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Sustained SREBP-1-dependent lipogenesis as a key
mediator of resistance to BRAF-targeted therapy
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Frank Vanderhoydonc1, Joao A.G. Duarte7,8, Francesca Bosisio9,10, Kathleen Van den Eynde9,10, Kris Nys11,

Mónica Vara Pérez11, Patrizia Agostinis11, Etienne Waelkens6, Joost Van den Oord9,10, Sarah-Maria Fendt7,8,

Jean-Christophe Marine2,3 & Johannes V. Swinnen 1

Whereas significant anti-tumor responses are observed in most BRAFV600E-mutant mela-

noma patients exposed to MAPK-targeting agents, resistance almost invariably develops.

Here, we show that in therapy-responsive cells BRAF inhibition induces downregulation of the

processing of Sterol Regulator Element Binding (SREBP-1) and thereby lipogenesis. Irre-

spective of the escape mechanism, therapy-resistant cells invariably restore this process to

promote lipid saturation and protect melanoma from ROS-induced damage and lipid perox-

idation. Importantly, pharmacological SREBP-1 inhibition sensitizes BRAFV600E-mutant

therapy-resistant melanoma to BRAFV600E inhibitors both in vitro and in a pre-clinical PDX

in vivo model. Together, these data indicate that targeting SREBP-1-induced lipogenesis may

offer a new avenue to overcome acquisition of resistance to BRAF-targeted therapy. This

work also provides evidence that targeting vulnerabilities downstream of oncogenic signaling

offers new possibilities in overcoming resistance to targeted therapies.
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While targeted approaches are revolutionizing the
treatment of cancer, the management of both intrinsic
and acquired therapy resistance remains a major

limitation. This is exemplified by the unprecedented, but tran-
sient, anti-tumor responses seen in patients with BRAFV600E-
mutant malignant melanoma exposed to agents that selectively
inhibit oncogenic BRAF1,2. Many of these patients show almost
complete remission in response to such targeted agents, however,
therapy resistance eventually develops in ~80% of all cases3–5.

Many genomic and non-genomic mechanisms have been
described, all leading to re-activation of the MAPK- and/or PI3K-
signaling pathways6–8. Moreover, different mutational events can
be selected in distinct drug-resistant clones from the same patient9

and even co-occur within the same lesion10. These findings have
highlighted the need to improve effectiveness of treatment, by for
instance, the co-targeting of other essential cancer vulnerabilities
and/or key mediators of MAPK signaling itself.

One of the pathways that is emerging as a central player in
multiple oncogenic processes and that functions downstream of a
multitude of oncogenic signal transduction pathways is de novo
lipogenesis. Accordingly, this pathway is specifically activated in
many cancers11–14, in part through induction of the transcription
factor Sterol Regulatory Element Binding Protein (SREBP-1), a
master regulator of lipogenesis15–20. Aberrant activation of the
lipogenic pathway in cancer is required for the synthesis of
phospholipids, which function as essential building blocks of
membranes and that support cell growth and proliferation21,22.
As this pathway mainly produces saturated and mono-
unsaturated fatty acids, an increase in the proportion of these
lipids in the cellular membrane composition of cancer cells is
often observed23–26. Importantly, saturated and mono-
unsaturated fatty acids are less prone to lipid peroxidation,
thereby providing a survival advantage to cancer cells, particularly
those exposed to oxidative stress26.

Here, we show that the lipogenic pathway is a key mediator of
oncogenic BRAF and that its constitutive activation, which is
mediated by SREBP-1, contributes to therapy resistance. Our
findings support the use of SREBP-1 inhibitors in a novel com-
binatorial approach to overcome resistance to BRAFV600E-tar-
geted therapy.

Results
De novo lipogenesis is inhibited by BRAFV600E-targeted therapy.
As in many cancers, there is evidence that de novo lipogenesis is
activated in melanoma27,28. We reasoned that ectopic MAPK-
activation may be one key triggering event of such activation. To
test this possibility, we assessed the impact of BRAF inhibition on
lipid metabolism. We exposed BRAF-mutant, therapy-sensitive,
melanoma cell lines (M249 and A375) to vemurafenib and pro-
filed their transcriptome by RNA-seq. Ingenuity pathway analysis
(IPA) identified fatty acid metabolism as one of the most affected
pathways by the treatment (Fig. 1a). Consistently, expression of
key lipogenic enzymes such as ATP citrate lyase (ACLY), acetyl-
CoA carboxylase-1 (ACACA), and fatty acid synthase (FASN)
were consistently decreased (Fig. 1b, Supplementary Fig. 1a).
Alterations in the expression of these enzymes by mutant BRAF
inhibition was confirmed by RT-qPCR on an extended panel of
therapy-sensitive BRAFV600E parental and isogenic cell lines that
have acquired resistance to vemurafenib through diverse
mechanisms (Supplementary Table 1). These include Raf-kinase
flexibility in MAPK signaling and in increased IGF-1R/PI3K
signaling (451lu R)29, enhanced RTK signaling (M229 R and
M238 R) and secondary acquisition of oncogenic NRASQ61K

