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By June 2021, a new contagious disease, the Coronavirus disease 2019 (COVID-19),
has infected more than 172 million people worldwide, causing more than 3.7
million deaths. Many aspects related to the interactions of the disease’s causative
agent, SAR2-CoV-2, and the immune response are not well understood: the
multiscale interactions among the various components of the human immune
system and the pathogen are very complex. Mathematical and computational
tools can help researchers to answer these open questions about the disease. In
this work, we present a system of fifteen ordinary differential equations that models
the immune response to SARS-CoV-2. The model is used to investigate the
hypothesis that the SARS-CoV-2 infects immune cells and, for this reason, induces
high-level productions of inflammatory cytokines. Simulation results support this
hypothesis and further explain why survivors have lower levels of cytokines levels
than non-survivors.

Keywords: computational immunology, SARS-CoV-2, COVID-19, mathematical modelling, sensitivity analysis,
citokine storm

1 INTRODUCTION

By the beginning of June 2021, the number of confirmed deaths caused by the novel coronavirus
pneumonia, COVID-19, surpassed 3.7 millions, while more than 172 millions worldwide were
infected. The causative virus was first identified as SARS-CoV-2, also referred to as HCoV-19. It has
been shown that SARS-CoV-2 infects the alveolar epithelial cells, mainly type 2 alveolar epithelial
cells (AEC2), via the angiotensin-converting enzyme receptor 2 (ACE2) (Catanzaro et al., 2020;
Hoffmann et al., 2020; Shang et al., 2020). The ensuing destruction of the epithelial cells and the
increase in cell permeability lead to the release of the virus. During the fight against the virus, the
innate immune system cells release a large number of extracellular molecular regulators, like
cytokines and chemokines, that will induce the adaptive response to recruit more cells from the
innate system (Coperchini et al., 2020; Prompetchara et al., 2020). In most individuals, recruited cells
(mainly CD8+ T cells) are sufficient to clear the infection. However, in some patients, a dysfunctional
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immune response occurs, which triggers a “cytokine storm” that
mediates widespread inflammation and damage (Tay et al., 2020),
mainly in the lung.

The Cytokine Release Syndrome (CRS) or cytokine storm has
been associated with a wide variety of infectious and non-
infectious diseases for the past decades, including influenza
and SARS-CoV (Tisoncik et al., 2012; Shimabukuro-
Vornhagen et al., 2018). Nevertheless, the exact signalling
pathways that lead to the CRS are yet to be determined
(Lukan, 2020). Several mechanisms have been proposed to
explain the CRS and the differences between survivors and
non-survivors concerning viral dynamics and the immune
response to SARS-CoV-2. One hypothesis is that SARS-CoV-2
infects macrophages, CD4+ T cells, and CD8+ T cells in addition
to alveolar epithelial cells (Davanzo et al., 2020; Grant et al.,
2021), thus causing the production of several pro-inflammatory
cytokines (mainly IL-6) and also impairments in the immune
response mediated by macrophages and T cells. The infection of
CD8+ T cells, for example, prevents those cells from killing other
infected cells and induces high-level production of some
inflammatory cytokines, including IL-6 (Li H. et al., 2020;
Blanco-Melo et al., 2020; Chen et al., 2020).

In this work, the hypothesis above is tested by a mathematical
model of the immune response to SARS-CoV-2. The model
developed is an extension of a prior model of the adaptive
immune response, which was validated using experimental
data obtained from vaccination against yellow fever (Bonin
et al., 2019). The original model considers the main cells and
molecules present in the immune response, such as, for example,
antigen-presenting cells, CD4+ and CD8+ T cells, B cells, and IgM
and IgG antibodies. We further extended the model in this work,
including pro-inflammatory cytokines and infected immune
system cells. Also, the model is validated with experimental
data of the viremia, antibodies (IgM and IgG), and cytokines
obtained from patients with COVID-19 (Long et al., 2020; To
et al., 2020; Zhou et al., 2020). Moreover, a sensitivity analysis
(SA) revealed important characteristics of the immune response
to SARS-CoV-2.

