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Abstract 
 

Background: Emergency Department (ED) overcrowding is an important healthcare issue 

facing increasing public and regulatory scrutiny in Canada and around the world. Many 

approaches to alleviate excessive waiting times and lengths of stay have been studied. In 

theory, optimal ED patient flow may be assisted via balancing patient loads between EDs 

(in essence spreading patients more evenly throughout this system). This investigation 

utilizes simulation to explore “Crowdinforming” as a basis for a process control strategy 

aimed to balance patient loads between six EDs within a mid-sized Canadian city.   

 

Methods: Anonymous patient visit data comprising 120,000 ED patient visits over six 

months to six ED facilities were obtained from the region’s Emergency Department 

Information System (EDIS) to (1) determine trends in ED visits and interactions between 

parameters; (2) to develop a process control strategy integrating crowdinforming; and, (3) 

apply and evaluate the model in a simulated environment to explore the potential impact on 

patient self-redirection and load balancing between EDs.     

 

Results: As in reality, the data available and subsequent model demonstrated that there are 

many factors that impact ED patient flow. Initial results suggest that for this particular 

data set used, ED arrival rates were the most useful metric for ED ‘busyness’ in a process 

control strategy, and that Emergency Department performance may benefit from load 

balancing efforts.  

 

Conclusions: The simulation supports the use of crowdinforming as a potential tool when 

used in a process control strategy to balance the patient loads between EDs. The work also 

revealed that the value of several parameters intuitively expected to be meaningful metrics 

of ED ‘busyness’ was not evident, highlighting the importance of finding parameters 

meaningful within one’s particular data set.  The information provided in the 

crowdinforming model is already available in a local context at some ED sites. The 

extension to a wider dissemination of information via an Internet web service accessible by 

smart phones is readily achievable and not a technological obstacle. Similarly, the system 

could be extended to help direct patients by including future estimates or predictions in the 

crowdinformed data.    The contribution of the simulation is to allow for effective policy 

evaluation to better inform the public of ED ‘busyness’ as part of their decision making 

process in attending an emergency department. In effect, this is a means of providing 

additional decision support insights garnered from a simulation, prior to a real world 

implementation.   
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1. Background 
 

1.1 Emergency Department Overcrowding 

 

Emergency Department (ED) overcrowding, manifest in long patient wait times and 

excessive lengths of stay in hospital EDs, is a chronic public health concern in that it 

negatively impacts patient experiences and, potentially, their health outcomes, healthcare 

worker experiences, and system efficiencies.  Reducing waiting times and potentially 

improving efficiencies can be fostered through the use of information and communication 

technologies in the delivery of services and resource management, as demonstrated by the 

prevalence of e-health initiatives that span the off-site delivery of care (telehealth), robotic 

surgery, mobile health applications, electronic medical records and region-wide records 

integration.   

 

Patient wait times, excessive lengths of stay, and ED overcrowding receive considerable 

attention within healthcare administration and from the general public. Debates on how best 

to address these problems have been ongoing for several decades [1][2][3] and will likely 

continue into the foreseeable future.  Factors related to ED overcrowding and excessive wait 

times are known to be complex.  They include internal factors such as EDs that are too small, 

difficulties in transferring admitted patients out of the ED, staff shortages, and delays in 

consultative and diagnostic services; external factors include increasing patient volumes and 

increasing complexity and acuity of cases [4][5][6][7].   

 

Many of the approaches that have been tried to reduce ED wait-times and lengths of stay 

involve addressing intra-ED processes. Familiar approaches include minor treatment streams 

(‘fast-tracks’) for low-acuity patients [8][9][10], and re-conceptualization of the treatment 

model [11], such as team triage [12].  It is also known that patient perceptions of wait times 

and service delivery are important factors to consider [13].   

 

Another approach to address these issues is controlling arrivals at EDs. For example, 

Emergency Medical Services (EMS) dispatchers may direct crews to a particular ED based 

on locale, patient acuity, and facility specialization. More recently, a pilot has been initiated 

in the region to transport stable and non-emergent patients to an urgent care facility as 

opposed to an ED; it is these patients who previously waited in an ED at the non-acute end of 

the triage scale [14]. This may have the effect of improving patient flow and helping to 

alleviate EMS offload delays and getting paramedics on the road faster.  

 

1.2 Measures of Overcrowding for Modeling and Simulation 

 

Modelling and simulation have been available to the study of the dynamics of emergency 

care for several decades, yet the resultant efforts are sparse and relate to many aspects of ED 

operations, including staff scheduling, patient flow, and departmental performance metrics 

[15][16][17].  Several studies also address patient loads in particular, although the underlying 

modelling methodologies and approaches are dissimilar from this work [18][19][20].   

 

In model-building, researchers agree that usable and standardized definitions of 

overcrowding need to be established [21][22], as well as for the concepts inherent in 

overcrowding, namely ‘busyness’ of an ED, and what constitutes a patient surge [22].  

