magnetization. Although, the appearance of magnetization is not always obvi-
ous as observed in case of Stone-Well’s defect, i.e., the fused 5 and 7 membered rings, which does not 
prefer any local spin moments57–61. However, our calculations in case of S3’ clearly show that, one kind 
of spin is preferred over the PD (see Fig. 2c), giving rise to a net magnetization of 1.732 Bohr magneton. 
Note that, S3’ contains even number of carbon atoms (60 C atoms). So the magnetization cannot appear 
due to the presence of unpaired spins, which can arise in case of systems with odd number of carbon 
atoms with NA ≠ NB. Rather, it results due to the collapse of the bipartite nature over the PD. Moreover, 
the observed magnetization does not appear only due to the presence of zigzag edges. Although, the 
appearance of local spin moments at zigzag edges has been observed in S3’, their contribution is far too 
less compared to the local spin moment over the PD and cannot be seen within the considered isovalue 
in Fig.  2c. As can be seen, the majority spin moment is mainly localized on the valency-unsatisfied 
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Figure 2. Appearance of net magnetization on point defects. The initial structures (left) before 
geometrical relaxation with unpassivated carbon atoms of two small graphene segments interacting at the 
interface (shaded region) and the corresponding optimized structures (right) after geometrical relaxation, 
namely S1, S2, S3 and S4 with the formation of point defects (shaded region) are shown in (a1), (a2), (a3) 
and (a4), respectively. (b) The stabilization energy per carbon atom (Δ S/C atom) for the above mentioned 
systems are shown along with that of the system, S3’ (shown in Fig. 2c). The dashed line indicates the Δ S/C 
atom for the system without any defect, i.e., S2 after passivating the dangling bonds at the shaded region by 
hydrogen atom. (c) The spin density plot for S3’, showing localization of spins over the defect, giving rise to 
net magnetization of 1.732 Bohr magneton in the system. Two colors indicate densities for two different spin 
polarizations. (d) The wave function of the highest occupied molecular orbital (HOMO) for the majority 
spin (here down spin) is localized over the defect.
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carbon atom in the ten-membered ring and on the three-membered ring (see Fig. 2c). The wave-function 
analysis shows that, appearance of such magnetization can be attributed to the localized highest occupied 
molecular orbital (HOMO) of the majority spin (down spin in present case) over the PD (see Fig. 2d). 
All other wave functions near the Fermi energy are delocalized over the full structure of S3’.

The appearance of localized states in case of zigzag edge graphene nanoribbons has been explored in 
great extent in the existing literature and observed experimentally as well19,20,23,26,62. After the observa-
tion of localized wave-function with net magnetization over PDs, we asked the question: is it possible to 
obtain the array of such magnetic PDs, in other word, magnetic GBs which can result in localized states 
in the bulk of graphene? Because such localized magnetic states in the proximity of Fermi energy can be 
exploited greatly for spin-transport devices.

That is why, we next consider the periodic supercells with two graphene grains facing each other with 
zigzag and Klein edges, as can be seen in Fig. 3a1. These two grains with zero crystallographic angle mis-
match, that can be obtained experimentally via highly oriented graphene growth on Cu(111) surface53–56, 
interact with each other at their interface as depicted by the shaded region. Upon structural relaxation, 
they form a grain boundary along the interface with fused five and eight membered rings. This GB is 
non-magnetic in nature, as evident from its negligible net magnetization and no spin polarization. Then 
we start modifying the interface, as we have done during the investigation of PDs in previous section, 
and relax the whole supercell. We present two such GBs in D2 (Fig. 3a2) and D3 (Fig. 3a3). Both these 
GBs are magnetic in nature with considerable net magnetization per supercell of 2.399 and 1.710 Bohr 
magneton, respectively. The wave functions are localized over the GBs as evident from the spin density 
plots (see Fig. 3a2,a3). Although, the supercell in D2 contains odd number of carbon atoms, the number 
of unpaired spins is more than one. That clearly indicates that, the net magnetization is not solely due 
to NA ≠ NB. Moreover, in spite of even number of carbon atoms in the supercell of D3, the appearance of 
localized spin moments over the GB proves our argument of unusual bonding induced magnetization. 
Note that, these magnetic GBs contain four-eight and four-ten membered fused rings, respectively.

