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Objective: To explore the value of a predictive model combining the multiparametric
magnetic resonance imaging (mpMRI) radiomics score (RAD-score), clinicopathologic
features, and morphologic features for the pathological complete response (pCR) to
neoadjuvant chemotherapy (NAC) in invasive breast carcinoma of no specific type (IBC-NST).

Methods:We enrolled, retrospectively and consecutively, 206 women with IBC-NST who
underwent surgery after NAC and obtained pathological results from August 2018 to
October 2021. Four RAD-scores were constructed for predicting the pCR based on fat-
suppression T2-weighted imaging (FS-T2WI), diffusion-weighted imaging (DWI), contrast-
enhanced T1-weighted imaging (T1WI+C) and their combination, which was called
mpMRI. The best RAD-score was combined with clinicopathologic and morphologic
features to establish a nomogram model through binary logistic regression. The predictive
performance of the nomogram was evaluated using the area under receiver operator
characteristic (ROC) curve (AUC) and calibration curve. The clinical net benefit of the
model was evaluated using decision curve analysis (DCA).

Results: The mpMRI RAD-score had the highest diagnostic performance, with AUC of
0.848 among the four RAD-scores. T stage, human epidermal growth factor receptor-2
(HER2) status, RAD-score, and roundness were independent factors for predicting the
pCR (P < 0.05 for all). The combined nomogram model based on these factors achieved
AUCs of 0.930 and 0.895 in the training cohort and validation cohort, respectively, higher
than other models (P < 0.05 for all). The calibration curve showed that the predicted
probabilities of the nomogram were in good agreement with the actual probabilities, and
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DCA indicated that it provided more net benefit than the treat-none or treat-all scheme by
decision curve analysis in both training and validation datasets.

Conclusion: The combined nomogram model based on the mpMRI RAD-score
combined with clinicopathologic and morphologic features may improve the predictive
performance for the pCR of NAC in patients with IBC-NST.
Keywords: multiparametric MRI, radiomics, neoadjuvant chemotherapy, invasive breast carcinoma of no specific
type, pathologic complete response
INTRODUCTION

For females, breast cancer (BC) is the leading cause of cancer in 157
countries and the leading cause of death in 119 countries (1).
Neoadjuvant chemotherapy (NAC) for BC is a systemic therapy
using a cytotoxic drug administered before definitive surgical
treatment (2). As a personalized precision treatment approach,
the purpose of NAC is to: (i) reduce tumor stage; (ii) treat
potential metastatic lesions in a timely manner; (iii) observe the
sensitivity of tumors to chemotherapy regimens to provide a basis
for the selection of subsequent treatment regimens (3, 4). However,
about 20% of BC patients are not sensitive to NAC, and a few even
experience disease progression during treatment (5). Meanwhile,
chemotherapeutic drugs can also lead to adverse effects (e.g., bone-
marrow suppression, liver and kidney impairment, heart failure) in
some patients (6, 7). Therefore, evaluating BC patients before
chemotherapy and predicting if they will benefit from NAC are
crucial. pCR is the most widely used surrogate endpoint for NAC
efficacy assessment, and patients achieving pCR may have higher
disease-free survival and overall survival (8). Hence, early prediction
of pCR may help to improve personalized treatment plans and even
avoid surgery in the future.

Conventional imaging medicine obtains the morphological
characteristics of tumor phenotypes through visual assessment by
radiologists, which can provide an overall image of the tumor
phenotype and its environment. These morphological features (e.g.,
shape, border, lobing) observed originally by the naked eye are
dichotomous variables based on two-dimensional (2D) sections.
Some scholars have suggested that they can be characterized by
quantitative data using mathematical formulae in which
“roundness” can indicate the shape of the lesion, “concavity”
reflects the irregularity of the lesion border, and “curvature”
describes the morphologic changes of breast-tumor lesions (9).
They are all based on quantitative measurements, so refining
dichotomous variables into digital variables would be
advantageous compared with using conventional morphologic
qualitative features assessed by the naked eye.

Dynamic contrast enhanced magnetic resonance imaging
(DCE-MRI) is one of the most sensitive methods for early
prediction of pCR, which can reflect changes in tissue
pathophysiology before morphological changes (10). In
addition, T2 weighted imaging (T2WI), diffusion weighted
imaging (DWI) and other sequences have also been used in
the prediction of NAC for BC (11, 12).