Various researchers have put forward proposals for measures of crowding, generally 

inclusive of patient loads or volumes, patient acuity distributions, physician resources, and 
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bed resources [24][26][27].  In all cases, it is clear that variables associated with crowding 

and busyness are complex and interact with one another, and efforts are focussed on building 

reliable conceptual frameworks [27].  In [24][25], patient arrival rates were used in 

quantifying measures of crowding and busyness, which this current work also supports.  

 

This work develops a simulation model based on a process control strategy that relies on 

crowdinforming as an input; it is one of the first efforts at using real ED data in a feedback 

control manner to better understand the outcome of making real-time ED data available to the 

general public.  In practical manifestation, such a strategy would provide patients with 

information to help with their decision to visit a hospital ED.  In theory, actual patient loads 

at and between EDs may be balanced (resulting in streamlined patient flow), and patients’ 

perceptions of their ED experience may be enhanced as a result of improved patient flow due 

to the load-balancing effect of  crowdinforming.   

 

Simulations are an appropriate means of gaining this insight because potential impacts can be 

determined and evaluated without impacting real EDs or patients. When using actual patient 

data to feed a simulation, one must consider that the results may not generalize to other 

regions. If this investigation were to be replicated elsewhere, different and/or additional 

characteristics would need to be evaluated [21].  The use of simulation is justified; however, 

as our data appears consistent within the regional intuitions, so work to develop the model 

was undertaken. 

 

The balancing of ED loads is a complex multifaceted problem; redirection of patients is just 

one piece of the solution. The patient redirection simulated here would be typical of patients 

with non-emergent conditions able to consult a web- or smart-phone based service that 

provides insight into the “busyness’ of an ED prior to deciding upon which to attend. The 

aspect being explored deals with using data that is becoming available, such that an informed 

decision can be made in the case of lower acuity patient self redirection.  

 

1.3 Crowdinforming 

 

The concept of Crowdinforming refers to the delivery of relevant information to the general 

public, which in non-critical cases can be accessed prior to a pending ED visit. This 

information is then used to decide which ED to attend.  Crowdinforming is derived as a 

variant of the better-known concepts of crowdsourcing and crowdcasting, which recently 

have been used in biosurveillance applications [28][29].  One of the fundamental tenets of 

crowdsourcing is that the feedback loop needs to be closed, as information mined through 

crowdsourcing flows back to the crowd that generated it (crowdcasting), presumably to 

accrue benefit.  Crowdsourcing has become a standard marketing practice enabled through 

the Internet and as such is becoming a familiar process from a user perspective. 

 

There are emerging healthcare examples of the crowdinforming concept in practice. These 

include  pre-hospital ambulance redirection based on internet-accessible real-time ED loads 

in Western Australia [30], and a service by which cellular phone users in Texas, USA can 

text a common number and receive a return text indicating the expected wait time at the 

nearest ED [31]. The crowdinforming simulation presented here would augment the types of 

smartphone apps that are being developed to assist people in selecting the closest ED [32].  

Overall, direct communication with the public is recommended as a way to enhance the 

responsiveness to directives regarding patient flow [33]. 
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This work contributes to efforts in understanding and reducing ED overcrowding:  This work 

illustrates one potential avenue of contributing to this goal by simulating the effect of making 

information available to the public, allowing them a degree of informed choice on which ED 

to attend.  

 

Overall, finding policies that balance loads among collaborating ED facilities is part of efforts 

in many systems that explicitly employ algorithms for that purpose. In addition, there is little 

counter evidence in any realm whereby an unbalanced system would behave in an optimal 

manner. ED load balancing is complicated by the highly stochastic and unpredictable 

behavior of patients and their needs. The system we are proposing is a negative feedback 

control system as opposed to running open loop. With extremely high probability, these 

negative feedback systems are always preferable to open loop control systems. As such, if 

these techniques can be employed they should prefaced by insight gained by modeling and 

simulation as more analytical solutions are likely not to exist, certainly not with the ease of 

which a model and simulation can be developed. 

 

 

2. Methods 
 

The objective of this exploratory study was to investigate the application of existing available 

data and emerging data feeds towards developing an auxiliary ED process control strategy.  A 

further objective was to integrate crowd-informed data into the strategy, this will allow for 

the exploration of the potential effect (via simulation) of the process control strategy on the 

balancing of patient loads between hospital EDs.  Patient load balancing was considered 

primarily as the relative equalization of patient loads between individual facilities (according 

to respective capacities).  Patient load balancing should also consider the ‘smoothing’ of 

variability in patient loads at a facility over time (i.e. surge mitigation).  However, this work 

considered primarily the inter-institutional impacts (vs. intra-institutional impacts) as a 

primary validation of the model.   

 

The work progressed in three stages:   

(1)  statistical analyses of the data (descriptive statistics), to better understand the data and 

to test some intuitive expectations relative to variable relationships (section 2);  

(2)  the iterative development of a preliminary process control strategy, built upon 

crowdinformed parameters (section 3.1); and,  

(3)  the simulation of the process control strategy, and preliminary outcomes (section 3.2).   