All these GBs are less stable compared to the pristine graphene (in Fig.  3b), as can be seen from 
Fig.  3c. However, these GBs can be formed with kinetic stability during the CVD growth, as we have 
argued before. Note that, all these GBs maintain the planarity of the whole system, showing the strength 
of sp2 network. Now, before entering the electronic properties of these GBs, we first discuss about the 
modified Brillouin zone in Fig. 3d. As can be seen, the hexagonal Brillouin zone (solid line) for rhombus 
unit cell of graphene is now mapped to a rectangular Brillouin zone (dashed line) in case of rectangular 
graphene supercell, as shown in Fig.  3b. Due to the zone folding in the modified supercell, the Dirac 
points (K and K’) are now positioned over the line connecting two high symmetric points Γ  and X. The 
Dirac linear dispersion can now be observed at the K point in between Γ  and X (see Fig. 3e).

However, in case of GB formation in D1, D2 and D3, the linear dispersion completely disappears 
with appearance of metallic density of states (DOS) at Fermi energy, as can be seen from Fig.  3f1,3f2 
and f3, respectively. The projected DOS (pDOS) shows that the states at / near Fermi energy mainly 
arise from the GBs. In case of D1, the degeneracy between up and down spin bands (see Fig. 3f1) can 
be attributed to the absence of any spin preference over the grain boundary. This behavior is analogous 
to the periodic Stone-Wales defect that does not allow any spin preference and shows metallic behavior 
with degenerate up and down spin bands57–61. However, in case of D2 and D3, the net magnetization and 
spin polarization over the GBs result in asymmetric up and down spin bands (see Fig.  3f2,f3). As can 
be seen, in case of D2, a completely dispersion less flat band for up spin appears just below the Fermi 
energy (− 0.15 eV). However, for down spin, the almost dispersion less band appears above the Fermi 
energy (0.14 eV). These dispersion less bands indicate that the electrons are highly localized and do not 
carry any velocity. Therefore, the GB in D2 would act as scattering barrier for the cross GB transport. 
Moreover, it is obvious that, in case of such GB, the system will show higher net magnetization upon 
small electron or hole doping when the Fermi energy gets aligned with the observed flat bands above 
or below the Fermi energy, respectively. On the contrary, in case of D3, the bands for both the spins 
crossing the Fermi energy are dispersive and therefore the electrons are conducting. Note that, for cross 
GB transport the system needs dispersive bands along X – M and Γ  - X' directions. As can be seen in 
Fig.  3f3, both the spin components have dispersive bands along Γ  - X'. However, the dispersive band 
along X – M exists only for the up spin component. This asymmetry between up and down spins is 
reflected in their spin polarized DOS as well. Therefore, one can expect asymmetric spin transport across 
the GB and consequent spin-filtering behavior.

Furthermore, we explore the behavior of these magnetic GBs in presence of graphene edges. Before 
discussing about their electronic properties, we first present the much-studied zigzag graphene nanorib-
bon system in absence of any defect and show its spin density and electronic properties in Fig. 4a1,b1, 
respectively. As we know, the spins of opposite polarization localize on either edges to make the overall 
zero net magnetization (see Fig. 4a1)24,25,63. In addition to this, the partial flat bands, i.e., the edge states 
at Fermi energy, as obtained from tight-binding calculations, split with the incorporation of electronic 
correlations, resulting in semiconducting band gap at Fermi energy (see Fig. 4b1)27,28,63.