(M249 R)30. Whereas vemurafenib decreased the expression of
lipogenic enzymes in all sensitive BRAF-mutant cell lines, this

was not seen in normal neonatal human epidermal melanocytes
(NHEM) and in the therapy-resistant lines (Fig. 1c, Supplemen-
tary Fig. 1b). If anything, the opposite effect was observed in the
vemurafenib-resistant cells. Direct measurement of the overall
rate of lipogenesis by assessing 14C-acetate incorporation into
lipids confirmed an overall increase in lipogenesis in melanoma
cell lines compared to NHEM (Fig. 1d). A marked decrease in de
novo lipogenesis was observed in all BRAFV600E therapy-sensi-
tive, but not resistant, cell lines upon vemurafenib exposure.
These findings were further corroborated by isotopomer spectral
analysis, a method that measures fatty acid biosynthesis rates by
measuring the fraction of de novo synthesized palmitate. In
general, there was a marked decrease in the fraction of de novo
synthesized palmitate in therapy-sensitive lines. In contrast,
vemurafenib did not cause any decrease in palmitate synthesis in
some therapy-resistant cells or induced only a moderate reduc-
tion in others (Supplementary Fig. 2). We conclude that lipo-
genesis is sustained in therapy-resistant cells when compared to
therapy-sensitive cells upon vemurafenib treatment. Notably,
lipid uptake, cholesterol synthesis rate or cholesterol uptake were
not affected in any of the conditions and cell lines, indicating that
vemurafenib predominantly affects de novo fatty acid biosynth-
esis (Supplementary Fig. 3a–c).

De novo lipogenesis mainly produces saturated and mono-
unsaturated fatty acids with phospholipids as major end
product24–26. Consistently, mass spectrometry-based phospholi-
pidome analysis revealed that inhibition of oncogenic BRAF in
the therapy-sensitive lines caused an increase in the proportion of
poly-unsaturated membrane phospholipid species at the expense
of saturated and mono-unsaturated phospholipids. These are
typical changes observed upon lipogenesis inhibition26 (Fig. 1e, f).
Such a shift was either absent or less pronounced in the therapy-
resistant lines and in NHEM. Taken together, these findings
indicate that inhibition of oncogenic BRAF inhibits de novo
lipogenesis and thereby enhances membrane poly-unsaturation.

BRAFV600E-induced lipid metabolism is mediated by SREBP-1.
The selected lipogenic enzymes, the expression of which are
downregulated upon oncogenic BRAF inhibition, are well-
established transcriptional targets of SREBP-1. We therefore
examined whether activity of SREBP-1 itself may be decreased by
vemurafenib. Because SREBP-1 is synthesized as an inactive
precursor, which is activated upon proteolytic cleavage31

(Fig. 2a), we used western blot analysis to assess the protein levels
of both full-length and mature SREBP-1. Vemurafenib caused a
decrease in the levels of the mature form of SREBP-1 in all
BRAFV600E-therapy-sensitive, but not (or less so) in resistant cell
lines (Fig. 2b). In contrast, the non-processed form was either
unaffected or increased. To further substantiate this finding, we
exploited the paradoxical activation of the MAPK pathway by
vemurafenib in two NRAS mutant cell lines (M202 and M207)32–34.
Vemurafenib resulted in both an expected increase in the levels of
pMEK 1/2 proteins and of mature SREBP-1 (Fig. 2c). In addition,
over-expression of a BRAFV600E-encoding plasmid in these BRAF
wild-type cells further support the ability of oncogenic BRAF to
induce SREBP-1 processing (Fig. 2d). RT-qPCR analysis of the
transcripts encoding SREBP-1a and SREBP-1c showed a
decreased expression upon vemurafenib exposure in 451lu and
A375, but not in the other cell lines (Supplementary Fig. 4). As
SREBP expression is subject to autoregulation, these findings
indicate that vemurafenib acts, at least in part, at the level of
SREBP maturation. Note, however, that more direct transcrip-
tional effects on the regulation of SREBF-1 transcription cannot
be fully excluded. To further substantiate these findings, we
looked at the effect of vemurafenib on the cellular distribution of
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SREBP-1. To this end, we generated a transcriptionally inactive
recombinant full-length SREBP-1 construct with an N-terminal
HA-tag and a C-terminal myc-tag, allowing visualization of the
active and inactive forms of the protein (Fig. 2e). Western blot-
ting established that the transgene is processed in a manner that is
indistinguishable from endogenous SREBP-1 (Supplementary
Fig. 5a). Similarly to endogenous mSREBP-1, which localizes to
the nucleus, the processed HA-tagged exogenous protein was

detected in the nuclei of untreated melanoma cells. In contrast,
both HA- and myc-tagged proteins co-localized in the ER–Golgi,
indicating that proteolytic activation is halted in vemurafenib-
treated cells (Fig. 2f, Supplementary Fig. 5b). Taken together,
oncogenic BRAF targeting inhibits the processing and activation
of SREBP-1 in therapy-sensitive, but not therapy-resistant, mel-
anoma cells and this effect is, by and large, mediated by a post-
translational mechanism.
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Fig. 1 De novo lipogenesis is inhibited by vemurafenib in therapy-sensitive cells, but remains activated in therapy-resistant ones. a Significantly altered (fold
change of at least 1.5 and p < 0.05) pathways as indicated by ingenuity pathway analysis (IPA) of RNA-seq of vemurafenib (5 μM) treated M249 and A375
cells (n= 3). b Vemurafenib affects major components of the fatty acid synthesis pathway (fatty acid synthase, ATP citrate lyase and acetyl-CoA
carboxylase). c The effects of vemurafenib treatment on the mRNA levels of FASN, ACLY, and ACACA in therapy-sensitive versus resistant BRAF-mutant
cell lines and in NHEM (n= 3). d Vemurafenib or vehicle treated cells were assayed for their ability to incorporate 14C-acetate into lipids. Data are
represented as mean ± s.e.m. The significance was determined with an unpaired t-test and compares vemurafenib-treated cells to their matching controls
(n= 3). (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). e Heatmap of log2 ratios of the abundance of phospholipid species in vemurafenib-treated
cells over vehicle treated cells. Species are indicated by their total number of fatty acid carbons, followed by a colon and the total number of unsaturations
(n= 3). f log2 ratios of the vemurafenib-induced changes in saturation index. The saturation index was calculated by summing the species with the same
level of unsaturations
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Interestingly, BRAF inhibition only induced a moderate
decrease in mSREBP-1 levels and did not significantly affect
lipogenesis in therapy-resistant cells (Fig. 2b). Since alternative
activation of the ERK pathway is a common contributor to
therapy resistance and a known regulator of SREBP20,35,36, we
treated the therapy-resistant cell line 451lu R with the MEK
inhibitor trametinib (Supplementary Fig. 6). As expected, these
cells maintained high levels of pMEK upon vemurafenib
treatment (Fig. 2b). Interestingly, MEK inhibition substantially
decreased the levels of mSREBP-1 in these cells (Supplementary
Fig. 7). Consistently, expression of well-established mSREBP-1
downstream targets, such as ACLY, ACACA, and FASN, was also
reduced (Supplementary Fig. 8). These findings indicate that re-
activation of the ERK pathway contributes to sustained SREBP-1
activity in therapy-resistant melanoma cells.