 

Data for this investigation were based on six months of patient visit data taken from the 

Emergency Department Information System (EDIS) of the health authority of a mid-sized 

Canadian city, spanning January through June 2009. The source included approximately 

120,000 patient visits from six EDs. Data included gender and age of the patient, and 

timestamps of various milestones related to arrival, triage and registration, and discharge 

time. The data essentially comprise a trace file of events that have taken place. Initially and 

intuitively the authors expected the most meaningful input into a strategy for self-initiated 

patient redirection to be patient waiting times and length of stay. 

 

Data are now being collected that, in addition to the above, includes timestamps of the 

beginning and the duration of individual treatment events, specialty consultation, and/or 

diagnostic services.  At the time of writing, only the more rudimentary data set was available, 

which nonetheless was the appropriate starting point for modeling efforts aimed at improving 
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the efficiencies between EDs (inter-institutional).  The forthcoming, expanded data which 

include specific trajectories through a particular ED will potentially facilitate intra-

institutional modeling efforts.  Data were fully anonymized and blinded to ensure patient 

anonymity, and data handling and storage security measures were taken to ensure patient 

confidentiality.  Any patient identifiers were removed prior to receipt of the data, and ED 

sites were masked by labels A through F.  

 

For purposes of this initial investigation, all sites were treated equal in terms of bed capacity, 

although it is known that the health region consists of two larger tertiary centres and four 

community centres.  This was done for modeling and visualization purposes only with the 

conjecture being that if load balancing was not achievable in this simplified modeling 

scenario, it is unlikely to be effective once varying capacities were included.  

 

 

3. Results and Discussion 
 

3.1 Initial Data Analysis 

 

Descriptive statistics were applied on the EDIS data set, calculating measures of central 

tendency and variability for various parameters.  This was done to gain insights into basic 

variable relationships and to confirm the fidelity of the data.   

 

Fundamental to the concept of patient load-balancing is a concept or metric of ‘busyness’ of 

an ED, which is often manifest in circumstances of excessive patient wait times, facility 

overcrowding, and excessive lengths of stay.  The preliminary analyses attempted to 

conceptualize ED ‘busyness’ relative to a range of variables in the available data, in order to 

determine the most meaningful variable or combination of variables for further use in a 

process control strategy for this particular data.    

 

As an initial insight into the nature of the data, a small sample (two months) of the data set is 

summarized in Table I. Table I summarizes the average patient length of stay (LOS) over 4-

hr non-overlapping windows for each ED. Length of stay was calculated from the data as the 

total time from initial registration and triage to the time of patient disposition (i.e., admission, 

discharge, transfer, deceased). Since limited data were available that broke down the total 

LOS into wait time and treatment time, we initially elected to use the overall LOS as a 

correlation to patient waiting time. Other time intervals (such as door-to-triage, or time 

waited to see a physician) could have been employed, but at time of writing, such levels of 

granularity were not as reliable within the data as the parameters from which to calculate total 

LOS. Causes of variation in the data include site-based process differences and individual 

user practices (for example, batch data entry by healthcare workers after a set of patients, vs. 

more automated data entry after each individual patient, resulting in different timestamps for 

equal service processes), and simple data entry and system usage errors.  These factors also 

confound a comparison of intra-institutional impacts, and were a further motivation to 

maintain the current focus on the inter-institutional scale.  All facilities exhibited similar 

trends, that being very little variation in patient LOS.   
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Table 1: Average Length of Stay and Average Number of Patients 

 

Facility Avg. LOS (hrs) St.Dev. of LOS 

(hrs) 

Avg. Number 

Patients 

A 3.8 1.43 19.7 

B 7.9 2.35 23.4 

C 9.2 4.49 12.8 

D 6.9 2.68 15.0 

E 9.7 4.88 13.5 

F 9.0 3.01 18.1 

 

An intuitive approach to establishing a ‘busyness’ metric would be to consider associating 

LOS with the number of patients waiting. This observation - in addition to being intuitive - 

has also been reported elsewhere [27]. The data facilitated initial investigations of a model 

that would fit a length of stay duration to the number of people waiting. In this manner when 

a redirection to another facility occurs, the original data are modified to reflect a reduced 

LOS at the facility the person would have initially chosen, as well as a slight increase in the 

LOS at the facility of chosen destination.  This was the basis of the preliminary conjecture 

that average LOS, as a function of patients waiting, would be a meaningful ‘busyness’ metric 

and a meaningful variable in a process control strategy.   

 

 
Figure 1: Average LOS at Facility B vs. Patients Waiting 

 

Figure 1 shows a representative plot of this fit of average LOS and number of patients for 

Facility B, based on six months of EDIS data.  There is no directly observable positive linear 

relationship between number of patients waiting and the LOS (R
2
 = 0.008). This is counter-

intuitive and not as reported in [27]. This may reflect that during peak ED hours (between 

10:00am and 10:00pm) there are increased staffing levels in the ED and ancillary 

departments. Also, several sites operate Minor Treatment Areas (also known as “Fast 

Tracks”) to deal with increased volumes of less-acute patients during peak ED hours.  Similar 

results were found for each of the six hospitals within the regional health authority, in which 

the best fit line was relatively horizontal.    
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The initial exploratory strategy of directly using average LOS data as a control input would 

result in patients regionally being redirected to Facility A, with no concomitant reduction in 

length of stay at the remaining facilities.  This is intuitively untenable, and the next analysis 

took time-of-day into account, to reflect time-varying healthcare worker resources (staffing 

levels).   

