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Introduction: Coronary stenosis due to atherosclerosis restricts blood flow. Stenosis
progression would lead to increased clinical risk such as heart attack. Although many risk
factors were found to contribute to atherosclerosis progression, factors associated with
fatigue is underemphasized. Our goal is to investigate the relationship between fatigue and
stenosis progression based on in vivo intravascular ultrasound (IVUS) images and finite
element models.

Methods: Baseline and follow-up in vivo IVUS and angiography data were acquired from
seven patients using Institutional Review Board approved protocols with informed consent
obtained. Three hundred and five paired slices at baseline and follow-up were matched
and used for plaque modeling and analysis. IVUS-based thin-slice models were
constructed to obtain the coronary biomechanics and stress/strain amplitudes (stress/
strain variations in one cardiac cycle) were used as the measurement of fatigue. The
change of lumen area (DLA) from baseline to follow-up were calculated to measure
stenosis progression. Nineteen morphological and biomechanical factors were extracted
from 305 slices at baseline. Correlation analyses of these factors with DLA were
performed. Random forest (RF) method was used to fit morphological and
biomechanical factors at baseline to predict stenosis progression during follow-up.

Results: Significant correlations were found between stenosis progression and maximum
stress amplitude, average stress amplitude and average strain amplitude (p < 0.05). After
factors selection implemented by random forest (RF) method, eight morphological and
biomechanical factors were selected for classification prediction of stenosis progression.
Using eight factors including fatigue, the overall classification accuracy, sensitivity and
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specificity of stenosis progression prediction with RF method were 83.61%, 86.25% and
80.69%, respectively.

Conclusion: Fatigue correlated positively with stenosis progression. Factors associated
with fatigue could contribute to better prediction for atherosclerosis progression.

Keywords: coronary atherosclerosis, stenosis prediction, IVUS, fatigue, random forest, patient-specific models

INTRODUCTION

Atherosclerotic plaque rupture is regarded as the clinical end-
point event in the process of atherosclerosis progression. Stenosis
is a common abnormal condition in arteries mainly due to
atherosclerosis. Coronary gradual narrowing restricts blood
flow, which causes ischemia and may induce heart attack.
From a biomechanical perspective, vessel tissue fatigue is a
chronic failure process induced by repetitive loading and could
impact plaque development under the periodical arterial pressure
(Bank et al., 2000; Ku & McCord, 1993; Stehbens, 1997; 2002).
Plaque rupture can be considered as the result of accumulated
fatigue damage (Versluis et al., 2006). Li et al. (2007) and his
coworkers studied the fatigue crack with constructed two-
dimensional model using in vivo magnetic resonance imaging
(MRI) data (Pei et al., 2014). Huang et al. (2013) employed in vivo
MRI-based 2D carotid model to study the development of crack
and fatigue life. Their results showed that plaque without fibrous
cap (FC) rupture or ulceration had a longer fatigue life compared
with those with FC rupture or ulceration (p = 0.03).

Paritala et al. (2020) characterized the fatigue behavior of
carotid arteries using uniaxial tensile test and provided an
understanding of stress-relaxation and cyclic behavior. Bank
et al. (2000) showed that fatigue is caused from cyclic stress
by ex-vivo experiments, and found that fatigue is proportional to
stress amplitude and mean stress. Gao et al. (2009) also pointed
out that relative stress variation during a cycle in the fibrous cap is
a potential indicator for plaque fatigue process by fluid-structure
interaction (FSI) models of carotid arteries. The mainstream
opinion is that stresses derived from periodical pressure is
alternating stress, which is the main cause of fatigue.

Many researchers tried to find risk factors related to plaque
progression. Using serial coronary computed tomography
angiography, Won et al. used change of coronary plaque
volume to measure plaque progression and explored the
effects of the triglyceride glucose (TyG) index and body mass
index (BMI) on plaque progression, respectively (Won et al.,
2019; Won et al., 2020). Their studies have shown that BMI were
not associated with plaque progression and TyG index had a
positive and significant association with plaque progression (odd
ratio = 1.409, confidence interval = [1.062–1.869], p = 0.017).
Morphological factors, such as plaque composition and size,
lumen size, fibrous cap thickness and others, may play
significant roles in atherosclerosis progression. Ever since
computational fluid dynamic (CFD) models have been used as
a common tool to explore the mechanism of atherosclerosis
progression and rupture, endothelial shear stress was found to
be an important biomechanical factor for atherosclerosis

progression (Vergallo et al., 2014). Corban et al. (2014)
indicated that combining plaque burden, wall shear stress
(WSS) and plaque phenotype was helpful to improve
prediction accuracy of plaque progression. However, a study
based on carotid atherosclerotic mouse model showed that
WSS decreased strikingly during atherosclerotic progression,
but the correlation between WSS and plaque area was weak
and no statistical significance was found (p > 0.05) (Xing
et al., 2018).