Sustained SREBP-1 activity maintains lipogenesis in therapy-
resistant cells. To further assess the role of SREBP-1 in the
changes in lipid metabolism evoked by vemurafenib, we inhibited
SREBP-1 in 451lu R cells using pharmacological and genetic
approaches. We used two small-molecule inhibitors, betulin and

fatostatin, which inhibit the trafficking of SREBP to the Golgi,
and thereby its proteolytic activation through distinct mechan-
isms37,38. Exposure of 451lu and 451lu R cells to these inhibitors
induced the expected dose-dependent decrease in the levels of
mature SREBP-1; an effect that was more pronounced in the
therapy-sensitive cell line (Supplementary Fig. 9a). Phospholipi-
domic analysis revealed that chemical inhibition of SREBP-1
dose-dependently depleted mono-unsaturated and fully saturated
phospholipid species and increased membrane poly-unsaturation,
partially recapitulating the effect of BRAF inhibition on the
therapy-sensitive cell line (Fig. 3a). Furthermore, these effects
were further enhanced with the addition of vemurafenib, whereby
the phospholipidome of the resistant line under SREBP-1 inhi-
bition and vemurafenib closely resembled that of the sensitive line
in response to vemurafenib (Fig. 3a).

To corroborate these data using a genetic approach, we
generated a heterozygous and two homozygous SREBF-1 knock-
out clones from the therapy-resistant cell line 451lu R using
CRISPR-Cas9. Both Sanger sequencing and western blot analysis
confirmed partial or full SREBF-1 deletion in the heterozygous
and homozygous mutant cells, respectively (Supplementary
Fig. 9b, c)39. Similar changes in the lipid membrane composition
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to the ones observed upon pharmacological inhibition were
observed in the heterozygous SREBF-1 KO clone, and to an even
greater extent, in homozygous KO clones (Fig. 3b). Since
inhibition of SREBP-1 activation resulted in membrane lipid
changes that closely mimicked the effects of vemurafenib, we
concluded that SREBP-1 is the major mediator of BRAF
inhibition-dependent lipid metabolism rewiring.

Inhibition of SREBP-1 re-sensitizes resistant cells to BRAF
targeting therapy. In order to investigate whether vemurafenib-
induced processing of SREBP-1 contributes to its anti-tumor
response, we assessed the ability of melanoma cells to grow in
both 2D and 3D cultures in response to vemurafenib upon
pharmacological or genetic inactivation of SREBP-1. Vemur-
afenib potently inhibited cell proliferation of the therapy-
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sensitive, but not the therapy-resistant line (Fig. 3c, Supplemen-
tary Figs. 10, 11). Proliferation of the therapy-resistant cells was
strongly inhibited upon combined exposure to vemurafenib and
SREBP-1 inhibitors. Similarly, SREBP-1 inhibitors synergized
with vemurafenib in inhibiting the ability of therapy-resistant
cells to form colonies (Fig. 3d, Supplementary Fig. 12). Genetic
ablation of SREBF-1 inhibited the rate of cell proliferation in 2D
cultures of therapy-resistant cells when compared to the resistant
parental cell line. In contrast, inactivation of only one SREBF-1
allele had no effect on cell proliferation (Fig. 3e, Supplementary
Figs. 13, 14). The rate of proliferation of these cells decreased
significantly upon exposure to vemurafenib. Similarly, these
heterozygous SREBF-1 knockout cells were able to form colonies
in 3D cultures; an ability that was reduced in the presence of
vemurafenib (Fig. 3f, Supplementary Fig. 15).

In order to assess whether sustained SREBP-1 processing also
mediates therapy resistance to vemurafenib in BRAFV600E mutant
cells that are endogenously resistant to BRAF targeting therapy,
we treated M23340 with betulin and fatostatin. Both betulin and
fatostatin treatment further sensitized the cell line to vemurafenib
(Supplementary Fig. 16).

In order to assess whether our results directly reflect the effects
of BRAF inhibition and are not off-target effects of vemurafenib,
in parallel we treated 451lu and 451lu R cells with dabrafenib.
Dabrafenib caused a decrease in both 14C-acetate incorporation
into lipids and mature SREBP-1 protein levels in 451lu cells, but
not in 451lu R cells (Supplementary Fig. 17). Furthermore,
combined betulin and fatostatin treatment with dabrafenib
inhibited proliferation in 451lu R cells, mirroring the effects of
vemurafenib (Supplementary Fig. 18).