2 RELATED WORKS

A large number of works use mathematical and computational
tools to model the Human Immune System (HIS) using distinct
techniques, such as ordinary differential equations (ODEs)
(Perelson, 1989; Baker et al., 1997; Chang et al., 2005;
Vodovotz et al., 2006; Jarrett et al., 2015; Bonin et al., 2016),
partial differential equations (PDEs) (Pettet et al., 1996; Su et al.,
2009; Flegg et al., 2012; Pigozzo et al., 2013; Quintela et al., 2014),
stochastic methods (Chao et al., 2004; Xavier et al., 2017), cellular
automaton and agents (Celada and Seiden, 1992; Morpurgo et al.,
1995; Kohler et al., 2000; Bernaschi and Castiglione, 2001;
Pappalardo et al., 2018). On the other hand, very few papers
were published describing the dynamics of SARS-CoV-2
(Almocera et al., 2020; Du and Yuan, 2020; Hernandez-Vargas
and Velasco-Hernandez, 2020; Xavier et al., 2020), although some
additional non-peer-reviewed papers can also be found on the

internet. Three out four published works (Almocera et al., 2020;
Du and Yuan, 2020; Hernandez-Vargas and Velasco-Hernandez,
2020) are based on the target cell-limited model proposed by
Perelson (2002): a system of three ODEs to model target cells,
infected cells, and viruses. In this work, we use a set of fifteen
ODEs to model not only the virus but also immune cells,
antibodies and cytokines.

Du and Yuan (2020) developed a mathematical model to
investigate the dynamics of the immune response to influenza
and the SARS-CoV-2 virus, including in their analysis the effects
of a hypothetical antiviral drug on the SARS-Cov-2 infection. The
model uses constants to represent the adaptive system CD8+ cells,
IgM and IgG antibodies. The authors argue, based on their
numerical results, that the innate immune system is the main
responsible for clearing the influenza virus, while the adaptive
system is the main responsible for controlling the SARS-CoV-2
virus. Their numerical results also suggest that the peak
concentration of the adaptive immune cells for patients with
COVID-19 is more likely to occur before the number of infected
cells by SAR-CoV-2 reaches its peak (Du and Yuan, 2020).
However, these results have not been validated: the viral loads
found were not compared to experimental results.

A model similar to the one of Du and Yuan (2020) was
proposed by Hernandez-Vargas and Velasco-Hernandez
(2020), but including latent cells. The idea is that newly
infected cells spend time in a latent phase, a concept similar
to the “Eclipse phase” (Beauchemin et al., 2008). Another
difference is that instead of using a constant to represent
T cells (Du and Yuan, 2020), Hernandez-Vargas and Velasco-
Hernandez (2020) used an equation to represent them. The viral
loads obtained by numerical experiments were compared to
values found in the literature (Wölfel et al., 2020), with good
fitness between numerical and experimental results. The authors
then present the Stability Analysis of their model (Almocera et al.,
2020), which suggests that the SARS-CoV-2 virus replicates fast
enough to overcome T cell response and cause infection.

Xavier et al. (2020) proposed a model based on five Ordinary
Differential Equations to model the immune response to SARS-
CoV-2. The model parameters and initial conditions were
adjusted to cohort studies that collected viremia and antibody
data. The results have shown that the model was able to
reproduce both viremia and antibodies dynamics successfully.
However, the model does not take into account the CRS. The
mathematical model proposed in this paper can describe the
immune response to SARS-CoV-2 for survivors and non-
survivors. The difference between the two scenarios is the
cytokine storm, which leads to a deregulated immune response
in the second group.

A nonlinear differential equation model was proposed by
Waito et al. (2016) to represent the dynamics of the CRS. The
authors consider in their model that the rate of production of
cytokines is dependent on interactions with other cytokines. The
model was adjusted using type I interferon (IFN) receptor
(IFNAR)-knockout mice data since mice lacking the IFNAR
on their leukocytes experienced a profound cytokine storm
(Waito et al., 2016). Although thirteen cytokines were
considered in their model, the computational results have
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shown that TNF-α, IL-10, IL-6, and MIP-1β, have the largest
effects on the dynamics of the cytokine storm. In this work, we do
not distinguish the cytokines types nor consider the interactions
among cytokines in their production rate.