Besides, plaque fatigue would be a noteworthy factor in plaque
progression. Stehbens (1997) hypothesized that atherosclerosis
was the response to hemodynamically induced repetitive stresses
due to the pulse pressure. Thondapu et al. (2017) pointed out that
axial stress arises from longitudinal stretching of vessels exposed
to cyclical blood flow and cardiac motion, and circumferential
stress arises from hydrostatic pressure exerting outward radial
force on vessels. The periodic pressure caused from pulsatile
blood flow generates mechanical stresses. These mechanical
factors contribute to plaque fatigue in an integrated manner
and play a vital role in plaque progression (Wang L. et al,
2019; Guo et al., 2021).

In this paper, in vivo Virtual Histology intravascular
ultrasound (VH-IVUS) data at baseline and follow-up were
acquired from seven patients and used to construct thin-slice
models for stress/strain calculations. Plaque fatigue was measured
by stress/strain amplitudes in one cardiac cycle at baseline. The
change of lumen area between baseline and follow-up was used as
the measurement for atherosclerosis stenosis progression. Analyses
for correlations between plaque fatigue and morphological
characters and correlations predictors (morphological and
biomechanical factors) and stenosis progression were performed.
Machine learning approaches including random forest was
employed to determine the prediction accuracy of plaque fatigue
for predicting stenosis progression.

METHODS

Virtual Histology-Intravascular Ultrasound
Data Acquisition and Processing
Baseline and follow-up in vivo intravascular ultrasound (IVUS) and
angiography data were acquired from seven participants (gender:
5M and 2F, average age: 59.2) at Cardiovascular Research
Foundation (CRF) using protocol approved by the Institutional
Review Board and informed consents were obtained from these
patients. Patients were selected from a CRF data set where patients
were with stable angina pectoris undergoing percutaneous coronary
intervention (PCI). Patients with acute coronary syndrome, severe
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calcified lesion, chronic total occlusion or chronic kidney disease (Cr
> 1.5 mg/dl) were excluded. Baseline data is the data set acquired at
the first screening, which included IVUS, OCT, angiography, blood
pressure, and general patient demographic information. These spans
of the follow-up time for seven participants were 6–12months
(median 9months). When electrocardiogram (ECG) signal was
connected, VH-IVUS images were acquired automatically using
Volcano S5 Imaging System (Volcano Crop., Rancho Cordova,
CA, United States). Four tissue types were marked in color on
VH-IVUS image: lipid-rich necrotic core in red, calcium in white,
fibrous tissue in dark green and fibro-fatty tissue in light green.
Segmentation of VH-IVUS images was performed by an in-house
software package programmed in MATLAB (The MathWorks, Inc.,
Natick, MA, United States). The target vessel segment was selected
based on angiography data. The registration of VH-IVUS images at
baseline and follow-up from same vessel segment was executed using
vessel branches which is the main landmark for location of vessel
segment. These 305 paired VH-IVUS slices were matched and used
for plaque modeling. Images generated at vessel bifurcations were
excluded from this study.