Since combined BRAF and MEK inhibitor treatment is a
standard of care for BRAF-mutant melanoma patients, we further
assessed the cell proliferative response to SREBP inhibition in
A101D BMR and D10 BMR. These cell lines are resistant to both
dabrafenib and trametinib (A101D BMR is partially resistant and
retains some level of sensitivity). Here we show that SREBP
inhibition by either betulin or fatostatin sensitized the cells to
combined BRAF and MEK inhibition (Supplementary Figs. 19–22).

Taken together, these data indicate that SREBP-1 contributes
to the anti-tumor response induced by BRAF inhibition and that
SREBP-1 inhibition sensitizes therapy-resistant melanoma cells to
MAPK-targeting therapy.

SREBP-1 protects vemurafenib-resistant cells from lipid per-
oxidation. The findings described above predict that SREBP-1-
mediated therapy resistance is a consequence of enhanced
membrane lipid saturation and, consequently, decreased lipid
peroxidation. To test this hypothesis, we mimicked the effect of
SREBP-1 inhibition on the lipid composition of therapy-resistant
cells by treatment with the poly-unsaturated fatty acids linoleic
and linolenic acid (PUFA). When combined with vemurafenib,
PUFA addition slightly attenuated the growth of the cultures.
Conversely, supplementing cells with a final product of lipogen-
esis, oleic acid, slightly enhanced proliferation of cells under
vemurafenib treatment. Both of these effects were significantly
enhanced upon pharmacological or genetic inactivation of
SREBP-1 indicating that membrane lipid saturation contributes
to SREBP-1-mediated resistance to BRAF inhibition (Fig. 4a,
Supplementary Figs. 23, 24).

We have previously reported that membrane saturation
protects cancer cells from ROS- and chemotherapy-induced cell
death26. Here, we observed that both fatostatin and vemurafenib
increase the levels of mitochondrial ROS independently, and that
a combination of the two leads to an additional effect (Fig. 4b). In
addition, ROS levels were either further enhanced or decreased by

addition of PUFAs and oleic acid, respectively. Under combined
vemurafenib and fatostatin treatment, addition of oleic acid
reduced the levels of mitochondrial ROS to levels observed in
cells treated with vemurafenib alone (Fig. 4b). ROS has been
linked to membrane lipid peroxidation, which results in the
accumulation of toxic by-products41. Since poly-unsaturated
lipids are more prone to lipid peroxidation than saturated lipids,
we next measured lipid peroxidation by measuring levels of
cellular malondialdehyde (MDA), which is a direct by-product of
lipid hydro-peroxide degradation. Whereas generally low in
melanoma cells, levels of MDA increased upon exposure to
fatostatin and to an even greater extent upon vemurafenib
treatment (Fig. 4c). Combined fatostatin and vemurafenib
treatment resulted in a further increase in MDA levels, which is
directly in line with the levels of membrane lipid poly-
unsaturation incurred by the treatments (Figs. 3a and 4c). The
levels of MDA under combined therapy increased further with
addition of exogenous PUFA and decreased to levels seen under
vemurafenib alone upon addition of exogenous oleic acid.

Interestingly, steady state metabolomics analysis of cellular
AMP, ADP, and ATP indicated that cellular ATP levels or energy
charge are not markedly altered by combined BRAF and SREBP-1
inhibition (Supplementary Fig. 25). Metabolomics analysis of
NAD, NADH, NADP, NADPH, GSH, and GSSG ratios revealed
that combined SREBP-1 and BRAF inhibition significantly lowers
the cell antioxidant potential.

To corroborate our findings that SREBP-1 inhibition sensitizes
cells to vemurafenib through lipid peroxidation, we supplemented
cells with the antioxidants alpha-tocopherol, ferrostatin, and N-
acetyl-cysteine (NAC). Under combined SREBP-1 and oncogenic
BRAF inhibition, addition of antioxidants partially rescued cell
proliferation (Fig. 4d, Supplementary Figs. 26, 27). To show that
lipid poly-unsaturation and lipid peroxidation also plays a role in
vemurafenib response in drug sensitive cells, we treated therapy-
sensitive cell lines M229 and 451lu with either betulin or
fatostatin and found that these compounds further enhance the
cytostatic effects of the BRAF-inhibitor (Supplementary Figs. 28,
29). Furthermore, we show that treatment with alpha-tocopherol,
in part, rescued the cytostatic effects of vemurafenib in the M229
cell line, and alpha-tocopherol, NAC and ferrostatin treatment
rescued the proliferation of 451lu cells (Fig. 4e and Supplemen-
tary Figs. 30, 31). We conclude that SREBP-1 inhibition sensitizes
cells to vemurafenib, at least partly, though alterations of
membrane poly-unsaturation and, thereby, lipid peroxidation.