When we create similar interfacial environment (as in D2 and D3) in case of ribbons, we obtain 
identical GBs after geometrical relaxation, as can be seen in Fig. 4a2,a3. However, the net magnetization 
of the total supercell is enhanced as compared to their two-dimensional counterparts. This occurs due 
to the coupling of the GBs with the spin polarized edges of the ribbons. We believe that, for sufficiently 
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wider ribbons, the GBs at the bulk will be completely decoupled with the edges and the net magnetiza-
tion will become identical to the two-dimensional systems. The spin density plots show the localization 
of non-bonding electrons with abundance of one kind of spin over the GBs. This spin localization is 
analogous to that of the edges. However, the absence of its counterpart with opposite spin localization, 
unlike two edges clearly makes these GBs advantageous over the defect less ribbons in view of their 
unexplored electronic properties. The presence of GBs introduces dispersion less flat bands at/near Fermi 
energy, while the edge states still remain away from the Fermi energy (see Fig. 4b2,b3), as evident from 
the DOS and pDOS plots. In case of first magnetic GB, the flat bands of two different spin polarizations 
are positioned in either sides of the Fermi energy, indicating the magnetic excitations upon electron or 
hole doping. Whereas, in case of second magnetic GB, the flat bands for both the spins are aligned with 

Figure 3. Grain boundary induced magnetization in two-dimensional graphene. The initial structures 
before geometrical relaxation with two graphene grains in the supercell (dashed box) interacting at their 
interface (shaded region) and the corresponding optimized final structures, namely D1, D2 and D3 
with the formation of grain boundaries (shaded region) are shown along with their spin density and net 
magnetization of 0.207, 2.399 and 1.710 Bohr magneton per supercell in (a1), (a2) and (a3), respectively. 
(b) The rectangular graphene supercell of size comparable with that of D1, D2 and D3. (c) The stabilization 
energy per carbon atom (Δ S/C atom) for D1, D2 and D3 along with that of pristine graphene (dashed line). 
(d) The Brillouin zone of graphene for rhombus unit cell (solid hexagon) and that for rectangular supercell 
(dashed rectangle) with the high symmetric points. (e) The band structure and DOS of rectangular graphene 
supercell. (f1), (f2) and (f3) represent the spin polarized band structures and DOS for up and down spins in 
case of D1, D2 and D3, respectively. The total DOS and pDOS from the grain boundaries are shown by light 
and dark shades, respectively. The horizontal dashed lines in band structures and density of states indicate 
the position of Fermi energy, while the vertical dashed lines show the location of high symmetric points.
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Figure 4. Magnetic grain boundaries in zigzag edge graphene nanoribbons. The optimized geometries of 
zigzag edge graphene nanoribbon and that of with grain boundaries (as in Fig. 3a2,a3), marked by shaded region 
are shown in (a1), (a2) and (a3), respectively along with their spin density and net magnetization of 0.0, 2.707 
and 1.933 Bohr magneton per supercell. The dashed boxes indicate the supercell. (b1), (b2) and (b3) show the 
spin polarized band structures and DOS for up and down spins in case of systems, shown in (a1), (a2) and (a3), 
respectively. The total DOS and pDOS from the grain boundaries are shown by light and dark shades, respectively. 
The horizontal dashed lines in band structures and density of states indicate the position of Fermi energy.

the Fermi energy, showing higher localization of non-bonding electrons and absence of any conduction 
spins along the GB. However, it is worth exploring the transport probabilities across the GB and will be 
addressed elsewhere.