 

With this inclusion, Figure 2 reflects the average LOS at Facility F between 0:00-4:00 AM 

and between 12:00-4:00 PM. Even though the LOS is comparable, the throughput is 

considerably higher during the day, assumed to be a consequence of increased staff, increased 

availability of ancillary services and a greater number of non-urgent patients. 

   

 
Figure 2: Length of Stay at Facility F, 0:00-4:00 AM and 12:00-4:00 PM 

 

Again, the anticipated positive linear relationship between patient load and LOS was not 

borne out by the data.  The follow-on analysis refined the LOS estimates by stratifying triage 

scores.  (Canadian EDs typically employ the Canadian Triage Acuity Scale, CTAS, which is 

a 5-point scale with 1 being most acute or serious and 5 being the least acute.) CTAS level 3 

was chosen for analysis, as it captures the single largest group of patients (34% of all ED 

visits within the data).  CTAS 3 also reflects the triage score most often assigned to patients 

presenting with influenza-like illness, and the issues of ED load-balancing (surge mitigation) 

become particularly relevant in outbreaks of ILI.  Data were also culled for outliers, defined 

as data points more than three standard deviations removed from the mean.   

 

The results analysing the Wait Time at an ED for a specific triage score (3) continued to 

discount a positive linear relationship between LOS and patient load, where this relationship 

was the basis of the preliminary conjecture.  This is unfortunate from a control perspective, 

indicating that the number of patients in the ED is not necessarily the best measure of 

“busyness”.  It could be argued that a better measure of “busyness” may be more easily 

associated with a patient’s wait to be seen (WTBS). Although WTBS also seems intuitively 

reasonable, it unfortunately suffered from similar drawbacks as the LOS as a measure of 

busyness.  

 

As a check on this conjecture, more extensive data were used from a later data set where the 

total LOS was detailed to include WTBS. For all six hospital EDs, the WTBS and LOS are 
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moderately correlated with coefficients ranging from 0.42 to 0.62. Figure 3 illustrates a 

running average WTBS and LOS at facility B with a 10-patient running average (as an 

average of those waiting and for display). 

 

 
Figure 3: Average Waiting To Be Seen and Length Of Stay (running average) over a one 

month period. 

 

Based on these initial investigations, average LOS and average WTBS durations were 

discounted as possible control parameters.  A known drawback is that neither average LOS 

nor WTBS is useful as a real-time control parameter in this data set, as these averages lag 

behind data that would be available at a given instant of time.  Nonetheless, average LOS and 

average WTBS up to a point in time (running average) were investigated, with a correlation 

coefficient of 0.04 for the complete data set, and a correlation coefficient of 0.45 when 

controlled for triage scores.   

 

In a further exploration of a meaningful metric of ‘busyness’, patient arrival rates and 

departure rates from an ED were considered and found to have some degree of exploitable 

structure. Patient arrival rates’ influence on busyness was also supported by other researchers 

[24][25][26].  In this work, regression analyses are in progress to quantify this influence for 

the current data set.  Figure 4 illustrates the near instantaneous patient arrival and departure 

rates as seen by facility A for a representative 180-hour slice of data. This plot becomes 

slightly less erratic if the arrivals are shifted by the average LOS, which in the case of Facility 

A is approximately 4 hours. As expected, the arrival rates and departure rates are correlated 

to one another, albeit shifted in time.  
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Figure 4: Arrival and Departure Rates at Facility A. 

 

The preceding discussion outlined efforts to obtain understanding of the data.  Initial 

conjectures that average LOS and WTBS would be meaningful metrics of ‘busyness’ and 

thus meaningful variables in a process control strategy for the purpose of load balancing were 

not borne out by the data.  Several other analyses were performed but not presented here, as 

they likewise discounted the original conjectures.  A summary of the exploratory analysis is 

provided in Table II.  It is acknowledged that these results are counter-intuitive and at times 

contrary to other published findings; however, these results are reflective of the particular 

data set used.   

 

The approaches considered above illustrate the difficulty of developing a control strategy that 

relies on straight forward estimates of ‘busyness’. Table II summarizes the interim results.  

 

 

Table 2: Potential ‘busyness’ metrics and their utility in redirection 

 

‘Busyness’ Metric Meaningful here as a 

redirection parameter 

Rationale 

Number of Patient 

Waiting 

No LOS not a function of 

Number Waiting 

Average LOS No LOS not a function of 

Number Waiting 

Average WTBS No Somewhat correlated to 

Average LOS 

Patient Arrival Rate Potentially Literature [21][27][35], 

Intuition 

 

 

Going forward, a metric of ‘busyness’ through a process of elimination is taken to be the 

patient arrival rates as opposed to absolute quantities such as average length of stay or total 

waiting hours, as this metric appears to have at a qualitative  relationship to patient load.  The 

arrival rates from various hospitals were used from the trace file (original data) to re-evaluate 

a patient-initiated redirection control strategy. Modelling control strategies based on trace file 

data is common in many areas of optimization [34]. In the case of Internet or web traffic for 

example, one often has a trace file or log to work with, using it as input to a simulation to 

better evaluate the performance of an algorithm one would like to investigate. A proposed 



M. Friesen et al. / Load Balancing at Emergency Departments using “Crowdinforming” 

10 
Online Journal of Public Health Informatics * ISSN 1947-2579 * http://ojphi.org * Vol.3, No. 2, 2011 

algorithm (control strategy) then works from the trace file to see if throughput can be 

improved. During the process, the trace file is modified as if requests were sent to alternative 

services. In effect, this can be articulated as a system for simulating dynamic load balancing 

on various services produced using trace files of real service loads.   