SREBP-1 inhibition sensitizes melanoma to vemurafenib
in vivo. To assess the therapeutic potential of these findings
we investigated the impact of SREBP-1 inhibition in an
in vivo pre-clinical BRAFV600E-mutant melanoma model. We
chose PDX MEL006, which has been extensively characterized
previously and was shown to poorly respond to BRAF
inhibitors alone42,43. Mouse cohorts were treated blindly with
either vehicle, vemurafenib alone, fatostatin alone or a combi-
nation of vemurafenib and fatostatin. Fatostatin treatment alone
inhibited tumor growth more potently than vemurafenib.
Importantly, combined vemurafenib/fatostatin co-treatment had
a greater anti-tumor effect than any of the monotherapy regimens
(Fig. 5a–c). Phospholipidomic analysis of the various treated
melanoma lesions revealed a correlation between the changes in
the poly-unsaturation of phospholipids and anti-tumor growth
response (Fig. 5d), whereby membrane poly-unsaturation was
synergistically enhanced by the combination treatment. MDA
analysis revealed that whereas fatostatin or vemurafenib treat-
ment alone did not significantly increase lipid peroxidation, the
combined vemurafenib/fatostatin treatment greatly enhanced
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lipid peroxidation (Fig. 5e). In the Mel006 tumor treated with a
combination of dabrafenib and trametinib, an increase in MDA
was found shortly after the start of treatment and, to a lesser
extent, after establishment of resistance (Supplementary Fig. 32).

Taken together, combined fatostatin and vemurafenib therapy
enhanced therapy response in vivo and increased membrane lipid
poly-unsaturation and lipid peroxidation. These data support the
concept of a novel combinatorial approach to overcome therapy
resistance in BRAFV600E mutant melanoma models.

Discussion
Resistance to targeted therapy represents a major clinical chal-
lenge. This is partly a consequence of the fact that most ther-
apeutic targets to date, including BRAFV600E, act in the proximal

part of their signal transduction cascade. This offers multiple
opportunities for cancer cells to bypass drug response through for
instance the acquisition of mutation(s) that reactivate the path-
way downstream (e.g., by MEK mutation). An attractive strategy
to overcome therapy resistance is therefore the identification and
exploitation of vulnerabilities, which are activated by and act
downstream of such oncogenic pathways. Metabolic pathways are
of particular interest in this context as they often rely on a few
essential enzymes, are frequently rewired in cancer cells, provide
essential survival/adaptive capabilities and can easily be phar-
macologically targeted. Here, we identified the lipogenic tran-
scription factor SREBP-1 as a key downstream target of
oncogenic BRAF signaling. We have shown that sustained lipo-
genesis through the maintenance of active SREBP-1 is a key
feature of therapy resistance to vemurafenib in BRAF-mutant

0 48 96 14
4

19
2

24
0

28
8

0

25

50

75

100

Hours

0 48 96 14
4

19
2

24
0

28
8

Hours

0 48 96 14
4

19
2

24
0

28
8

Hours

0 48 96 14
4

19
2

24
0

28
8

Hours

%
 C

on
flu

en
ce

0

25

50

75

100

%
 C

on
flu

en
ce

0

25

50

75

100

%
 C

on
flu

en
ce

0

25

50

75

100

%
 C

on
flu

en
ce

VemurafenibVemurafenib Betulin + Vemurafenib Fatostatin + Vemurafenib

Control
Oleate
Linoleate + linolenate

a

Con
tro

l

Fat
os

ta
tin

Vem
ur

af
en

ib

Vem
ur

af
en

ib

+ 
Fat

os
ta

tin

0

1000

2000

3000

Control Oleate Linoleate + linolenate

**
****

****

***

b c

M
ito

S
O

X
 r

ed
 

m
ito

ch
on

dr
ia

l
su

pe
ro

xi
de

 (
a.

u.
)

0.0

0.5

1.0

1.5

nm
ol

 M
D

A
 / 

m
g 

pr
ot

ei
n

**
****

**** *

****

Vemurafenib
Fatostatin

Oleate

– – +
+ ––

– –
Linoleate + linolenate

– – + –
– – – – – +

+
+

+
+

+
+

d

451lu R

e

0 48 96 14
4

19
2

24
0

0

25

50

75

100

Hours

0 48 96 14
4

19
2

24
0

Hours

0 48 96 14
4

19
2

24
0

Hours

0 48 96 14
4

19
2

24
0

Hours

%
 C

on
flu

en
ce

Control

0

25

50

75

100

%
 C

on
flu

en
ce

Vemurafenib

0

25

50

75

100

%
 C

on
flu

en
ce

Fatostatin

0

25

50

75

100

%
 C

on
flu

en
ce

Vemurafenib + Fatostatin

Control
Alpha-tocopherol 100 µM
Ferrostatin 1.25 µM
NAC 120 µM

Control
Alpha-tocopherol 100 µM
Ferrostatin 1.25 µM
NAC 120 µM
Vemurafenib 150 nM
Vemurafenib 150 nM + Apha-tocopherol 100 µM
Vemurafenib 150 nM + Ferrostatin 1.25 µM
Vemurafenib 150 nM + NAC 120 µM

0 72 144 216 288
0

25

50

75

100

Hours

%
 C

on
flu

en
ce

M229

0 72 144 216 288
0

25

50

75

100

Hours

%
 C

on
flu

en
ce

451lu

451lu R SREBP+/–

Fig. 4 Re-sensitization to vemurafenib involves lipid peroxidation. a Oleate (20 μM) or a mixture of linoleate (10 μM)+ linolenate (10 μM) was added to
the culture medium of 451lu R SREBP+/− cells and 451lu R cells treated with either vemurafenib alone or a combination with fatostatin or betulin, raw
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melanoma, and that inhibition of SREBP-1 sensitizes melanoma
to targeted therapy.