Discussion
In conclusion, we have observed the formation of magnetic point defects and grain boundaries during the 
CVD growth of graphene within ab-initio framework. The simulation procedure of defect formation via 
allowing two graphene segments to interact with each other, as adopted in this study is simple but unprec-
edented. Moreover, for the first time we detect the possibility of a point defect of three-membered carbon 
ring with surrounding larger rings that can induce net magnetization to the graphene sample through the 
spin polarized localized states. The observation of stable three-membered carbon ring is interesting from 
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fundamental chemistry viewpoint and can be detected via scanning tunneling microscope (STM) exper-
iment due to higher charge localization. In case of periodic systems, however the magnetic GBs are built 
by the fusion of four membered rings with larger carbon rings. These observations lead to the conclusion 
that, the existence of smaller rings in the defect indulges the formation of larger rings which localize the 
non-bonding electrons to give rise to net magnetization. As a whole, this phenomenon arises due to the 
deviation from the graphene bipartite nature at the defect. The electronic properties show the possibilities 
of doping induced magnetic excitations and asymmetric spin transports across the GBs. Therefore, these 
unprecedented magnetic defects can be useful for sensor and spin-filtering applications. Note that, the 
geometrical aspects of PDs and GBs can be completely stochastic depending on the interfacial environ-
ment within graphene grains during CVD growth. But, our argument that, the formation of localized 
states will always give rise to magnetism, remains generalized. There exist a vast room for exploration of 
these defects with potential application possibilities. Our present study is just the first step towards the 
understanding of the GB induced magnetism in a purely carbon system.

Methods
For the structural relaxation of CVD grown graphene and for the investigation of the electronic 
properties of the same in presence of PDs and GBs, we adopt ab-initio level of calculations as imple-
mented in SIESTA64. Generalized gradient approximation (GGA) has been considered within 
Perdew-Burke-Ernzerhof (PBE) exchange and correlation functional65. Spin polarized calculations have 
been performed with double zeta polarized (DZP) basis set and energy cut-off of 400 Ry for real space 
mesh size. Note that, we consider initial antiferromagnetic spin orientation guess for the wave-function 
as evident in case of graphene. All the structures have been relaxed along with the relaxation of lattice 
constants of supercells until the force on each atom reaches 0.04 eV/Å and sufficient vacuum has been 
created along the non-periodic directions to avoid any interactions within adjacent supercells. We con-
sider Brillouin zone sampling over 10 ×  10 ×  1 and 70 ×  1 ×  1 Monkhorst-Pack grid for two-dimensional 
graphene (Fig. 3) and for quasi-one-dimensional graphene nanoribbons (Fig. 4), respectively. However 
for non-periodic quantum dot structures (as shown in Fig. 2), we perform only Γ -point calculations.

References
1. Son, Y. W., Cohen, M. L. & Louie, S. G. Half-mettalic graphene nanoribbons. Nature 444, 347–349 (2006).
2. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. 

Phys. 81, 109–162 (2009).
3. Ando, T. Physics of graphene zero-mode anomalies and roles of symmetry. Prog. Theor. Phys., Suppl. 176, 203–226 (2008).
4. Drexler, C. et al. Magnetic quantum ratchet effect in graphene. Nature Nanotech. 8, 104–107 (2013).
5. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007).
6. Wehling, T. O. et al. Molecular doping of graphene. Nano Lett. 8, 173–177 (2008).
7. Weiss, N. O. et al. Graphene: An emerging electronic material. Adv. Mater. 24, 5782–5825 (2012).
8. Liu, Y., Dong, X. & Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41, 2283–2307 (2012).
9. Vedala, H., Sorescu, D. C., Kotchey, G. P. & Star, A. Chemical sensitivity of graphene edges decorated with metal nanoparticles. 

Nano Lett. 11, 2342–2347 (2011).
10. Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989).
11. Nair, R. R. et al. Spin-half paramagnetism in graphene induced by point defects. Nature Phys. 8, 199–202 (2012).
12. Deng, H. Y. & Wakabayashi, K. Edge effect on a vacancy state in semi-infinite graphene. Phys. Rev. B 90, 115413 (2014).
13. Yazyev, O. V. Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 73, 056501 (2010).
14. Ma, Y., Lehtinen, P. O., Foster, A. S. & Nieminen, R. M. Magnetic properties of vacancies in graphene and single-walled carbon 

nanotubes. New J. Phys. 6, 68 (2004).
15. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence of atomic defects in graphene layers. Nature 430, 