The Thin-Slice Model With Mooney-Rivlin
Material Model
A 3D thin-slice modeling approach was adopted in this paper to
obtain plaque stress/strain values. Thin slice models were selected
since the model construction requires much less time (a few
minutes per model) and is more suitable for potential clinical
implementations (Wang L. et al, 2019). For each slice, the 3D
thin-slice model was constructed by adding a thin slice thickness
(0.5 mm, which is the spatial distance between two adjacent
images generated during catheter pullback) to the 2D slice.
For plaque models based on in vivo data, axial stretch is a
non-negligible factor when calculating the stress/strain
distribution in coronary (Thondapu et al., 2017). Axial
shrinkage was set to be 5% in our models because
atherosclerotic vessels were stiffer than healthy vessels. In-vivo
VH-IVUS image was reconstructed with radiofrequency data
captured at the peak of R-wave in ECG signal (Garcìa-Garcìa
et al., 2011). The peak of the R-wave is commonly used to
represent the end-diastole phase, so the acquired VH-IVUS
data can be regarded as being generated at minimum arterial
pressure. Hence circumferential shrinkage was applied in our
models in order to make model shape under minimum pressure
consistent with VH-IVUS. Pulsating arm pressure conditions
were prescribed at lumen surface in thin-slice models. The
construction of thin-slice models can be found in our previous
publication (Guo et al., 2017). Lipid/calcification and other tissues
were assumed to be isotropic and anisotropic, respectively. The
strain energy density function of modified Mooney-Rivlin model
for isotropic and anisotropic were Eqs 1, 2, respectively
(Holzapfel et al., 2000):

Wiso � c1(I1 − 3) + c2(I2 − 3) +D1{exp[D2(I1 − 3)] − 1} (1)
Waniso � Wiso + K1

K2
{exp[K2(I4 − 1)2 − 1]} (2)

Where I1 � ∑Cij, I2 � 1
2 (I21 − CijCij), I1 and I2 are the first and

second invariants of right Cauchy-Green deformation tensor
C � [Cij] � XTX, X � [Xij] � [zxi/zaj], (xi) is current
position, (ai) is original position, I4 � Cij(nc)i(nc)j, nc is the
unit vector in the circumferential direction of the vessel, c1, c2,D1,
D2, K1 and K2 are material parameters.

The material parameters of lipid, calcification and other vessel
tissues from existing literature were used (Guo et al., 2017): Lipid:
c1 = 0.5 kPa, c2 = 0 kPa,D1 = 0.5 kPa,D2 = 1.5. Calcification: c1 =
92 kPa, c2 = 0 kPa,D1 = 36 kPa andD2 = 2. Other vessel tissues: c1
= −278.7 kPa, c2 = 24.35 kPa, D1 = 133.7 kPa, D2 = 2, K1 =
7.19 kPa, K2 = 23.5.

All models were solved by a finite element software ADINA
(Adina R & D, Watertown, MA, United States) following our
established procedures (Guo et al., 2017). Figure 1 shows
distributions of stress and strain under maximum and
minimum pressure conditions at baseline and follow-up. More
details can be found from Guo et al. (2017).

Measurements of Plaque Fatigue
The stress and strain of each slice were extracted from the
solution of the thin-slice model. The stress and strain
mentioned below refer to maximum principal stress and
maximum principal strain. The values of stress and strain
during cardiac cycle were extracted for each slice (2 × 305 =
610 slices in total).

Since plaque rupture usually occurs on luminal wall, the stress
and strain at the location of superficial vascular wall was used in
the following analysis. The stress amplitude and strain amplitude
were defined as the stress variation and strain variation during
one cardiac cycle, respectively. The stress and strain amplitudes
were regarded as measurements for plaque fatigue in our study.
The amplitude of average stress/strain on luminal wall and
amplitude of maximum stress/strain on luminal wall during
one cardiac cycle were all calculated to access plaque fatigue.
These formulas are as follows:

Maximum stress amplitude � maximum stressatmax pressure

−maximum stressatmin pressure (3)
Maximum strain amplitude � maximum strainatmax pressure

−maximum strainatmin pressure

(4)
Average stress amplitude � average stressatmax pressure

− average stressatmin pressure (5)
Average strain amplitude � average strainatmax pressure

− average strainatmin pressure (6)

Measurements of Stenosis Progression
The cross-section area of lumen is an important index of vessels
stenosis. The change of lumen area from baseline to follow-up
was used as the measurement for stenosis progression (reduction
in lumen area), which definition is as follows:
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Delta lumen area(DLA) � Lumen area at baseline

− lumen area at follow − up (7)
Positive DLA value means luminal narrowing from baseline to

follow-up. All 305 slices at baseline were divided in two classes (label
0 and label 1) according to the non-positive or positive sign of DLA
value. Label 0 class represents the set of slices with non-progressive
luminal stenosis while label 1 class represents the set of slices with
progressive luminal stenosis. Classification prediction of stenosis
progression was performed by machine learning methods.