 

An additional consideration in using arrival rate as our “busyness” metric was derived from 

[21] where the authors indicated that “autocorrelation in the models for wait time and LOS is 

consistent with our intuition that process times are affected by prior patient arrivals” and that 

“future work will focus on discrete event simulation modeling”. This is similar to the case 

presented here; we have data that appears consistent within the regional intuitions and are 

using the data as input to simulation. Further consideration also came from the literature 

[27][35], where in particular number of patients from the ED was associated with the daily 

mean length of stay for all ED patients [35]. 
 

 

3.2 Process Control Strategy Development built upon Crowdinforming 

 

Based on the initial insights, a preliminary process control strategy upon which to apply a 

crowdinforming simulation was developed.  Intuitively, LOS, WTBS, arrival rates, origin of 

enquiry, and ED capacity should lend themselves to a model for crowdinforming to be built 

with increasing fidelity. However, it is crucial that ‘busyness’ metrics be extracted from real 

data, as they may be context-specific and/or counter intuitive as evidenced here. The model 

for patient decision making is a simple discrete event simulator, where each patient is 

individually governed by the stochastic decision process of Figure 5.  The process of Figure 5 

is essentially for fair weighted crowdinforming diversions. A person being modeled either 

proceeds to the ED they would have gone to normally or consults a service and makes a 

weighted fair decision as to which ED to attend. In this model they will probabilistically 

attend the least busy.  

 

 

 

 
Figure 5: Patient Redirection Decision Process 
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In conceptualizing ‘busyness’ in terms of patient arrival rates, some of the anticipated effects 

of patient-initiated redirection were observed.  The redirection policy model was based on 

five minute intervals of data availability and updates.  The redirection policy in this 

simulation was straight-forward:  a percentage of patients (e.g. 75%) were set to consult the 

posted arrival rates and then probabilistically self-redirect to the facility with the lowest 

present arrival rate.  Figure 6 illustrates the raw arrival rates at the six regional EDs.  The 

horizontal axes in Figures 6 indicate serial 12-hour increments.  

  

 
Figure 6: Arrival Rates at six Facilities with No Crowdinformed Redirection. 

 

The main observation is that without any form of patient redirection modeled, there is a 

reasonable degree of diversity in the arrival rates at any particular facility. The spikes 

represent arrival surges at the individual facilities that have been conjectured to contribute to 

crowding and increased waiting times [22][36].  

 

The output from the decision process (Figure 5) then modifies the trace file accordingly. 

Figure 7 is the result of running the individual stochastic decision process (Figure 5) with 

input from the trace file to provide the weighting for the decision process.  In this manner a 

patient probabilistically self redirects to alternative facilities weighed by the arrival rates as 

illustrated in Table III. Without incorporating capacity the ideal output would be for all 

facilities to identical with little variation about the moving average. Figure 7 approximates 

the former but illustrates that the latter is not substantively impacted by the control strategy 

modeled. 
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Figure 7: Arrival and Departure Rates at six Facilities with Weighted Fair Crowdinforming 

Redirection (multiple passes). 

 

 

As the data are time varying, samples from weighted fair redirection, sorting redirect and the 

raw trace file were transformed to the frequency domain (FFT) and digitally filtered, 

essentially removing the circadian fundamental. As the data clearly exhibited a circadian 

autocorrelation component, transformation to the frequency domain was the simplest means 

of its removal. More complicated analyses could have been undertaken but as we were only 

interested in the variance about the moving average, this was the most straightforward.  This 

allows one to estimate the variance from the periodic moving average. The standard deviation 

arising from the inverse transform was approximately 0.41 for the raw trace file, 0.50 for the 

weighted fair redirection and for Hospital B (selected arbitrarily). It was somewhat 

unexpected that the weighed fair redirection performed more poorly in terms of variance than 

the original trace file, even though an element of load balancing appears evident from Figure 

7. Figure 7 re-adjusts the trace file over several passes through the trace file to more fully 

represent the steady state associated with this control strategy as opposed to more transient 

behaviour as would be the case if the crowdinforming policy were instantly switched on. 

 

In a more refined model to be explored in future work, the data would allow for an aspect of 

travel time to be considered, as an EDIS patient record can be configured to include prefixed 

postal code information (approximate neighbourhood of origin); for this study, the postal 

code was sanitized from the records. Also, although not investigated here, an exponential 

weighted moving average (EWMA) of arrival rates might improve the outcomes and be 

easily extracted as well. 