The mathematical model proposed in this paper is an
extension of a prior model of the adaptive immune response
(Bonin et al., 2019). The original model (Bonin et al., 2019) had
their parameters adjusted to reproduce the immune response
against the Yellow Fever vaccine. The model of Bonin et al. (2019)
considers the main cells and molecules present in the immune
response against a virus such as antigen-presenting cells, CD4+

and CD8+ T cells, B cells and antibodies.
In order to represent the immune response to SARS-CoV-2,

the model presented in this paper has slight differences from the
model shown in our previous work (Bonin et al., 2019), and these
differences are summarised in Table 1. Some changes were
necessary to represent the hypothesis that some immune
system cells can be infected by the SARS-CoV-2 virus

(Davanzo et al., 2020; Grant et al., 2021). To implement these
changes, a new population was included in the model (I, to
represent immune defence cells infected by SARS-CoV-2) as well
as new terms were included in the defence cells to represent their
infection. Furthermore, the production of pro-inflammatory
citokines was introduced in order to represent the dynamics of
the CRS. To achieve this purpose, a new population was included
(C, to represent the cytokine), as well as new terms were included
to represent their production by the immune cells. Finally, we
differentiate the production of antibodies into IgM and IgG. These
changes will be presented in the next section.

3 MATERIALS AND METHODS

3.1 Mathematical Model
The model proposed in this work consists of a set of 15 Ordinary
Differential Equations (ODEs), one to represent the behaviour of
each population: virus (V), naive (Ap) and mature (Apm) antigen-
presenting cells (APCs), immune cells infected by the SARS-CoV-
2 virus (I), naive (Thn) and effector (The) T helper (CD4+) cells,
naive (Tkn) and effector (Tke) T Killer (CD8+) cells, B cells (B),
short- (Ps) and long-lived (Pl) plasma cells, B memory cells (Bm),
IgM (IgM) and IgG (IgG) antibodies and cytokines (C) (Figure 1).

The first equation describes the virus (V) behaviour. SARS-
CoV-2 uses the cell surface receptor ACE2 to infect healthy cells
(Catanzaro et al., 2020; Hoffmann et al., 2020; Shang et al., 2020),
using its machinery to replicate itself. The replication is

TABLE 1 | Major differences between the models proposed in a previous work
(Bonin et al., 2019) and in this work.

Bonin et al. (2019) This work

Number of equations 12 15
Number of parameters 32 38
Number of compartments 1 1
Number of considered populations 9 12

FIGURE 1 |Representation of the 15 biological species and their interactions as considered in the mathematical model. Homeostasis is not illustrated in this Figure.
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represented implicitly by the first term of Eq. 1, πvV , where πv

represents virus increase rate. The remaining terms of Eq. 1
represent the elimination of the virus by the immune system. The
virus can be opsonized by antibodies, which facilitate its binding
to receptor molecules present on the phagocytes (Paul, 2008).
This is illustrated by the second and third term of Eq. 1. Effector
CD8+ T-cells kills cells that are infected with viruses (Sompayrac,
2012). The term kv1VIgG represents the elimination of virus due to
the opsonization by IgG and the term kv1VIgM represents the
elimination of virus due to the opsonization by IgM , where kv1 is
the opsonization rate. The term kv2VTke denotes specific viral
clearance due to the induction of apoptosis of cells infected by the
SARS-CoV-2 virus, where kv2 is the clearance rate. Finally,
kv3VApm denotes specific viral clearance due to phagocytosis
by mature APCs, such as macrophages, where kv3 is the
clearance rate.

d
dt

V � πvV − kv1VIgG − kv1VIgM − kv2VTke − kv3VApm. (1)

APCs are found in two stages, naive and mature (Murphy and
Weaver, 2008). The second and third equations represent these
two stages of the APCs, naive (Ap) and mature (Apm). In this
work, we consider that macrophages are the main APCs. In Eq. 2,
the naive APCs homeostasis and activation are described by the
first and second terms, respectively. The first term,
αap(C + 1)(Ap0 − Ap), αap represents the homeostasis rate. Pro-
inflammatory cytokines influence the homeostatic balance of the
APCs (Murphy and Weaver, 2008). The term βapAp

cap1V
cap2+V denotes

the conversion of immature APCs into mature ones and, for this
reason, the same term appears in Eq. 3 with positive sign. This
function models growth combined with the saturation
phenomenon (Goutelle et al., 2008).

d
dt
Ap � αap(C + 1)(Ap0 − Ap) − βapAp

cap1V

cap2 + V
. (2)