Morphological and Biomechanical Factors
Used as Predictors
Values of twelve biomechanical factors were extracted at baseline
from thin-slice models. Those factors included maximum and
average stress/strain amplitudes, maximum and average stress/
strain at minimum and maximum pressure etc. and were
prepared to be used as candidate predictors for stenosis
progression. Seven morphological factors including plaque
burden (PB) at minimum pressure, lumen/wall area at
minimum and maximum pressure, and changes of lumen and
wall from minimum pressure to maximum pressure [called
lumen area amplitude (9) and wall area amplitude (10) for
briefly] were also used as candidate factors.

PB � (plaque area/cross
− sectional area of external elasticmembrane)p100% (8)
lumen area amplitude � lumen areaatmax pressure

− lumen areaatmin pressure (9)
wall area amplitude � wall areaatmax pressure − wall areaatmin pressure

(10)

Correlation Analysis
Linear Mixed-Effects (LME) model was used to study the
correlation between morphological factors, biomechanical
factors and DLA. The correlation analysis of DLA and
maximum stress amplitude was taken as an example to
explain how the LME model was used in this study below.

The LME model was defined as

yij � β0 + β1xij + bj + εij (11)
where yij is the DLA value on the i th slice of j th patient, xij is the
corresponding value of maximum stress amplitude. β0 and β1 are
the fixed effects of DLA and maximum stress amplitude at
baseline, respectively. εij is the random error terms which is
assumed to follow a joint Gaussian distribution with mean 0.

The dependence-adjusted correlation coefficient r is given by

r � β̂1








v̂ar(x)
v̂ar(y)

√
(12)

where β̂1 is the estimated slope coefficient by fitting maximum
stress amplitude to DLA with the LMEmodel, v̂ar(x) and v̂ar(y)
are the sample variances.

The correlation analyses between plaque fatigue and
morphological characters, predictors and stenosis
progression were performed by R software (R 3.1.3, The R
Foundation for Statistical Computing). The dependence-
adjusted correlation coefficient was adopted to measure the
dependence of variables and statistical significant was assumed
if p < 0.05.

Predictor Selection and Classification
Prediction Using Random Forest
After 100 times testing using our data, our results indicated that
the performance of random forest (RF) was better than that from

FIGURE 1 | (a-1)–(a-2) One paired VH-IVUS images from the same location at baseline (a-1) and follow-up (a-2). (b-1)−(b-2) Stress distribution of the thin-slice
model at minimum pressure. (c-1)−(c-2) Stress distribution at maximum pressure. (d-1)−(d-2) Strain distribution at minimum pressure. (e-1)−(e-2) Strain distribution at
maximum pressure. (f) Color legend. For sub-figures (a-□)−(e-□), □ = 1 is for the baseline slice; □ = 2 is for the follow-up slice.
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the other machine learning methods (least square support vector
machine (SVM), discriminant analysis and generalized linear
mixed model). Therefore, RF was used as our prediction
method in this study. The RF method uses multiple trees to
train and predict the samples and uses the voting mechanism of
multiple decision trees to resist the overfitting of decision trees.
Training data consists of resampling n times with replacement
from dataset (size equal to n). Some samples would not appear in
training data because of sampling with replacement, which is
called out-of-bag (OOB) data. OOB data is used as test set in our
RF method.

Nineteen factors extracted from 305 slices (their values stored
in a 305 × 19 matrix) were used as the input dataset for RF. The
number of factors tried for splitting (Mtry) and the number of
trees grown (Ntree) in the RF were two input parameters. Two
parameters (Ntree and Mtry) of RF were optimized to guarantee
high accuracy of classification prediction. The number of
variables to be selected and tested for the best split when
growing the trees (Mtry) was obtained by iteration based on
OOB error. After Mtry value obtained, the number of decision
trees to be generated (Ntree) would be set to minimum value that
satisfies the error in RF model minimum and stable.

Dimensionality reduction of candidate factors were performed
using “varSelRF” package. The mean decrease Gini index of
factors were also calculated to ensure availability of factors
selection. Gini index was defined as

Gini(t) � 1 −∑1

i�0P(i)2 (13)
where P(i) is the proportion of “lable i” class in the dataset at the
current node t. Gini impurity at node t was denoted as I(t), then
Mean Decrease Gini index was defined as

MeanDecrease Gini index � ∑
Ntree

∑
t
(I(t) − Gini(t)) (14)

The classification prediction was implemented with
“randomForest” package in R. The output from RF was a 305-
dimensional binary vector. Cross validation or a separate
accuracy assessment dataset is not necessary for RF algorithm,
because the OOB error provides an unbiased estimate of error
(Liaw & Wiener, 2002; Lawrence et al., 2006; Prinzie & Van den
Poel, 2008). Therefore, the OOB error was adopted to estimate
the misclassification error. Then confusion matrix was
constructed to compare the true class with the class predicted
by RF classifier and to calculate the overall accuracy. Sensitivity,
specificity, positive and negative prediction values were also
calculated as following.