Multiparametric magnetic resonance imaging (mpMRI)
involves combined application of several MRI imaging
2

sequences. mpMRI can be employed to quantify the evolution
of cancer development at multiple levels and dimensions, and
provide specific quantitative information about tumor
characteristics. Compared with single-sequence MRI models,
mpMRI improves the diagnostic accuracy of BC and the
evaluation and prediction performance of NAC efficacy (13).

Radiomics uses automated algorithms to convert the image
data of the region of interest in medical images into high-
dimensional spatial data, and then extracts the key information
that really works from a large amount of information through a
variety of statistical analysis and data mining methods. Then, the
obtained information is applied to support systems for clinical
decision-making to aid disease characterization, tumor staging,
efficacy assessment, and prognosis prediction (14). Compared
with conventional imaging, radiomics fully reflects the most
essential characteristics of the underlying medical images. In
recent years, radiomics based on mpMRI has developed rapidly
and become a “hotspot” for basic research and clinical
applications, and has made great progress in BC and other
research fields (15–19).

Invasive breast carcinoma of no specific type (IBC-NST) is
the most common type of pathologic staging for BC. It accounts
for about 70–80% of cases, and is characterized by low
differentiation and a poor prognosis (20, 21). Few studies have
been conducted to predict the pathologic complete response
(pCR) of NAC based on mpMRI radiomics for people with
IBC-NST.

We aimed to establish and validate a nomogram model based
on mpMRI radiomics, clinicopathologic features, and
morphologic features for early prediction of pCR in IBC-NST.
MATERIALS AND METHODS

Ethical Approval of the Study Protocol
The protocol for this retrospective study was approved
(2018068) by the Ethics Committee of Zhongshan Hospital
Affiliated to Dalian University (Dalian, China). The
requirement for written informed consent from study
participants was waived.

Patients
The inclusion criteria were: (i) female BC patients over 18 years
old who came to our hospital for treatment; (ii) MRI was
performed and immunohistochemical results were obtained by
June 2022 | Volume 12 | Article 916526
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ultrasound-guided needle biopsy before NAC; (iii) surgery was
performed after NAC, and pCR was confirmed by postoperative
pathologic examination. The exclusion criteria were: (i) a specific
type of invasive breast cancer; (ii) MRI findings were obtained >1
week before NAC; (iii) not receiving a standardized and
complete NAC regimen or other related treatment previously;
(iv) lesions were combined with other sites of primary cancer; (v)
lesions were combined with distant metastases; (vi) the quality of
the MR image was insufficient to obtain measurements; (vii) the
correlation between the tumor and assessment of the pathologic
response in MR images was uncertain; (viii) incomplete clinical
or pathologic data.

Patients suffering from BC who underwent NAC and a
surgical procedure at Zhongshan Hospital from August 2018
to October 2021 were included retrospectively and consecutively.
Patients were divided into a pCR group and non-pathologic
complete response (NpCR) group according to whether pCR was
achieved after NAC. Enrolled patients were assigned randomly to
a training cohort and a validation cohort at a ratio of 7:3. The
training cohort is used for model establishment, and the
validation cohort is used for model performance verification. A
flowchart showing the study population is presented as Figure 1.

Baseline clinical data were obtained from medical records. The
age, body mass index (BMI), menopause status, fibrinogen, T stage,
and N status of patients before NAC were collected. Treatment
regimens and treatment cycles followed the National Comprehensive
Cancer Network guideline (22). All BC patients completed ≥4 cycles
of NAC with: (i) paclitaxel-based chemotherapy (4.4%, 9/206); (ii)
Frontiers in Oncology | www.frontiersin.org 3
anthracycline-based chemotherapy (21.8%, 45/206); (iii)
anthracycline-based chemotherapy combined with paclitaxel-based
chemotherapy (73.8%, 152/206). Human epidermal growth factor
receptor 2 (HER2)-positive patients also received trastuzumab or/
and pertuzumab (35.4%, 73/206). All patients underwent surgery at
our hospital within 2 weeks of completing a full cycle of NAC.
Analyses of pathologic histologic sections and diagnosis were
undertaken by two pathologists with 12 years and 10 years of
experience in the diagnosis of breast disease, respectively, who
were blinded to the study protocol. Pre-NAC status of the
estrogen receptor (ER), progesterone receptor (PR), HER2, and Ki-
67 expression were obtained from immunohistochemical analyses of
the puncture specimen (for assessment criteria see Supplemental
Data 1). pCR was confirmed by postoperative pathological
examination. The “pCR” was defined as an absence of residual
invasive carcinoma in the specimen (residual ductal carcinoma in
situ can be present), ipsilateral anterior sentinel lymph node or no
lymph node infiltration in lymph nodes removed during axillary
dissection (23).