In Eq. 3, which represents mature APCs, βapmApmV denotes
Apm infection by the SARS-CoV-2 virus where βapm is the
infection rate. The third term, δapmApm, means the natural
decay of the mature APCs, where δapm is the decay rate.

d
dt
Apm � βapAp

cap1V

cap2 + V
− βapmApmV − δapmApm. (3)

The dynamics of the infected immune system cells is
represented by Eq. 4. The first term, βapmApmV , represents
Apm infection and the second term, βtkeTkeV , represents CD8

+

T cells infection. The infection rates are, respectively, βapm and
βtk. Infected cells die with a rate δapm.

d
dt

I � βapmApmV + βtkeTkeV − δapmI. (4)

Equation 5 represents the population of naive CD4+ T cells
(Thn). The term αth(Thn0 − Thn) represents the homeostasis of
CD4+ T cells, where αth is the homeostasis rate. APCs are
responsible for activating naive CD4+ T cells (Murphy and
Weaver, 2008). The term βthApmThn denotes the activation of
naive CD4+ T cells, where βth is the activation rate.

d
dt
Thn � αth(Thn0 − Thn) − βthApmThn. (5)

Equation 6 represents effector CD4+ T cell population (The).
The term πthApmThe represents the proliferation of effector CD4+

T cells, where πth is the proliferation rate. The term δthThe

represents the natural death of these cells, with δth
representing its death rate.

d
dt
The � βthApmThn + πthApmThe − δthThe. (6)

Equations 7, 8 represent the population of naive (Tkn) and
effector (Tke) CD8+ T cells, respectively. In Eq. 7, the naive
CD8+ T cells homeostasis and activation are described by the
first and second terms, respectively. In the first term,
αtk(C + 1)(Tkn0 − Tkn), αtk represents the homeostasis rate.
The term βtk(C + 1)ApmTkn denotes the activation of
naive CD8+ T cells, where βtk is the activation rate.
Pro-inflammatory cytokines have an influence on
both the homeostatic balance and activation of naive CD8+

T cells.

d
dt
Tkn � αtk(C + 1)(Tkn0 − Tkn) − βtk(C + 1)ApmTkn. (7)

In Eq. 8, the term πtkApmTke represents the proliferation of
effector CD8+ T cells. The terms βtkeTkeV and δtkTke represent the
infection and death of effector CD8+ T cells, respectively.

d
dt
Tke � βtk(C + 1)ApmTkn + πtkApmTke − βtkeTkeV − δtkTke. (8)

Equation 9 represents both naive and effector B cells (B).
These populations were not considered separately in order to
simplify the model. The term αb(B0 − B) represents the B cells
homeostasis, where αb is the homeostasis rate. The terms πb1VB
and πb2TheB represent the proliferation of B cells activated by the
T-cell independent and T-cell dependent mechanisms
(Sompayrac, 2012), respectively. The terms βpsApmB, βplTheB
and βbmTheB denote the differentiation of active B cells into
short-lived plasma cells, long-lived plasma cells and memory
B cells, respectively. The activation rates are respectively given by
βps, βpl and βbm.

d
dt

B � αb(B0 − B) + πb1VB + πb2TheB − βpsApmB

−βplTheB − βbmTheB.
(9)

Equation 10 represents the short-lived plasma cells (Ps)
(Sompayrac, 2012). The term δpsPs denotes the natural decay
of short-lived plasma cells, where δps is the decay rate.

d
dt
Ps � βpsApmB − δpsPs. (10)

Equation 11 represents the long-lived plasma cells (Pl). The
term δplPl denotes the natural decay of long-lived plasma cells,
with δpl representing the decay rate. The term cbmBm represents
the resupply of these cells by memory B cells, where cbm is the
production rate.
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d
dt
Pl � βplTheB − δplPl + cbmBm. (11)

Memory B cells (Bm) dynamics is represented by Eq. 12. The

term πbm1Bm(1 − Bm
πbm2

) represents the logistic growth of memory

B cells, i.e., there is a limit to this growth (Bonin et al., 2019). πbm1

represents the growth rate, and πbm2 limits the growth.

d
dt
Bm � βbmTheB + πbm1Bm(1 − Bm

πbm2
) − cbmBm. (12)