 

At the time of writing, only one of the hospitals included in this study has an ED wait-times 

display “dashboard” deployed in the ED waiting room. Currently, this dashboard displays the 

number of patients in the ED waiting room, average waiting time of patients in the waiting 

room, and expected wait time to see a physician. Information on this dashboard is updated in 

near-real-time from the EDIS database, and the dashboards are expected to roll-out to all EDs 

in the region within the next several months. This dashboard has been found to be of value to 

both patients and staff within these EDs and our basic premise is that this data may also be of 

use outside of the EDs themselves.  
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Our model extends this notion of a wait-times dashboard and conjectures that in a reasonably 

short period of  time, these data could be made available through a web service, such that an 

individual would be able to query the hospital “dashboards” from an “ED Wait Times” 

website over the internet with any browser, be it mobile cellular or wired.  In addition, a text 

service could be established where a user would text a notable number (for example, 

311EDWait) and receive a list informing of anticipated waits or load at various facilities.   

 

In late 2009, real-time displays of the ED dashboard data were installed in the dispatch centre 

of the city’s Fire and Paramedic Services, in order to facilitate pre-hospital re-direction of 

ambulances and emergency vehicles.  However, when considering large-scale 

crowdinforming to an entire city’s population, modelling and simulation provide an 

exploratory investigation into the potential effects of a crowdinformed system, without the 

cost and potential disturbances to a system under endemic stress.   

 

In this simulated crowdinforming scenario, a proactive decision is made by a relatively low-

acuity patient who intends to visit a hospital ED for a non-emergent medical issue. In 

addition to the stochastic process of deciding upon going to an emergency department, each 

patient is also provided with estimates of load, proxied by patient arrival rates (for simulation 

purposes). These data are available and easily instrumented within the controls being 

modelled. As an illustration, assume there are four hospitals with average arrival rates of 5, 

10, 15, and 20 patients/hr.  In the model a potential patient would create a biased roulette 

wheel to guide their probabilistic decision once they have elected to go to an emergency 

department. The associated normalized probabilities associated with informed self-initiated 

redirection are shown in Table III.  The arrival rates (Table III) would be provided by the 

hospitals and made available to the public through a web service, smart phone app or text 

service as discussed above.  The “Arrival Rates +1” models the impact of adding the 

decision-making patient to each facility, as if the patient were attending all EDs.  The table 

then calculates the probability of the individual patient actually going to the respective 

facilities.  That is to say, the facility becomes a slightly less attractive destination if you 

choose to direct yourself there, in effect biasing that facility to be slightly busier. From a 

numerical perspective, it also prevents a division by zero in the event the arrival rate at a 

facility is zero arrivals/hour. In reality, the numbers are only for simulation purposes only.  

Conveyance of a selected ‘busyness metric’ (whatever it is) would have to be considerably 

more user friendly, such as number of signal reception bars as seen on a cell phone, or a red-

yellow-green-light scale. 

 

Table 3. Informed  Emergency Department Self Redirect Probabilities 

 

 Emergency 

Department 

1 

Emergency 

Department 

2 

Emergency 

Department 

3 

Emergency 

Department 

4 

Total 

Arrival 

Rates (/hr) 
5 10 15 20  

Arrival 

Rates +1 

(/hr) 

6 11 16 21  

1/over 1/6 1/11 1/16 1/21 0.368 

Probability 0.45 0.25 0.17 0.13 1.0 
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Ideally, Table III would combine estimates of travel time and patient load in an additive 

manner as a linear combination weighted appropriately as in equation (1).  Within the general 

population, a person presented with statistical data would likely preferentially choose the 

facility with the lowest arrival rate, as people are typically not probabilistic in nature. If this 

were the case, the situation would by default look similar to where a simple sort was used for 

redirection.  Additionally, equation (1) accounts for varying perceptions of equal durations of 

wait time:  people may perceive 30 minutes travel time more favourably than 30 minutes of 

wait time, perhaps due to the psychology of the perception of control (actively driving a car 

vs. passively sitting in a chair).  

 

In equation 1, N represents the number of ED facilities.  A weighting has been assigned to 

reflect a probabilistic decision that incorporates both travel time and arrival rates. Here 

reflects a person’s decision to consider redirection.  The term  weights the probabilistic 

component associated with patient arrival rates as indicators of “busyness”.  The term  

weights the probabilistic component associated with travel time associated with distance di, 

where di represents the distance to facility i. The parameter that would be crowdinformed 

from a regional hospital authority would be the term associated with ‘busyness’.  In this data 

set, the ‘busyness’ metric is patient arrival rates denoted i, wherei represents the arrival 

rate at facility i.  If used in a mobile or web based application, the distance and estimated 

travel time can be extracted from many geolocation travel time estimation services readily 

available. 

 

For example, if one were to discount travel time and only use the measure associated with 

busyness (i.e. patient arrival rates),  =0. If the data as illustrated in Table III 

were then used, the person would choose ED1 with a probability of 0.45. If in addition,  

 i.e.,  was a 75% chance that the person would consider self redirection) the 

probability of the person choosing ED1 would be 0.75*0.45 = 0.33. This would model 

approximately a 33% chance that the person would redirect to ED1.  