870–873 (2004).
16. Yazyev, O. V. & Helm, L. Defect-induced magnetism in graphene. Phys. Rev. B 75, 125408 (2007).
17. Fujii, S. & Enoki, T. Clar’s aromatic sextet and π –electron distribution in nanographene. Angew. Chem. Int. Ed. 51, 7236–7241 

(2012).
18. Ziatdinov, M. et al. Direct imaging of monovacancy-hydrogen complexes in a single graphitic layer. Phys. Rev. B 89, 155405 (2014).
19. Fujita, M., Wakabayashi, K., Nakada, K. & Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 65, 

1920–1923 (1996).
20. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge 

shape dependence. Phys. Rev. B 54, 17954 (1996).
21. Wakabayashi, K., Fujita, M., Ajiki, H. & Sigrist, M. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 

8271–8282 (1999).
22. Adams, D. J. et al. Stable ferromagnetism and doping-induced half-metallicity in asymmetric graphene nanoribbons. Phys. Rev. 

B 85, 245405 (2012).
23. Wakabayashi, K., Sigrist, M. & Fujita, M. Spin wave mode of edge-localized magnetic states in nanographite zigzag ribbons. J. 

Phys. Soc. Jpn. 67, 2089–2093 (1998).
24. Wakabayashi, K., Sasaki, K. I., Nakanishi, T. & Enoki, T. Electronic states of graphene nanoribbons and analytical solutions. Sci. 

Tech. Adv. Mater. 11, 054504 (2010).
25. Wakabayashi, K. & Dutta, S. Nanoscale and edge effects on electronic properties of graphene. Solid State Comm. 152, 1420–1430 

(2012).
26. Tao, C. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nature Phys. 7, 616–620 (2011).
27. Dutta, S. & Wakabayashi, K. Tuning charge and spin excitations in zigzag edge nanographene ribbons. Sci. Rep. 2, 519 (2012).
28. Dutta, S. & Pati, S. K. Novel properties of graphene nanoribbons: A review. J. Mater. Chem. 20, 8207–8223 (2010).
29. Baringhaus, J., Edler, F. & Tegenkamp, C. Edge-states in graphene nanoribbons: A combined spectroscopy and transport study. 

J. Phys.: Condens. Matter 25, 392001 (2013).
30. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).



www.nature.com/scientificreports/

9Scientific RepoRts | 5:11744 | DOi: 10.1038/srep11744

31. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
32. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451–10453 (2005).
33. Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in 

graphene. Nature 438, 201–204 (2005).
34. Wang, H. L., Robinson, J. T., Li, X. L. & Dai, H. J. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. 

Soc. 131, 9910–9911 (2009).
35. Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).
36. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 

(2009).
37. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).
38. Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
39. Hu, B. S. et al. Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD. Carbon 

50, 57–65 (2012).
40. Sun, Z. Z. et al. Growth of graphene from solid carbon sources. Nature 468, 549–552 (2010).
41. Chae, S. J. et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. 

Adv. Mater. 21, 2328–2333 (2009).
42. De Arco, L. G. et al. Continuous, highly flexible and transparent graphene films by chemical vapor deposition for organic 

photovoltaics. ACS Nano 4, 2865–2873 (2010).
43. Ismach, A. et al. Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 10, 1542–1548 (2010).
44. Ago, H. et al. Epitaxial growth and electronic properties of large hexagonal graphene domains on Cu(111) thin film. Appl. Phys. 

Exp. 6, 075101 (2013).
45. Zhang, X., Li, H. & Ding, F. Self-assembly of carbon atoms on transition metal surfaces-chemical vapor deposition growth 

mechanism of graphene. Adv. Mater. 26, 5488–5495 (2014).
46. Cummings, A. W. et al. Charge transport in polycrystalline graphene: Challenges and opportunities. Adv. Mater. 26, 5079–5094 

(2014).
47. Coraux, J. et al. Growth of graphene on Ir(111). New J. Phys. 11, 023006 (2009).
48. Geng, D. et al. Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc. Natl. Acad. Sci. U. S. A. 109, 