Equations 13, 14 represents the production of antibodies. The
terms πpsPs and πplPl are the production of the antibodies by the
short-lived and long-lived plasma cells, respectively. The
production rates are given by πps and πpl , respectively. The
terms δamIgM and δagIgG denotes the natural decay of IgM and
IgG antibodies, respectively, where δam and δag are the decay rate.

d
dt
IgM � πpsPs − δamIgM . (13)

d
dt
IgG � πplPl − δag IgG. (14)

Finally, Eq. 15 describes the pro-inflammatory cytokine
dynamics. In this equation, the first term, πcapmApm, represents
the production of cytokines by Apm, where πcapm is the production
rate. The second term represents the production of cytokines by
infected cells, where πci is the production rate. The third term
represents the production of cytokines by Tke cells, where πctke is
the production rate. Finally, the last term, δcC, represents the
cytokine natural decay, where δc is the decay rate.

d
dt

C � πcapmApm + πciI + πctkeTke − δcC. (15)

We did not include in the model infected and non-infected
epithelial cells because the model would be more complex,
with more constants to adjust and, the worst, without data
available to validate these cell populations along time. The
use of implicit antigen replication does not affect the quality
of the result, more specifically those related to the virus
population, as our previous works have demonstrated
(Bonin et al., 2018; Pigozzo et al., 2018; Bonin et al., 2019;
Reis et al., 2019).

We are assuming that only mature cells are infected by the
SARS-CoV-2 virus. In our simplification, we assume that the
virus is located in the tissue, and that most of the naive cells are
activated either in (or just after leaving) the bloodstream (APCs)
or in the lymph nodes (CD4 and CD8) (Murphy and Weaver,
2008; Paul, 2008; Sompayrac, 2012). Another simplification
adopted in this paper is that infected cells do not produce new
virions: we assume that virus is mainly produced by the epithelial
tissue despite the evidence that infected alveolar macrophages
may support viral replication (Grant et al., 2021). We also assume
that the phagocytic activity by infected cells does not occur.
Finally, we assume that infected cells continue to produce pro-
inflammatory cytokines and we implicitly consider the effects of
different pro-inflammatory cytokines, the main effects of which

are related to the IL-6 cytokine (Tanaka et al., 2014; Narazaki and
Kishimoto, 2018; Zhang et al., 2020).

3.2 Experimental Data
Cohort studies available in the literature with people infected with
SARS-CoV-2 were used to evaluate the mathematical model’s
performance. In particular, viremia, antibodies (IgG and IgM),
and cytokine levels for patients that survived and died due to
COVID-19 were collected from three different papers.

The first paper presents a temporal profile of serial viral load
from a set of 23 patients admitted at two hospitals in Hong Kong,
all of them with laboratory-confirmed COVID-19 cases (To et al.,
2020). Most of the viral load data reported in the paper were
collected daily for 29°days from posterior oropharyngeal saliva
samples. For this reason, we have used only this subset from this
first paper. The number of patients who provided a sample on
each day varies from one to ten. Data were extracted from the
paper using the WebPlotDigitalizer tool (Rohatgi, 2020).
WebPlotDigitizer is an on-line tool that can extract data in a
semi-automatic way from graphics uploaded to the website.

The second paper presents antibody responses to SARS-CoV-
2 (Long et al., 2020). A cohort composed of 285 Chinese patients
confirmed to be infected with SARS-CoV-2 by RT-PCR assays
were enrolled in this study from three hospitals. To measure the
level of IgG and IgM against SARS-CoV-2, serum samples were
collected at four different time intervals after the reported
symptoms onset (Long et al., 2020). Antibody levels were
measured using magnetic chemiluminescence, which provides
values divided by the cutoff (S/CO) (Long et al., 2020), and were
presented as log2(S/CO + 1). The number of patients who
provided a sample on each time interval varies from seven to
one hundred and thirty. The dataset is available for download.

The third paper presents a retrospective cohort study with 191
adult inpatients from two Chinese hospitals (Zhou et al., 2020)
diagnosed with COVID-19 according to WHO interim guidance
and a clear outcome (dead or discharged) at the early stage of the
outbreak. According to Zhou et al. (2020), 54 patients died during
the stay in the hospital (non-survivors) while 137 were discharged
(survivors). IL-6 plays a central role in the cytokine storm. For
this reason, IL-6 data from this paper were collected using the
WebPlotDigitalizer tool and used to adjust the cytokine levels of
our mathematical model.