Critically, the addiction of therapy-resistant melanoma cells to
SREBP-1 is independent of the mechanisms exploited by the
cancer cells to overcome drug response. We observed similar
effects in cells that acquired resistance acquisition of through
RTK upregulation (M229 R, M238 R), NRAS mutation (M249 R)
or enhanced IGF1/PI3K signaling and RAF kinase flexibility
(451lu R). In all sensitive BRAF-mutant models, vemurafenib
caused a decrease in lipogenesis and attenuated the processing
and thereby the activity of SREBP-1. This was not seen in
therapy-resistant models, which all showed high levels of lipo-
genesis even in the presence of the inhibitor. Together with our
observation that pharmacological or genetic inactivation of
SREBP-1 in resistant cells attenuates cell proliferation and sen-
sitizes to vemurafenib (irrespective of the escape mechanism),
these findings indicate that SREBP-1-mediated lipogenesis is a
central pathway acting downstream of mutant BRAF.

Previous work has shown that SREBP-1 is activated through
several mechanisms including, regulation by the PTEN/
PI3K/Akt/mTOR pathway20,44, p5319,45, modulation of MAPK
signaling by KRAS46 and by direct SREBP phosphorylation
by Erk1/247,48. Our work identifies mutant BRAF as another key
modulator of SREBP-1 processing and function.

Consistent with our findings, SREBP and its downstream tar-
gets are highly expressed in many cancers49. Importantly there is
a growing body of evidence showing that SREBP-1-dependent
activation of lipogenesis is required for tumor growth in multiple
models, including in prostate cancer50 and EGFR-dependent
glioma15,18. SREBP-1 was shown to promote adhesion-
independent growth44 and cell proliferation51,52,53,54, including
growth factor-independent proliferation55.

Similarly, proteins involved in the post-translational processing
of SREBPs have also been linked to oncogenic potential in mul-
tiple models. SCAP modification and inhibition inhibit tumor
growth through SREPBs50,56–58. Consistently, expression levels of
SCAP inversely correlate with overall survival in multiple cancers
in TCGA cohorts. Taken together, these data strongly support a
pro-oncogenic role for SREBP processing in multiple cancers.

These data are in line with the well-established necessity of
cancer cells to adapt their metabolism to their increased need of
building blocks. Activation of SREBP-1 and enhanced ability to
generate lipids in a cell-autonomous manner is thought to
be required to sustain rapid tumor cell proliferation59,60. Earlier
findings from our team have shown that lipogenesis also con-
tributes to resistance to cell death by altering membrane lipid
composition and susceptibility to lipid peroxidation26. Here we
provide evidence that lipogenesis driven by oncogenic BRAF
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Fig. 5 SREBP-1 protects vemurafenib-resistant cells from lipid peroxidation. BRAFV600E-mutant PDX tumors (mel6 model) were transplanted into nude
mice (NMRI-Fox1nu) which were blindly administered vehicle (n= 8), fatostatin (20mg/kg) (n= 10), vemurafenib (20mg/kg) (n= 10) or a combination
of vemurafenib and fatostatin (n= 10) (daily by oral gavage). a Tumor size was measured blindly with digital calipers every 3 days. The tumor pictures in
(b) show the tumors that represent the median of their respective cohort. c Expression of Ki67 protein in PDX tumors that represent the median of their
respective cohort. Scale bars indicate 100 μm. d Lipidomics of PDX tumor homogenate. e MDA quantification of PDX tumor homogenate. The data
represent the average over all mice for each cohort compared to the control. Data are represented as mean ± s.e.m. (**p < 0.01)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04664-0

8 NATURE COMMUNICATIONS |  (2018) 9:2500 | DOI: 10.1038/s41467-018-04664-0 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


signaling promotes resistance to targeted therapy. In therapy-
sensitive cells, inhibition of oncogenic BRAF decreases membrane
lipid saturation. Inhibition of SREBP-1 mimics this effect in
therapy-resistant cells, especially upon BRAF therapy. We further
show that this effect is a consequence of increased cellular ROS
and lipid peroxidation. In therapy-resistant cells, vemurafenib
resulted in a substantial increase in mitochondrial ROS and lipid
peroxidation. This is consistent with the well-established ability of
vemurafenib to induce ROS production61,62. Similarly, although
to a lesser extent, SREBP inhibition also increased mitochondrial
ROS levels. Combined inhibition of SREBP and oncogenic BRAF
further enhanced ROS and lipid peroxidation, which can either be
rescued or enhanced by exogenous addition of oleate or PUFA,
respectively. Furthermore, addition of the antioxidant NAC
results in a rescue of cell proliferation under combined therapy.

Importantly, SREBP inhibition enhanced the efficacy of
vemurafenib in a pre-clinical PDX model of melanoma, empha-
sizing the clinical relevance of these findings. Our data support
the growing interest in lipogenesis inhibition as a novel anti-
neoplastic strategy and ongoing efforts aimed at identifying new
classes of SREBP inhibitors, including those that interfere with
the nuclear accumulation of mature SREBP. By showing that
SREBP-1 has a key role in the resistance to mutant BRAF-
targeted therapy our work identifies an important clinical setting
in which such inhibitors may provide clear clinical benefit.

Methods
Cell culture. A375 was obtained from ATCC. FLCM was generated from mela-
noma derived from Braf CA, Tyr::CreER and Ptenlox4−5 mice. M202, M207, and
M233 were gifted by professor A. Ribas. 451 and 451lu R, M229, M229 R, M238,
M238 R, M249, and M249 R were gifted by R. Lo. A101D BMR and D10 BMR were
kindly gifted by Professor Daniel Peeper. NHEM was obtained from melanocytes
derived from the foreskin of a pool of three healthy neonatal donors. The proce-
dure was approved by the ethical committee of the University of Leuven and
executed according to Helsinki guidelines.