Overall accuracy � (TP + TN)/(TP + FN + FP + TN) (15)
Sensitivity � TP/(TP + FN) (16)
Specificity � TN/(FP + TN) (17)

Positive prediction value � TP/(TP + FP) (18)
Negative prediction value � TN/(FN + TN) (19)

where TP is the number of true positive, FN is the number of false
negative, FP is the number of false positive and TN is the number
of true negative.

RESULTS

Fatigue Correlated Positively With Lumen
Area Amplitude and Negatively With Plaque
Burden
The maximum and average stress/strain amplitude were regarded
as the measurement of fatigue. In one cardiac cycle, there were a
strong positive correlation between lumen area amplitude and
fatigue and a negative correlation between PB and fatigue
(Table 1). Especially, the correlation between average strain
amplitude and lumen area amplitude was 0.3247 (p < 0.0001),
and the correlation between average stress amplitude was −0.2808
(p < 0.0001).

Fatigue Correlated Positively With Stenosis
Progression
Factors that had a significant correlation with DLA were shown
in Table 2. There were significant correlations between stenosis
progression and maximum stress amplitude (r = 0.1313, p <
0.05), average stress amplitude (r = 0.3357, p < 0.05) and average
strain amplitude (r = 0.5376, p < 0.05). In addition, the
correlation between PB and DLA was best (r = −0.5729,
p < 0.05).

RF Method Input Parameters
Before performing factors selection, it was essential to evaluate
the effect of the two RF parameters (Mtry and Ntree) on the
misclassification error. Figure 2 shows that Mtry = 4 was proved
to be the best choice in terms of the OOB error rate (17.8%).
When examining the Ntree parameter, results showed that OOB
error rates were stabilized after 3,000 trees (Figure 3). Therefore,
two parameters were set as Mtry = 4 and Ntree = 3,000 for all
further analyses.

Factors Selection
Predictor values obtained from all 305 slices were used as input
variables into the RF algorithm using two determined
parameters--Mtry and Ntree. Eight factors were selected by
“varSelRF” package including average stress amplitude, wall
area at minimum pressure and maximum pressure, lumen
area at minimum pressure and maximum pressure, wall area
amplitude, lumen area amplitude and PB. The mean decrease in
Gini index as calculated by 19 factors was then used to rank the
factors and check factors selection. Eight Factors selected from
“varSelRF” package and ranking of mean decrease in Gini index
are consistent. Tables 3, 4 shows mean decrease in Gini index of
eight factors as calculated by RF. Results showed that the baseline
PB had the highest mean decrease in Gini index. In addition,
average stress amplitude was the only one mechanical factors in
top eight factors.
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Classification and Accuracy Assessment
The best predictor was the combination of PB, lumen area
amplitude, lumen areas at maximum and minimum pressure,
wall areas at maximum and minimum pressure, wall area
amplitude and average stress amplitude. Using the
combination of eight factors as the predictor and RF as the
prediction method, the overall classification accuracy is
83.61%. The sensitivity (i.e., recall) is 86.25%, and specificity is
80.69%. Precision (i.e., positive prediction value) and negative
prediction value is 83.13% and 84.17%, respectively. The overall

TABLE 1 | The correlation of morphological and biomechanical factors at baseline.

Morphological factors Biomechanical factors Correlation coefficient p value

Lumen area amplitude Maximum stress amplitude 0.0708 9.7 × 10−6

Average stress amplitude 0.2103 2.3 × 10−26

Maximum strain amplitude 0.1409 9.6 × 10−61

Average strain amplitude 0.3247 1.3 × 10−66

PB Maximum stress amplitude −0.0992 3.6 × 10−4

Average stress amplitude −0.2808 2.0 × 10−24

Maximum strain amplitude −0.0888 0.007
Average strain amplitude −0.1786 9.7 × 10−12

TABLE 2 | The correlation of baseline factors and stenosis progression.