In all these three papers, the reported temporal profile of
viremia, antibodies, and cytokines starts after symptom onset
(Long et al., 2020; To et al., 2020; Zhou et al., 2020). This imposes
an additional challenge because the exact day each patient has
been infected is not clear. Epidemiological studies carried with
425 laboratory-confirmed COVID-19 cases in Wuhan, China,
have estimated that the mean incubation period is about 5.2°days
(Li Q. et al., 2020). Based on these results, we adjusted the cohort
data accordingly to reflect the incubation period, i.e., we have
added 5°days at the beginning of each dataset to represent the
time between the estimated infection until the symptom onset.

3.3 Parameter Estimation
One of the challenges related to the set of equations proposed to
describe the immune response against the SARS-CoV-2 virus is
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the estimation of their parameters, i.e., find the values of the
parameters which give the best fit to the set of the cohort studies.
Unfortunately most of the parameters cannot be measured
directly by experiments, and for this reason their biological
ranges are unknown. Many distinct methods for non-linear
systems can be used to estimate their values (Varah, 1982;
Rodriguez-Fernandez et al., 2006; Schwaab et al., 2008). In this
work we adopt the differential evolution (DE) optimisation
method (Storn and Price, 1997).

Both initial conditions for the 15 variables and the 38 model
parameters were calibrated to data obtained from cohort studies
using DE. The DE was used to estimate each of the model
parameters presented in Table 2, respecting the limits
established for each one of them as presented in Tables 2 and 3.

The idea used in the fitting is quite simple: minimise the
difference between the model curves (viremia, IgG, IgM, and
cytokines) to the given data (relative error) accordingly to
Eq. 16.

min
p
(ω1RE(V , V̂) + ω2RE(C, Ĉ) + ω3RE(IgG, IĝG)

+ ω4RE(IgM, IĝM) (16)

where V̂(t) is the mean viral load, IĝG(t) is the mean IgG
antibody level, IĝM(t) is the mean IgM antibody level, and
Ĉ(t) represents the mean IL-6 level, p is the set of parameters
to be estimated and ωn is a weight. For this work, we used ω1 �
ω2 � 1.0 and ω3 � ω4 � 0.1. The weights values were determined
by the number of points in each dataset. For datasets with a small
number of points, we used a small weight. This is due to the fact
that, for small datasets, a small distance between the experimental
data and the estimated value has a huge impact on error. RE

TABLE 2 | Bounds used for parameters calibration of the COVID-19 model for
survivors. V0 is the initial condition of the virus.

Parameter Interval

V0 [1.0, 1.0 × 102]
πv [8.0 × 10−1, 1.5 × 100]
kv1 [1.0 × 10−5, 1.0 × 10−2]
kv2 [1.0 × 10−7, 1.0 × 10−4]
kv3 [1.0 × 10−4, 5.0 × 10−1]
βap [1.0 × 10−5, 1.0 × 100]
βapm [1.0 × 10−3, 1.0 × 100]
βtke [1.0 × 10−6, 1.0 × 10−4]
πcapm [1.0, 5.0 × 102]
πci [5.0 × 10−3, 1.0 × 10−1]
πctke [1.0 × 10−5, 1.0 × 10−1]
δc [1.0 × 101, 1.0 × 103]

TABLE 3 | Bounds used for parameters calibration of the COVID-19 model for
non-survivors.

Parameter Interval

βapm [1.0 × 10−3, 1.0 × 100]
βtke [1.0 × 10−6, 1.0 × 10−4]
πci [5.0 × 10−3, 1.0 × 10−1]

TABLE 4 | Model variables and their initial values.

Variable Description Initial value Unit

V Virus 61 Copies/mL
Ap Immature APCs 106 Cells/mL
Apm Mature APCs 0 Cells/mL
I Infected cells 0 Cells/mL
Thn Naive CD4+ T cells 106 Cells/mL
The Effector CD4+ T cells 0 Cells/mL
Tkn Naive CD8+ T cells 5 × 105 Cells/mL
Tke Effector CD8+ T cells 0 Cells/mL
B B Cells 2.5 × 105 Cells/mL
Ps Short-lived plasma cells 0 Cells/mL
Pl Long-lived plasma cells 0 Cells/mL
Bm Memory B cells 0 Cells/mL
IgM Antibodies IgM 0 S/CO
IgG Antibodies IgG 0 S/CO
C Cytokines 0 pg/mL

TABLE 5 | Model parameters values that fit survivors’ data. The parameter
presented in Table 2 were estimated using DE. The other values were based
on the work of Bonin et al. (2019).