All cell lines were propagated in DMEM High Glucose (Sigma), supplemented
with 10% FBS (Gibco Lot 41F4234K) and 4 mM glutamine (ThermoFisher).
A101D BMR and D10 BMR growth media was additionally supplemented with
dabrafenib and trametinib. NHEM were cultured in Medium 254 (ThermoFisher)
supplemented with HMGS (ThermoFisher) and Antibiotic-Antimycotic to
1×(ThermoFisher). 451lu R SREBF-1 KO clones were grown in DMEM High
Glucose supplemented with 30% FBS and 4 mM glutamine. All cell cultures were
periodically tested for mycoplasma contamination. All experiments were
performed in DMEM High Glucose, supplemented with 2% FBS (Gibco Lot
41F4234K) and 4 mM glutamine, except for 13C-glucose metabolite tracer studies,
where 4.5 g L−1 13C-glucose (Cambridge isotope laboratories) was supplemented to
DMEM no glucose (ThermoFisher). The following compounds were used at the
stated concentrations. NAC (120 μM) from Sigma, alpha-tocopherol (100 μM)
from Sigma, ferrostatin (1.25 μM) from Sigma, vemurafenib (5 μM) from ApexBio,
dabrafenib (2.5 μM) from Selleckchem, trametinib (0.5 μM) from Selleckchem,
betulin (2 or 3 μM) from Sigma, fatostatin (0.5 or 1.5 μM) from Tocris Bioscience,
oleic acid (20 μM) from Sigma, linoleic acid (10 μM) from Sigma and linolenic acid
(10 μM) from Sigma.

RNA-seq. RNA concentration and purity were determined spectrophotometrically
using a Nanodrop ND-1000 (Nanodrop Technologies) and RNA integrity was
assessed using a Bioanalyser 2100 (Agilent). Samples were analyzed on an
HiSeq2000 (Illumina). The raw sequencing data are publically available and can be
accessed at https://www.ncbi.nlm.nih.gov/sra/SRP143504.

Plasmid transfections. M202 and M207 were transfected by electroporation
(Neon Transfection System, ThermoFisher) with either pBabe-puro or pBabe-
puro-BRAFV600E. A375, 451lu, and M249 were transfected by electroporation
(Neon Transfection System, ThermoFisher) with pbabe-puro-HA-SREBF-1
(Y335R)-myc.

Construction of knockout cell lines. 451lu R cells were transfected (Neon
Transfection System, ThermoFisher) with CRISPR-Cas9 plasmid constructs with a
guide-RNA targeting human SREBF-1 exon 1 (VectorU6gRNA-Cas9-2A-GFP,
target ID: HS0000039707 and HS0000039709) (Sigma). 72 h post-transfection, the
top 10% of GFP expressers were sorted by FACS (BD bioscience, ARIA III) into
single wells for colony formation. Targeted regions of individual clones were

sequenced (Sanger sequencing, LGC) and indels in allelic sequences we genotyped
using CRISP-ID (Supplementary Fig. 9c)39.

14C-acetate incorporation into lipids and 13C-glucose tracing. Cells were grown
in 6-well plates up to 80% confluence and were treated with 0.1 µCi acetate-2-14C
(55 mCi/mmol; Amersham) for 4 h. After three washes with PBS (Sigma), cells
were trypsinized and resuspended in 1 mL PBS, followed by sonication. 0.125 mL
of lysate was set aside for DNA measurement and 0.7 mL of lysate was mixed with
0.9 mL MeOH solution (MeOH:HCl= 8:1) (Sigma) and 0.8 mL CHCl3 (Sigma).
After vortexing the mixture for 30 s followed by centrifugation for 10 min at
2000 × g, the organic fraction was counted for radioactivity (Tri-Carb 2810 TR
scintillation counter, PerkinElmer). Mass spectrometry analysis of 13C-glucose
incorporation into palmitate and subsequent isotopomer spectral analysis was
performed as described previously63.

Untargeted metabolomics. Cell extracts were separated on an Acquity HSS T3
UPLC column (Waters Corp, 2.1 mm × 150 mm, 1.8 µm particle size) using an
Ultimate 3000 HPLC (Dionex ThermoFisher Scientific Inc). Elution of metabolites
was performed using a quaternary solvent system. The data was collected over a
mass range of 50–1050m/z. Data analysis was done using ThermoFisher Scientific
Quan software (Xcalibur version 4.0) and manually verified. Further analysis was
done using in-house software tools.

Cholesterol amount and uptake quantification. Cholesterol was quantified using
Amplex Red cholesterol assay kit (ThermoFisher). Cholesterol uptake was quan-
tified using NBD cholesterol (ThermoFisher) according to ref. 64.

Analysis of intact phospholipid species by ESI-MS/MS. 0.7 mL of homogenized
tissue or cells were mixed with 0.9 mL MeOH:HCl(1 N) (8:1), 0.8 mL CHCl3 and
200 μg mL−1 of the antioxidant 2,6-di-tert-butyl-4-methylphenol (Sigma). The
organic fractions were evaporated under vacuum, reconstituted in MeOH/CHCl3/
NH4OH (90:10:1.25) and lipid standards were added (Avanti Polar Lipids).
Phospholipids were analyzed by electrospray ionization tandem mass spectrometry
(ESI-MS/MS) on a hybrid quadrupole linear ion trap mass spectrometer (4000
QTRAP system, AB SCIEX) equipped with a TriVersa NanoMate robotic nano-
source (Advion Biosciences) as described26.