MRI Protocol
All MR images were acquired on a 3.0-T Magnetom Verio
superconducting MRI scanner equipped with a 16-channel
breast-specific coil (Siemens, Hamburg, Germany) within one
week prior to NAC. Imaging sequences were fat-suppression T2-
weighted imaging (FS-T2WI), diffusion-weighted imaging
(DWI, contrast-enhanced T1-weighted imaging (T1WI+C).
Scan parameters are shown in Supplemental Data 2.
FIGURE 1 | Flowchart revealing the study population based on exclusion criteria.
June 2022 | Volume 12 | Article 916526

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhu et al. Combined Model for IBC-NST
Extraction and Selection of
Morphologic Features
MR images were evaluated independently by two radiologists, A
and B, with 11 years and 14 years of experience of diagnosing BC
usingMRI, respectively.Measurements were made using a double-
blind method (neither radiologist was aware of clinicopathologic
findings or the other radiologist’s interpretation of images).
Morphologic features were measured using 3D Slicer (version
4.11, www.slicer.org/). The maximum cross-section of the T1WI
+C sequence was used for measurement, and the following values
measured under the “Markups” module: vertical diameter,
transverse diameter, perimeter, surface area, convex closure area,
curvature maximum, and curvature mean (Figure 2). Roundness
was calculated using the formula: 4p × surface area/perimeter².
Concavity was calculated indirectly from the measured convex
closure area: (convex closure area – surface area)/convex closure
area (24). Thirty cases were randomly selected from the enrolled
population before assignment, and the repeatability of feature
extraction was assessed using intra-observer and inter-observer
intraclass correlation coefficients (ICCs). Each parameter was
measured twice, and the mean value calculated: this was used as
the final measurement. Multicollinearity was used to reduce
Frontiers in Oncology | www.frontiersin.org 4
morphologic features, and parameters with a variance inflation
factor (VIF) <10 were selected for subsequent analyses.

Tumor Segmentation and Radiomics
Feature Extraction
The region of interest (ROI) was delineated manually via 3D
Slicer (version 4.11, www.slicer.org/) on each slice of the FS-
T2WI, DWI (b-value of 800s/mm²), and T1+C (second period
after contrast agent injection) image sets (DICOM format) of all
cases. On each slice of the images, necrotic, air, and calcified
regions were excluded.

Two radiologists (A and B) were responsible for the
evaluation of tumor segmentation. Inter- and intra-observer
reproducibility of radiomic feature extraction were initially
analyzed with the data of 30 randomly selected patients from
each sequence in a double-blinded fashion by these 2
radiologists. The ICCs were used to evaluate the agreement of
radiomics features.

Prior to feature extraction, all images were resampled to a
common voxel spacing of 1mm × 1mm × 1mm by using the
Resize method, to resample the images into an isotropic dataset to
allow comparison between image data from different sequences.
A