7992–7996 (2012).
49. Kotakoski, J., Krasheninnikov, A. V., Kaiser, U. & Meyer, J. C. From point defects in graphene to two-dimensional amorphous 

carbon. Phys. Rev. Lett. 106, 105505 (2011).
50. Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I. I. & Batzill, M. An extended defect in graphene as a metallic wire. Nature Nanotech. 5, 

326–329 (2010).
51. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).
52. Biró, L. P. & Lambin P. Grain boundaries in graphene grown by chemical vapor deposition. New J. Phys. 15, 035024 (2013).
53. Ago, H., Ogawa, Y., Tsuji, M., Mizuno, S. & Hibino, H. Catalytic growth of graphene: Toward large-area single-crystalline 

graphene. J. Phys. Chem. Lett. 3, 2228–2236 (2012).
54. Luo, Z., Kim, S., Kawamoto, N., Rappe, A. M. & Johnson, A. T. C. Growth mechanism of hexagonal-shape graphene flakes with 

zigzag edges. ACS Nano 5, 9154–9160 (2011).
55. Shu, H., Chen, X., Tao, X. & Ding, F. Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS 

Nano 6, 3243–3250 (2012).
56. Ogawa, Y. et al. Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) films. J. Phys. Chem. 

Lett. 3, 219–226 (2012).
57. Koskinen, P., Malola, S. & Hakkinen, H. Evidence of graphene edges beyond zigzag and armchair. Phys. Rev. B 80, 073401 (2009).
58. Wassmann, T., Seitsonen, A. P., Saitta, A. M., Lazzeri, M. & Mauri, F. Structure, stability, edge states and aromaticity of graphene 

ribbons. Phys. Rev. Lett. 101, 096402 (2008).
59. Terrones, H. et al. New metallic allotropes of planar and tubular carbon. Phys. Rev. Lett. 84, 1716–1719 (2000).
60. Crespi, V. H., Benedict, L. X., Cohen, M. L. & Louie, S. G. Prediction of a pure-carbon planar covalent metal. Phys. Rev. B 53, 

R13303–R13305 (1996).
61. Dutta, S. & Pati, S. K. Edge reconstructions induce magnetic and metallic behavior in zigzag graphene nanoribbons. Carbon 48, 

4409–4413 (2010).
62. Talirz, L. et al. Termini of bottom-up fabricated graphene nanoribbons. J. Am. Chem. Soc. 135, 2060–2063 (2013).
63. Son, Y. W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).
64. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745 (2002).
65. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Acknowledgments
S.D. acknowledges ICYS-MANA for research funding and K.W. acknowledges the financial support by 
Grant-in-Aid for Scientific Research from MEXT and JSPS (Nos. 25107001, 25107005 and 15K13507).

Author Contributions
S.D. and K.W. have defined the project. S.D. has performed the calculations. S.D. and K.W. have analyzed 
the results and have written the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Dutta, S. and Wakabayashi, K. Magnetization due to localized states on 
graphene grain boundary. Sci. Rep. 5, 11744; doi: 10.1038/srep11744 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Magnetization due to localized states on graphene grain boundary
	Results
	Discussion
	Methods
	Acknowledgments
	Author Contributions
	Figure 1.  Schematic representation of Lieb’s theorem on bipartite lattice.
	Figure 2.  Appearance of net magnetization on point defects.
	Figure 3.  Grain boundary induced magnetization in two-dimensional graphene.
	Figure 4.  Magnetic grain boundaries in zigzag edge graphene nanoribbons.



 
    
       
          application/pdf
          
             
                Magnetization due to localized states on graphene grain boundary
            
         
          
             
                srep ,  (2015). doi:10.1038/srep11744
            
         
          
             
                Sudipta Dutta
                Katsunori Wakabayashi
            
         
          doi:10.1038/srep11744
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep11744
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep11744
            
         
      
       
          
          
          
             
                doi:10.1038/srep11744
            
         
          
             
                srep ,  (2015). doi:10.1038/srep11744
            
         
          
          
      
       
       
          True
      
   