Stenosis progression Factors Correlation coefficient p value

DLA Maximum stress amplitude 0.1313 0.0499
Average stress amplitude 0.3357 0.0019
Average strain amplitude 0.5376 0.0235
Average stress at maximum pressure 0.3813 0.0199
Average strain at maximum pressure 0.5613 0.0208
PB −0.5729 4.6 × 10−6

FIGURE 2 | The effect of the number of variables tried at each split (Mtry)
on the performance of RF using the OOB estimate of error (%).

FIGURE 3 | The effect of the number of trees (Ntree) parameter on the
performance of random forest RF using the OOB estimate of error (%).

TABLE 3 | The value of mean decrease in Gini index for top eight factors.

Factors Mean decrease in gini
index

PB 15.03
Lumen area amplitude 13.38
Lumen area at maximum pressure 12.07
Lumen area at minimum pressure 11.88
Wall area at minimum pressure 11.67
Wall area at maximum pressure 11.43
Wall area amplitude 10.45
Average stress amplitude 8.81

TABLE 4 | The confusionmatrix showing the overall classification accuracy for two
classes.

Prediction

Non- narrowing Narrowing

Ground truth Non- narrowing 138 22
Narrowing 28 117

Overall classification accuracy = 83.61%
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OOB error rate for all the classes was 16.39% using the best
predictor. For discriminating two classifications (progressive and
non-progressive luminal stenosis), the confusion matrix shows
that the label 0 class (non-progressive) has the lower error rate
(13.75%), while the label 1 class (progressive) has the higher error
rate (19.31%).

DISCUSSION

Plaque Fatigue Factors Related to Plaque
Progression
Even though there have been a number of publications using
morphological, biomechanical and biochemical factors for
atherosclerosis progression prediction in existing research,
seeking key factors contributing to atherosclerosis progression
is still a challenging problem (Saam et al., 2007; Wang et al., 2019;
Won et al., 2019; Won et al., 2020). Wang et al. (2015) conducted
IVUS-based fluid-structure interaction (FSI) modeling analysis to
study the correlation between the biomechanical factors and
morphological factors. Their results indicated that critical
plaque wall stress (CPWS) correlated with minimum cap
thickness and lipid percentage with r = −0.6414 and r =
0.2445 respectively (p < 0.0001). Although the correlation of
CPWS and minimum cap thickness was strong, it remains to be
confirmed by more studies based on high-resolution images since
low resolution of IVUS image (~150 μm) cannot capture the thin
fibrous cap (<65 μm).

The studies mentioned above concentrated on plaque
morphology and biomechanical factors extracted from one static
moment, whereas amplitudes of morphology and biomechanics
during one dynamic cardiac has gone unheeded. Vascular tissue
fatigue occurs under cyclic stress and is related to atherosclerosis
progression closely. The study of Bank et al. (2000) showed that
fatigue is proportional to stress amplitude andmean stress by ex-vivo
experiments. Our results indicated that average strain amplitude had
a significant positive correlation with lumen area amplitude (r =
0.3247, p < 0.05) and average stress amplitude had a significant
negative correlation with PB (r = −0.2808, p < 0.05). Our study also
showed that fatigue has a positive correlation to stenosis progression
according Table 2. Tables 2, 3 also show that the amplitudes of
lumen area, wall area and average stress are significant factors for
atherosclerosis progression, which improved our understanding for
the relationship between plaque fatigue and stenosis progression.

Plaque Progression Prediction Using
Plaque Fatigue
Atherosclerosis progression could be measured by different
plaque morphological parameters such as lumen area change,
plaque burden change, plaque area change, plaque volume
change, lipid percentage change, etc. (Guo et al., 2021; Saam
et al., 2007; Wang Q. et al, 2019; Won et al., 2020; Won et al.,
2019). Wang et al. used IVUS-based FSI models and found that
the combination of plaque wall stress and wall shear stress is the
optimal predictor for changes of plaque burden from baseline to
follow-up with a prediction accuracy of 68.1% (Wang L. et al,