B

FIGURE 2 | Measurement of morphologic parameters. (A) We measured the vertical diameter and transverse diameter at the largest cross-section. We drew along
the edge of the lesion, and obtained the perimeter, surface area, curvature mean, and curvature maximum. Roundness =4p ×1.85/6.042 = 0.64 (B) We made a
small convex polygon along the line connecting the edge of the lesion to obtain the convex closure area. Concavity= (2.40-1.85)/2.40 = 0.23.
June 2022 | Volume 12 | Article 916526
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The “Radiomics”module in the 3D Slicer (version 4.11, www.
slicer.org/) was used to extract 1223 radiomics features from each
sequence of FS-T2WI, DWI, and T1WI+C. One hundred and
seven radiomic features were extracted from the original images,
including 18 first-order features, 14 shape features, and 75
texture features derived from the gray level co-occurrence
matrix (GLCM, 24), gray level dependence matrix(GLDM, 14),
gray level run length matrix (GLRLM, 16), gray level size zone
matrix (GLSZM, 16) and neighbourhood gray-tone difference
matrix (NGTDM, 5). With a Laplacian of Gaussian filter, 372
features with four sigma levels (0.5, 1, 1.5, 2) were obtained. A
total of 744 features were obtained from 8 derived images by
wavelet transform.
Selection of Radiomics Features and
Construction of a “RAD-Score”
All extracted features were normalized by z-score in the training
cohort before selecting radiomic features. First, features with
ICC >0.75 within the training cohort were retained. Second, t-
tests or u-tests were carried out on the retained features, and we
targeted those with discriminatory ability (P < 0.05) for further
analyses. Third, we applied the least absolute shrinkage and
selection operator (LASSO) regression for selecting the key
radiomics features with nonzero coefficients, and a 10-fold
cross-validation with a maximum area under the receiver
operator characteristic (ROC) curve (AUC) criterion was
conducted to determine an optimal regulation weight
(lambada). After the steps stated above, the remaining features
were subjected to RAD-score construction. The above-
mentioned RAD-scores were constructed for FS-T2WI, DWI,
T1WI+C sequences and mpMRI, respectively. The sequence
with the best diagnostic efficacy RAD-score was selected for
entry into subsequent analyses. The RAD-score of each patient is
linear combinations of selected features weighted by their
coefficients, which are mathematically represented as follows:

RAD − score =o
n

i=1
Ci � Xi + b

where b is the intercept, Xi is the ith selected feature, and Ci is the
coefficient of the ith selected feature. Feature selection and RAD-
score construction were performed using the “glmnet” package
of R software (version 4.1.4, www.r-project.org/).
Development of Prediction Models
Prediction models were developed using univariate and
multifactorial logistic regression based on clinicopathologic,
morphologic, and radiomics features. Clinicopathologic
features included age, menopausal status, fibrinogen level, BMI,
T stage, N stage, receptor status (ER, PR, HER2), and Ki-67
expression. Features with P < 0.05 after univariate analysis were
included in the multifactorial analysis. Next, we development 3
models based on features of different categories. Model A was
established based on clinicopathologic features. Model B was
established based on clinicopathologic and radiomics features.
Frontiers in Oncology | www.frontiersin.org 5
Model C was established based on clinicopathologic, radiomics,
and morphologic features.

Comparison of the Performance of
Prediction Models
Accuracy, specificity, sensitivity, and the area under receiver
operator characteristic curve (AUC) were used to estimate the
predictive performance of the three models in the training cohort
and validation cohort. The model with the best performance was
presented as a nomogram. Then, a calibration curve was used to
evaluate the consistency between the estimated probability and
actual probability of the pCR. Decision curve analysis (DCA) was
used to assess the clinical usefulness by estimating the net benefit
within threshold probabilities. A flowchart of extraction of
radiomics features and model establishment is shown
as Figure 3.

Statistical Analyses
Differences between pCR and NpCR groups were analyzed using
the t-test, u-test, or chi-square test. Statistical analyses were
undertaken using R software (version 4.1.4, www.r-project.org/).
Within R software, the packages “performance” and “see” were
employed for multicollinearity analyses. “glmnet” were used for
feature selection and RAD-score construction, and “pROC”,
“rms”, “Hmisc” and “ggDCA” were employed for model
construction and performance evaluation. P < 0.05 was
considered significant.
RESULTS

Patient Characteristics
A total of 206 BC patients formed the study cohort. They had a
median age of 52 (range, 42–60) years. Among them, 57 (27.7%)
were in the pCR group and 149 (72.3%) were in the NpCR group.
There was no significant difference in age, menopausal status,
fibrinogen level, body mass index, or lymph-node metastasis
between pCR and NpCR groups (P > 0.05 for all). T stage, ER
status, PR status, HER2 status, and Ki-67 expression were
significantly different between the groups (P < 0.05 for
all) (Table 1).