 

This also presents an opportunity to introduce a capacity parameter as in equation 2. The nice 

feature about this type of measure is that it is relative between facilities.  The capacity 

parameter would be arrived at experientially for each institution, although back-casting from 

available data may be a starting point.  As capacity would is not subject to change at an 

institution for prolonged periods of time, its actual value in this simulation is arbitrary.  

 

                (1) 

 

Using such a method, the patients make a probabilistic decision weighted by the least 

anticipated wait, inferred from the busyness of the EDs derived from the near real-time 

patient arrival rates. As a consequence, the overall surge seen between hospitals is dampened 

by the behaviour of informed individuals.   

  

               (2) 

 

A statistical measure associated with mean and variance indicates that the load balancing is 

statistically significant given our behavioural assumptions, where an inference of estimated 
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“busyness” probabilistically influences a person’s decision in attending a particular 

emergency department. The overall effect is that of a low pass filter, smoothing out the peaks 

and valleys in space and, to some extent, in time. Filtering in time is expected to result from 

incorporation of an estimate of travel time as indicated in Equation 1. 

 

Although preliminary, this work represents one of the first modelled instances of the potential 

of crowdinforming in providing a policymaker with a simulation to aid decision support.  The 

decision would be to create public access to "dashboard" type information that is currently 

available in emergency departments or electronic records. The publicly available “dashboard” 

would be accessible via the web or 3G smartphone.   Crowdinforming serves to filter the 

simulated patient surges at a given facility by balancing patient load between facilities (to 

each facility’s respective capacity).  As the win-waiting-room “dashboards” are a relatively 

new concept currently under evaluation it is unlikely that exactly the same data would be 

presented to a patient considering self redirection at this time.  

 

3.4  Limitations 

 

The model is preliminary and currently uses one metric – patient arrival rates – as an 

indicator of ‘busyness’ and as the basis for crowdinforming.  Intuitively expected metrics 

such as the number of patients waiting as well as average LOS were not found to be effective 

as an input into a process control strategy for patient redirection.  Additional statistical 

analysis needs to be carried out on the trace file data, to facilitate a refinement of the model to 

account for the interplay of multiple variables.  Additionally, forthcoming EDIS data will 

provide further breakdowns of various waiting and treatment phases, which will facilitate a 

more precise model.  It is unlikely that a simple unified model of “busyness” across all EDs 

across varying hospital authorities would suffice, particularly in scenarios where some 

indication of real time “busyness” is to be fed back to the general community.  

 

A further significant limitation associated with research of this nature is that stochastic 

models of behaviour have to be estimated. Modelling social dynamics is a difficult and messy 

problem; however, insights garnered from simulation and modelling are nonetheless useful 

and would be used in support of an otherwise best-guess decision. 

 

Not all patients, in reality can easily redistribute themselves to all sites equally. For example, 

the most acute patients (i.e., CTAS 1 or 2) need to get to the nearest or specialized ED 

immediately, and most likely by ambulance. Additionally, these cases wait very little once 

they arrive at a hospital, regardless of which site. To further complicate this, certain types of 

conditions may get directed to a specific site. In the health authority represented by the data, 

trauma and stroke cases are most often directed to site B whereas cardiac cases are most 

likely sent to site F when practical and in the best interests of the patient. Patients assessed at 

CTAS level 3 are most likely sick enough to desire to go to the nearest ED, whereas the 

patients assessed at CTAS level 4 and 5 (i.e., least acute or serious) are likely the most 

sensitive to wait times and length of stay issues and would benefit by targeting an ED with a 

Minor Treatment Area (MTA). In addition, several of the larger and busier sites have 

resources/services not available at smaller sites, so a length of stay at one site may not be 

same if a patient chooses a different site with a different scope of services available. Future 

models would likely need to take into account these considerations. Other types of data may 

also be useful to the person using a crowdinforming service could also reflect resources at the 

facility. For example, in the case of a major laceration whether a plastic surgeon were in site 
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or in the case of a broken arm or wrist whether a physician were on site who would be able to 

set the break. 

 

The present framework appropriately considers system-wide impacts with simplified 

assumptions on respective ED capacity, prior to intra-institutional simulation and other 

institutional refinements.  The framework developed here allows policies to be simulated and 

evolved, adding a qualitative assessment to decisions that may otherwise be experiential or 

best intent. This work is one of the first demonstrations of the crowdinforming intervention as 

a variant of the broader concept of crowdsourcing, and it demonstrates the role that similar 

technologies which provide crowdinformed decisions will continue to play in the future. 

 

It is important to note that this work did not set out to develop a model to fit observed data, 

nor to develop a ‘busyness’ model of an ED.  The objective was to develop a process control 

strategy built on crowdinforming, and in doing so, a meaningful metric of ‘busyness’ is 

required, which was expected to be somewhat self evident.  Thus, this work included an 

exploration into the data in order to define a meaningful metric for this data set.  This 

exploration is a pre-requisite to the development of a meaningful process control strategy for 

crowdinforming.  The work implied that the input parameters (in this case, a ‘busyness’ 

metric) may be ‘data-unique’ and must be defined and verified for each respective data set.  