2019). Corban et al. (2014) found that combination of plaque
burden, wall shear stress, and plaque phenotype has incremental
value for prediction of coronary atherosclerotic plaque
progression. Bourantas et al. (2020) defined atherosclerotic
progression as a significant reduction in lumen (>7.5%) and
increase in plaque burden (>8.8%) at follow-up, and gave the
atherosclerotic progression prediction using multivariate linear
regression models. Their study showed that area under the curve
(AUC) using IVUS-based morphological predictors is 0.824 and
the AUC is raised to 0.847 after adding WSS into predictor. A
research group from Turkey employed different artificial neural
network models to predict coronary stenosis, and their results
were more than 71% for sensitivity, 76% for specificity and 81%
for accuracy (Çolak et al., 2008). A large number of traditional
statistical methods and machine learning methods have been
used in atherosclerosis progression with different measurements,
for instance, generalized linear mixed model, RF, SVM, neural
network, etc. In fact, no matter which method we choose, we are
faced with the problem of predictor selection, parameter tuning,
and so on. In this study, we used RF algorithm with optimal
performance on our dataset as the prediction method, employed
change of lumen area as the measurement of stenosis progression,
added plaque fatigue as a class of predictor, the evaluation of the
effect of RF parameters is shown in Figures 2, 3. Overall
classification accuracy was 83.61% in this study. Our previous
study showed that AUC is 0.963 for the prediction of lipid
percentage progression using multi-factors (plaque fatigue was
not included) and SVM, but the specificity was 0.777 (sensitivity
= 0.974) (Guo et al., 2021). In this study, the values of sensitivity
(86.25%) and specificity (80.69%) are both above 80% and the
difference between sensitivity and specificity is only 5.56%.

Measurements of Plaque Fatigue From
Medical Images and Models
Although plaque fatigue has been mentioned as one of the
mechanism that might play an important role in plaque
progression, the plaque fatigue information, such as ultimate
tensile stress amplitude, critical mechanical condition and plaque
fatigue life, have never been measured in vivo from existing
technology with the real time information (Huang et al., 2013;
Riou et al., 2014). Fatigue life is often divided into three periods:
crack nucleation, crack propagation and final rupture, but the first
two periods are silent in clinical symptoms and cannot be detected
by medical image, and only rupture could be captured by medical
imaging. Most researchers studied the plaque fatigue (especially
dynamics of rupture) using crack propagation models (Versluis
et al., 2006; Li et al., 2007; Huang et al., 2013; Pei et al., 2014). Our
study used stress/strain amplitudes as the measurements of plaque
fatigue in IVUS images without rupture. Compared with IVUS,
intravascular optical coherence tomography (OCT) with high
resolution (~10 μm) is sufficient to obtain more accurate
measurement of morphology of superficial coronary, but OCT
has only 1–2mm penetration depth not enough to detecting
whole vessel wall (Jang et al., 2002). However, wall area
calculated by the contour of outer vessel wall was an important
morphological factor for prediction of stenosis progression in this
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study (Table 3). In the future, medical imaging technology with high
resolution and strong penetrationmay detectmorphological features
accurately and then acquire accurate fatigue information from
models that are important to predict stenosis progression.

Limitations
Our study has the following major limitations: 1) Sample size. Only
305 slices from seven patients were used in our studies since it is
challenging to obtain a large number of follow-up data with high
quality IVUS and angiography images. Large-scale patient studies
are needed to further validate our findings. 2) Each thin-slice model
is essentially only one slice and could not include vessel curvature.
This is amodel limitation. 3) Modeling limitation. Thin-slice models
used in this study only provided structure stress and strain. They
could not provide hemodynamic information (such as flow shear
stress) which is a limitation. Thin-slice models need much less man
power to construct and could be more practical for potential clinical
implementations. While stress/strain values from thin-slice models
have modest errors (5–12% depending on the samples) compared to
the full 3D FSI models, Wang et al. showed that correlation
relationship from thin-slice models had an impressive 90.5%
agreement rate compared to the results from 3D FSI models
(Wang Q. et al, 2019). Clearly, it remains to be true that full 3D
FSI models could be a better choice for more accurate stress/strain
and wall shear stress calculations if model construction could be
automated to reduce labor cost.

CONCLUSION

Our preliminary results indicated that fatigue has a positive
correlation with stenosis progression. Using eight morphological
and biomechanical factors including fatigue, the overall classification
accuracy, sensitivity and specificity of stenosis progression prediction

with RF method were 83.61%, 86.25% and 80.69%, respectively.
Factors associated with fatigue could contribute to better prediction
for atherosclerosis progression.
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