All patients were divided randomly into a training cohort
(144) and a validation cohort (62) at a ratio of 7∶3. In the
training cohort, 41 cases had a pCR and 103 had a NpCR. In the
validation cohort, 16 patients had a pCR and 46 had a NpCR.
There was no significant differences pCR ratio between the
training cohort and validation cohort (P > 0.05) (Table 1).

Morphologic Features
Table S1 shows that all eight morphologic variables have
ICCs >0.9 (i.e., showed good agreement). Multicollinearity
analysis (Figure S1) meant that the final remaining two
variables (roundness and concavity) entered the next step
of analysis.
June 2022 | Volume 12 | Article 916526
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Selection of Radiomics Features and
Establishment of the RAD-Score
After screening, the mpMRI sequence has 12 remaining features,
including 1 shape feature, 2 original texture features, 5 Gaussian
filter transformation features and 4 wavelet features. Texture
features, Gaussian filter features and wavelet features are based
mainly on the GLCM, GLDM, NGTDM, and GLSZM.The
selection process operated by LASSO is represented in
Figure 4. Reduction of feature dimensionality and the display
of each sequence feature are shown in Figure S2 and Table S2,
respectively. The RAD-score was calculated as follows:

RAD-score= (T1WI+C/Log-sigma-0-5-mm-3D/ngtdm/
S t r eng th×0 .12370077 ) - (T1WI+C/Or ig ina l / shape /
Frontiers in Oncology | www.frontiersin.org 6
Maximum2DDiameterSlice×0.17457776) -(T1WI+C/Log-sigma-1-
0mm-3D/glcm/Correlation×1.59333848) -(T1WI+C/Log-sigma-0-
5-mm-3D/glcm/Idn×3.24587525) +(T1WI+C/Log-sigma-2-0-mm-
3D/glrlm/ShortRunLowGrayLevel Emphasis×0.94972916) -(T1WI
+C/Wavelet-LHL/gldm/DependenceVariance×0.479 87897)
-(T1WI+C/Wavelet-HLL/gldm/DependenceVariance×0.53138627)
-(DWI/Original/gldm/DependenceVariance×1.03259897) +(DWI/
Original/ngtdm/Contrast×0.35 02368) +(DWI/Wavelet-LHL/
glszm/LargeAreaLowGrayLevelEmphasis×0.1019391 2) +(FS-
T2WI/Log-sigma-1-5-mm-3D/ngtdm/Strength×0.04867799) +(FS-
T2WI/Wavelet-LHL/ngtdm/Coarseness×0.05095310) +4.59154672

The features shown by mpMRI had the highest diagnostic
performance in the training cohort (AUC=0.848) and validation
FIGURE 3 | Flowchart of extraction of radiomics features, model establishment and performance evaluation. ICC, intraclass correlation coefficient; LASSO, least
absolute shrinkage and selection operator; RAD-score, radiomics score.
June 2022 | Volume 12 | Article 916526
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cohort (AUC =0.742), followed by T1WI+C sequence, with an
AUC of 0.799 in the training cohort and 0.741 in validation
cohort. For the FS-T2WI sequence, the AUC of training cohort
was 0.737 and the AUC of validation cohort was 0.635, while
DWI sequence yielded an AUC of 0.750 in training cohort and
0.626 in validation cohort. (Figure S3).

Construction of Predictive Models
In the training cohort, univariate logistic regression analysis
showed that T stage, HER2 status, roundness, and RAD-score
were potential predictors (P < 0.05) which were associated with
pCR status. Then, the variables stated above were included in the
multivariate logistic regression analysis for the construction of
the 3 models: model A (T stage + HER2 status), model B (Model
A + RAD-score), and model C (Model B + roundness) (Table 2).
The AUC of model A in the training cohort was 0.612 (95% CI,
0.528-0.692) and in the validation cohort was 0.626 (95% CI,
0.493-0.760). Model B yielded an AUC of 0.869 (95% CI, 0.802-
0.919) and an AUC of 0.775 (95% CI, 0.642-0.907). Compared to
the other 2 models, model C exhibited the highest discrimination
performance in the training cohort (AUC, 0.930; 95% CI, 0.875-
0.966) and validation cohort (AUC, 0.895; 95% CI, 0.808-0.983)
(Figure 5). Accuracy, sensitivity, specificity, and AUC of each
model are shown in Table 3. Model C is shown in a
nomogram (Figure 6).