Furthermore, the validity of patient arrival rates as an input parameter has not been 

established definitively; however, the work did indicate that other parameters are – 

surprisingly – not necessarily a good metric within this particular data set within this problem 

domain.   

 

This study was limited to data from one regional health authority. Specific results of similar 

analyses at other regions would likely be different. A limitation of modeling is that the 

assumption of ‘busyness” (wait time and LOS) is consistent with our intuition that process 

times are affected by prior patient arrivals.  

 

These limitations imply that data collected from a multiple-ED system have to be carefully 

considered as issues and conditions at other regions are likely to be different (as they are, 

often, between EDs within the same region). However, as data become more widely 

available, there will be increased opportunity and additional tools available for its analysis 

and improved interpretation of causality concerning “busyness”. Similar considerations also 

apply to the feedback control strategy one may be interested in. Fortunately, there are an 

increasing number of modeling and simulation tools and methods readily amenable to this 

type of policy modeling.  

 

Ideally for patient self redirection one of the means of providing a meaningful “busyness” 

metric would be streaming video of each facility. The technology now exists to do this but is 

unlikely to ever be widely implemented for a variety of reasons (primarily related to patient 

privacy and security).  Other alternatives are to crowdsource ED visits directly from patients 

at various EDs, mobile applications and back end web services already exist for this type of 

collection and dissemination. Limitations again would be related to the trustworthiness of the 

reporting (as patients may be tempted to overstate their wait in an effort to redirect others 

away from the facility in the attempt to reduce their wait and service time) as well as the 

potential skew due to specific demographics that are more apt to use mobile communications 

and to participate in crowdsourced efforts. 

 



M. Friesen et al. / Load Balancing at Emergency Departments using “Crowdinforming” 

17 
Online Journal of Public Health Informatics * ISSN 1947-2579 * http://ojphi.org * Vol.3, No. 2, 2011 

As previously mentioned, this problem domain is very complex with myriad variables. As 

data systems improve, and the ability to extract consistent and meaningful data from these 

systems follows suite, a more detailed insight into the complexities of ED operations will be 

gleaned from the data. As more data is available, investigators will be able to exploit Stein’s 

paradox where an estimate of “busyness” is made more accurate when three or more 

parameters are estimated simultaneously. These parameters may be apparently unrelated, but 

for example could include arrival rates as discussed above augmented with the number of 

paramedics waiting for their patients to be seen by an ED doctor.  

 

A final limitation of the model presented here is that since the input was extracted from real 

arrival rates at various facilities (trace file), there is not a directly observable output such as 

resulting average LOS as a consequence of the redirection. The indirect output is a reduction 

in arrival spikes associated with arrivals without patient self-redirection, as compared to the 

arrivals associated with patient self-redirection. Although the modelled process is stochastic, 

the underlying principle is that of negative feedback control system thereby balancing the ED 

loads across facilities and attenuating arrival spikes. 

 

4. Conclusions 
 

This work illustrates the role that data-driven modelling can play in developing policy or 

supporting public health decisions.  The investigation derives a preliminary process control 

strategy upon which to model the effects of self-initiated patient redirection on hospital 

patient loads.  The work illustrates how one specific intervention – that of proactive 

information dissemination or crowdinforming – can potentially provide a degree of process 

control in the form of patients’ self-initiated re-direction, resulting in load balancing at 

emergency departments.  The work illustrates that meaningful strategies rely on appropriate 

data- or context-specific choices in the variable or variables chosen as metrics of ‘busyness’ 

and consequently to their broadcast through crowdinforming.  The results of this 

investigation are not intended to be specific recommendations for a regional health authority, 

but rather illustrate a flexible framework around which applications of this type can be better 

evaluated and their potential outcomes assessed. The benefit of simulation is to allow a policy 

or decision maker to gain insight into what may occur and be better prepared than in the 

implementation of a crowdinforming policy without modeling or simulation. 

 

The preliminary model was derived from simple statistical analyses of the available EDIS 

data, in order to test support for preliminary conjectures.  As the initial conjectures were 

discounted by the data, the model was refined.  The application of a stochastic patient 

decision process representative of crowdinforming was demonstrated to contribute to load 

balancing at individual hospital emergency departments. The evidence for the findings was 

the trace file data associated with real ED visits within a regional health authority, and the 

balancing of arrival rates as a consequence of self redirection when a metric of ED ‘busyness’ 

is presented to the public. It was noted however, that although loads were being balanced 

across the facilities, the simulation did not indicate any alleviation in the variance associated 

with the arrival rates. In this regard, an increase in variability may detrimentally contribute to 

the patient flow within the various EDs. 

 

Future work will include the utilization of running averages of the WTBS time, LOS and 

arrival rates once more data become available, as well as multiple regression analysis to learn 

more about predictor variables and a dependent “busyness” variable. Preliminary analysis 

indicates that several parameters and their interactions could be included in a more detailed 
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estimate of “busyness”. The stochastic decision process and control model would remain the 

same. 
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