Immunoblotting analysis. Following ice-cold PBS washes, cells were collected in
sample buffer (ThermoFisher) supplemented with DTT (Sigma), sonicated and
boiled for 5 min. Equal amounts of protein were loaded onto precast gels
(NuPAGE, ThermoFisher), transferred to nitrocellulose membranes, and incubated
with antibodies against SREBP-1 (1/1000 dilution) (Active Motif, #39939), phos-
pho-MEK1/2 ser217/221 (1/1000 dilution) (Cell Signaling, #9154); GAPDH (1/
20000 dilution) (Cell Signaling, #5174), myc-Tag (1/2000 dilution) (Cell Signaling,
#2276), HA-Tag (1/5000 dilution) (Cell Signaling, #3724), phosphor-AKT ser473
(1/1000 dilution) (ThermoFischer, #98H9L8), pS6 ser235 (1/1000 dilution) (Cell
Signaling, #2211), and pERK 1/2 (1/1000 dilution) (Cell Signaling, #9101). Full
unedited blots are shown in Supplementary Data 1.

RNA extraction and RT-qPCR. RNA extraction and RT-qPCR were performed as
described previously24. Primers used were: FASN: Fw 5′-TCCGAGATTCCATC
CTACGC-3′, Rv 5′-GCAGCTGTGACACCTTCAGG-3′, ACLY: Fw 5′-TGTAA
CAGAGCCAGGAACCC-3′, Rv 5′-CTGTACCCCAGTGGCTGTTT-3′, ACACA:
Fw 5′-TGAACTTCACACAGGTAGTCTGCC-3′, Rv 5′-TGGAACACTCGATGG
AGTTTCT-3′, SREBP-1a: Fw 5′-GCTGCTGACCGACATCGAA-3′, SREBP-1c: Fw
5′-GGAGCCATGGATTGCACTTT-3′, SREBP-1a/1c Rv 5′- TCAAATAGGCCAG
GGAAGTCA-3′, and 18 S as a reference gene: Fw 5′-CGCCGCTAGAGGTGA
AATTC-3′, Rv 5′-TTGGCAAATGCTTTCGCTC -3′.

Confocal microscopy. Cells were transfected (Neon Transfection System, Ther-
moFisher) with a plasmid coding an HA and myc-tagged transcriptionally inactive
SREBP-1 (Y335R) (GenScript). The SREBP cDNA was obtained from pTK-HSV-
BP1a65. Cells were treated as indicated, fixed and incubated with antibodies against:
myc-Tag (1/2000 dilution) (Cell Signaling, #2276) and HA-Tag (1/5000 dilution)
(Cell Signaling, #3724), GM130 (1/500 dilution) (BD Biosciences, #610822), and
PDI (1/1000 dilution) (ThermoFisher, #MA3-018). Samples were imaged using an
Olympus FluoView FV1000 confocal microscope.

Proliferation assays. Proliferation curves were generated using an IncuCyte
ZOOM system (Essen BioScience) on cells seeded of microplates (TPP) based on
phase contrast images taken at 2 h intervals for the duration of the experiments.
Colony formation in soft agar was performed as described by Franken et al.66

Except, colonies were stained with Vybrant DyeCycle Green nuclear stain (Ther-
moFisher), imaged with a Typhoon FLA 9500 laser scanner (GE Healthcare) and
quantified in ImageJ.
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Mitochondrial ROS measurement. Mitochondrial ROS was measured using
MitoSOX red mitochondrial superoxide indicator (ThermoFisher) according to the
manufacturer’s instructions. Cells were assayed using a FACS Verse flow cytometer
(BD Biosciences).

Lipid peroxidation assay. Lipid peroxidation was quantified using the MDA assay
kit (Sigma) according to manufacturer’s instructions with some exceptions. Briefly,
cells or tissue were collected in BHT supplemented PBS. TBA-acetic acid solution
was buffered to pH 3.5. Plates were read using an EnSpire Multimode Plate Reader
(PerkinElmer).

Animal experiments. The Mel006 PDX model was derived from an in-transit
metastasis from a patient undergoing surgery as part of standard-of-care melanoma
treatment at the University Hospitals Leuven. The patient provided written
informed consent and this procedure was approved by the UZ Leuven Medical
Ethical Committee (S54185) and carried out in accordance with the principles of
the Declaration of Helsinki. All procedures involving animals were carried out in
accordance with the guidelines of the IACUC and the Animal Care and Use Ethical
Committee (KU Leuven, P038/2015). Fresh tumor tissue carrying the BRAFV600E

mutation was collected in RPMI640 medium with antibiotics, rinsed in PBS and
transplanted subcutaneously in the interscapular fat pad of female SCID-beige mice
(Taconic). Sedation and analgesia was performed using ketamine, medetomidine
and buprenorphine. Upon reaching generation 3, tumor fragments were trans-
planted into nude mice (NMRI-Fox1nu, Taconic) and when tumor size reached
200 mm3, mice were randomly assigned to a cohort and drugs or vehicles were
blindly administered daily by oral gavage. Vemurafenib and fatostatin were both
administered daily at 20 mg/kg. fatostatin or vehicle (30% PEG (Sigma) in water
(Baxter)) was administered an hour after vemurafenib or vehicle (2% hydro-
xypropylcellulose (Sigma) in water (Baxter)). Tumor size was measured blindly
with digital calipers (Fowler Sylvac) every 3 days. Mice were sacrificed at 28 days
following start of treatment or when tumors reached a volume of 1500 mm3. The
investigators were blinded for the evaluation of the results.

Statistical analysis. The results were analyzed in GraphPad Prism 6.0 h using a
t-test. In case of multiple comparisons a correction was applied using the
Holm–Sidak method. p-values of <0.05 were considered to be statistically sig-
nificant. All data presented represent means ± s.e.m.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information files.
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