The calibration curve of the nomogram showed that the
predicted results were in good agreement with the actual
results (Figure 7). The result of the DCA indicated that the
prediction of pCR using model C could give more net benefit
Frontiers in Oncology | www.frontiersin.org 7
than by treating none or all patients in both training and
validation datasets (Figure 8).
DISCUSSION

Using an IBC-NST population, we developed a nomogram
model based on the RAD-score of mpMRI combined with
clinicopathologic and morphologic features. This combined
model had high value for predicting the pCR prior to NAC.
The performance of this model was better than that of the clinical
model, or the model combining clinical features with
radiomics features.

We established RAD-scoremodels for FS-T2WI, DWI, T1WI+C,
and mpMRI to predict the pCR before NAC, respectively. The
mpMRI RAD-score model had the highest diagnostic performance
in the training cohort (AUC=0.848) and validation cohort
(AUC =0.742). Among the other three single-sequence models, the
T1WI+Cmodel performed the best with AUCs of 0.799 and 0.741 in
the training and validation cohorts, respectively. This indicates that
T1WI+C is one of the most sensitive methods for predicting pCR in
the single MRI sequence, which is also consistent with many
previous studies (25, 26). Whereas in studies comparing mpMRI
with single sequence, Chen et al. (27) evaluated 91 patients and
found that in the pCR prediction models, the radiomics signature of
mpMRI exhibited higher predictive power (AUC = 0.848) compared
to DCE(AUC=0.750) and ADC(AUC=0.785). Bian et al. (28) also
found that the mpMRI model had the highest predictive power for
TABLE 1 | Demographic and clinical characteristics of the study cohort.

Variable All patients (n = 206) NpCR group (n = 149) pCR group (n = 57) P-value

Age, median 52 (42, 60) 52 (42, 59) 51 (42, 61) 0.889
Menopausal status, n (%) 0.640
Pre 103 (50.0) 76 (51.0) 27 (47.4)
Post 103 (50.0) 73 (49.0) 30 (52.6)

BMI, median 24.65 (22.28, 26.64) 24.65 (22.6, 26.29) 24.58 (20.7, 26.81) 0.181
FIB, median 2.69 (2.42, 3.07) 2.69 (2.46, 3.1) 2.65 (2.37, 3.02) 0.387
T Stage, n (%) 0.019
T1–2 114 (55.3) 65 (49.2) 49 (66.2)
T3–4 92 (44.7) 67 (50.8) 25 (33.8)

N Status, n (%) 0.631
Negative 33 (16.0) 25 (16.8) 8 (14.0)
Positive 173 (84.0) 124 (83.2) 49 (86.0)

ER Status, n (%) <0.001
Negative 79 (38.4) 39 (26.2) 40 (70.0)
Positive 127 (61.6) 110 (73.8) 17 (29.8)

PR Status, n (%) <0.001
Negative 95 (46.1) 52 (34.9) 43 (75.4)
Positive 111 (53.9) 97 (65.1) 14 (24.6)

HER2 Status, n (%) <0.001
Negative 133 (64.6) 111 (74.5) 22 (38.6)
Positive 73 (35.4) 38 (25.5) 35 (61.4)

Ki-67 Status, n (%) 0.010
Low expression 42 (20.4) 37 (24.8) 5 (8.8)
High expression 164 (79.6) 112 (75.2) 52 (91.2)

Cohort, n (%) 0.695
Training cohort 144 (69.9) 103 (69.1) 41 (71.9)
Validation cohort 62 (30.1) 46 (30.9) 16 (28.1)
June 2022 | Volume 12 | Article
pCR, pathologic complete response; NpCR, non-pathologic complete response; BMI, body mass index; FIB, fibrinogen; ER, estrogen receptor; PR, progesterone receptor; HER2, human
epidermal growth factor receptor 2.
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the pCR in a study of 152 patients, with AUC of 0.91 and 0.93 in the
training and validation cohort. Using a larger cohort, we
demonstrated that combined application of different imaging
sequences was superior to that using a single sequence. Under a
logistic algorithm model, t-test, U-test, and LASSO regression were
employed to select the optimal number of features. Within the range
of standard deviation of the highest AUC value, 12 features were
selected for the mpMRI RAD-score (T1WI+C7, DWI 3, FS-T2WI
2). These features included one shape feature, four wavelet features,
and seven texture features. Among them, the only shape feature was
the maximum 2D diameter slice of the T1WI+C sequence, which
reflected the tumor diameter. The smaller the tumor, the easier the
pCR could be achieved.

Texture features, Gaussian filter features and wavelet features
are based mainly on the GLCM, GLDM, NGDTM, and GLSZM.
The GLCM provides comprehensive information about the
Frontiers in Oncology | www.frontiersin.org 8
direction, adjacent interval, and variation range of the gray level
of the image. The GLCM is the basis for analyzing the local
patterns of the image and their arrangement rules, and is used to
describe the texture distribution and characteristics within the
tumor. The NGTDM describes the visual characteristics of texture
based on a voxel and its neighborhood. The GLSZM can aid
characterization of texture consistency, a periodic texture, or
speckle texture (29). These are high-order features and cannot
be identified by the naked eye. However, they can capture
information on the spatial heterogeneity of intratumoral cells
and tumor perfusion, thereby making them sensitive for
treatment evaluation (30). Therefore, the RAD-score could serve
as a non-invasive imaging marker for pCR prediction.

We found that the T stage and HER2 status, as clinicopathologic
features, were independent influencing factors of the pCR. The T
stage represents the diameter of tumor tissue and the extent of
A B

C

FIGURE 4 | Selection of radiomics features via LASSO algorithm to establish a RAD-score. (A) Tuning parameter selection by 10-fold cross-validation with minimum
criteria. Mean square error (y-axis) was plotted as a function of log(lambda) (x-axis). (B) LASSO coefficient profiles for the whole features. (C)12 radiomics features
corresponding to the selected optimal values for establishment of a RAD-score. LASSO, least absolute shrinkage and selection operator; RAD-score, radiomics score.
TABLE 2 | Multivariate logistic analysis.

Variable Model A Model B Model C

OR (95%CI) P-value OR (95%CI) P-value OR (95%CI) P-value

T stage 4.47 (2.33–9.59) 0.035 2.266 (1.132–5.397) 0.044 2.354 (1.023–5.236) 0.036
HER2 status 2.56 (1.83–7.89) 0.012 3.713 (1.677–8.291) 0.009 1.947 (1.320–4.321) 0.024
RAD-score 5.057 (2.031–11.851) 0.026 3.911 (1.591–9.642) 0.003
Roundness 7.554 (3.2151–7.664) <0.001
June 2022 | Volume 12 | Article
HER2, human epidermal growth factor receptor. RAD-score, radiomics score; OR, odds ratio; CI, confidence interval.
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tumor invasion. Briete et al. (31) postulated clinical tumor stage to
be the most important predictor of a pCR in BC patients after NAC.
We further confirmed that a lower T stage (T1–2 and T3-4) is an
important independent predictor of a higher prevalence of a pCR.

HER2 is a prognostic indicator for monitoring of clinical
treatment and an important target for selection of tumor-
targeting drugs. Several studies (5, 32, 33) have suggested that
Frontiers in Oncology | www.frontiersin.org 9
HER2-positivity can lead to a higher prevalence of the pCR: we
reached the same conclusion. Also, we found roundness to be an
independent predictor of the pCR after NAC. The roundness of a
tumor represents the shape of the lesion. The value of roundness
is between 0 and 1. The closer the value is to 1, the closer is the
shape to a circle (34). Based on the most intuitive impression by
radiologists, roundness quantifies shape features and is accepted
TABLE 3 | Performance of prediction models in the training cohort and validation cohort.

Model Cohort AUC (95%CI) P* SE SP ACC

Model A Training cohort 0.612 (0.528-0.692) Ref 0.927 0.272 0.458
Validation cohort 0.626 (0.493-0.760) Ref 0.626 0.261 0.355

Model B Training cohort 0.869 (0.802-0.919) <0.001 0.854 0.699 0.743
Validation cohort 0.775 (0.642-0.907) 0.014 0.813 0.674 0.710

Model C Training cohort 0.930 (0.875-0.966) 0.035 0.854 0.874 0.868
Validation cohort 0.895 (0.808-0.983) 0.036 0.938 0.826 0.855
June 2022 |
 Volume 12 | Article 9
Model A, T stage + HER2; Model B, Model A + RAD-score; Model C, Model B + roundness; AUC, the area under receiver operator characteristic curve; CI, confidence interval; P*, Delong
test; SE, sensitivity; SP, specificity; ACC, accuracy.
A B

FIGURE 5 | Comparison of the predictive performance between model A, B and (C) ROC curves and AUCs for predicting pCR of model A (blue curve), model B
(pink curve), and model C (black curve) in the training (A) and the validation cohort (B). Model A, T stage + HER2 status; Model B, model A + RAD-score; Model C,
model B + roundness.
FIGURE 6 | A nomogram for the prediction of the pathological complete response of neoadjuvant chemotherapy in invasive breast carcinoma of no specific type.
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readily by clinicians. Few studies have shown the relationship
between roundness and the pCR. However, Zhang et al. (35)
concluded, in a retrospective analysis of 120 BC patients, that the
roundness observed in triple-negative BC patients was higher
than that observed in non-triple-negative BC patients whereas, in
general, triple-negative BC responded better to NAC than other
molecular subtypes. Their data supported our findings indirectly.
In a multicenter study by Liu et al. (36), the radiomics signature
of mpMRI achieved an AUC of 0.79 (the highest of the four
radiomics signatures), whereas a prediction model combining
the RAD-score and clinicopathologic characteristics before NAC
had higher predictive value for the pCR (AUC = 0.86). A study
by Zhang et al. (37) obtained similar results (AUC = 0.84). On
the basis of the radiomics features of mpMRI combined with
clinicopathologic features, we also added roundness (a
quantitative morphologic feature) and narrowed the study
cohort to IBC-NST patients: the AUC of the combined
prediction model reached 0.930. The clinical value must be
Frontiers in Oncology | www.frontiersin.org 10
validated further, but addition of quantitative morphologic
factors aids improvement of the predictive power of the model.

Our study had four main limitations. First, this was a
retrospective, single-center study, and a selection bias was
inevitable. Second, the heterogeneity of molecular subtypes
included in our study led to the use of different chemotherapy
regimens, this scenario is in accordance with clinical practice, but
may lead simultaneously to an imbalance in the pathologic response
of NAC. Third, we carried out comprehensive internal verification,
which demonstrated the reliability and repeatability of the
constructed model to a certain extent, and reduced the risk of a
confounding bias. However, the conclusions of our study are based
only on a particular population. Verification in multicenter studies
is needed to improve the universality of our model. Fourth, the
sequences used in the mpMRI radiomics were FS-T2WI, DWI, and
T1WI+C.Whether combination with other sequences or even other
imaging modalities (e.g., ultrasound, computed tomography,
positron emission tomography) can help improve the prediction
A B

FIGURE 7 | Calibration curves of (A) training cohort and (B) validation cohort. The x-axis is the nomogram-predicted probability. The y-axis is the observed
probability. The closer fit of the diagonal curved line to the ideal straight line indicates the predictive accuracy of the nomogram from the best model.
A B

FIGURE 8 | Decision Curve analysis for three models in (A) training cohort and (B) validation cohort. The y-axis measures the net benefit. The pink line represents
model A, the orange line represents model B and the brown line represents model C. The green line represents the assumption that all patients gained substantial
benefit after NAC. The horizontal blue line represents the assumption that no patients gained substantial benefit after NAC.
June 2022 | Volume 12 | Article 916526

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhu et al. Combined Model for IBC-NST
performance must be explored further. Meanwhile, the comparison
of multiple classifiers and the application of deep learning will also
become our future research directions.
CONCLUSIONS

We developed a combined nomogram model based on mpMRI
radiomics, clinicopathologic features, and morphologic features for
early prediction of pCR to NAC in IBC-NST. Compared with
models based on clinicopathologic features alone or combining
clinicopathologic and radiomic features, this model has higher
predictive performance and is expected to provide more
references for making decisions on clinical treatment in the future.
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