Parameter Unit Value

πv (day-1) 1.47 × 100

kv1 (day-1 (mIU/ml)-1) 9.82 × 10−3

kv2 (day-1 (cells/mL)-1) 6.10 × 10−5

kv3 (day-1 (cells/mL)-1) 6.45 × 10−2

αap (day-1(pg/mL)-1) 1.0 × 100

βap (day-1(copies/mL)-1) 1.79 × 10−1

cap1 (Copies/mL) 8.0 × 100

cap2 (Copies/mL) 8.08 × 106

δapm (day-1) 4.0 × 10−2

βapm (day-1(copies/mL)-1) 1.33 × 10−2

βtke (day-1(copies/mL)-1) 3.5 × 10−6

αth (day-1) 2.17 × 10−4

βth (day-1 (cells/mL)-1) 1.8 × 10−5

πth (day-1 (cells/mL)-1) 1.0 × 10−8

δth (day-1) 3.0 × 10−1

αtk (day-1(pg/mL)-1) 1.0 × 100

βtk (day-1(pg/mL) -1(cell/mL)-1) 1.43 × 10−5

πtk (day-1(cells/mL)-1) 1.0 × 10−8

δtk (day-1) 3 × 10−1

αb (day-1) 3.58 × 102

πb1 (day-1(copies/mL)-1) 8.98 × 10−5

πb2 (day-1(cells/mL)-1) 1.27 × 10−8

βps (day -1(cells/mL)-1) 6.0 × 10−6

βpl (day-1(cells/mL)-1) 5.0 × 10−6

βbm (day-1(cells/mL)-1) 1.0 × 10−6

δps (day-1) 2.5 × 100

δpl (day-1) 3.5 × 10−1

cbm (day-1) 9.75 × 10−4

πbm1 (day-1) 1.0 × 10−5

πbm2 (Cells/mL) 2.5 × 103

πps (day-1(cells/mL)-1(S/CO)) 8.7 × 10−2

πpl (day-1(cells/mL)-1(S/CO)) 1.0 × 10−3

δam (day-1) 7.0 × 10−2

δag (day-1) 7.0 × 10−2

πcapm (day-1(cells/mL)-1(pg/ml)) 3.28 × 102

πci (day-1(cells/mL)-1(pg/ml)) 6.44 × 10−3

πctke (day-1(cells/mL)-1(pg/ml)) 1.78 × 10−2

δc (day-1) 7.04 × 102
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represents the relative error between cohort data and the
numerical result (RE(λ, λ̂)), and is given by the two-norm of λ
and λ̂ divided by λ̂.

The initial conditions for each variable are presented in
Table 4. Table 5 presents the complete set of values used to
calibrate our model to survivors’ data, including those found by
the DE for the parameters listed in Table 2. The values that fit the
model to non-survivors data are the same, except for those
presented in Table 6, which were also obtained by the DE
using the bounds presented in Table 3.

3.4 Sensitivity Analysis
A sensitivity analysis (SA) was performed via main Sobol indices
(Sobol, 2001). The SA is used to quantify the contribution of each
uncertain model input pi. Thus, Sobol indices support the process
of identifying the parameters of the model that most affect the
outputs, Y, predicted by the model. The main indices Sim shows

the portion of the total variance in Y that could be reduced if the
exact value of pi is known, and it is computed as follows:

Sim � V[E[Y ∣∣∣∣pi]]
V[Y] , for i ∈ [1,N], (17)

where N is the number of parameters,V is the variance, and E the
expected value. Therefore, a high value of Sim indicates that the
outputs of the models are more sensitive to pi.

The sensitivity analysis was performed considering all
parameters of the model. So, the main Sobol indices were
evaluated considering all model parameter as uniform
distributions, considering perturbations of 10% around the
adjusted value, i.e. for a given model parameter value vi was
built a uniform distribution ranging from [0.9vi, 1.1vi].

3.5 Implementation
The model was implemented in the Python programming language.
Numerical solution of the systemofODEs performed by the solve_ivp
function, amember of the integrate package in the scipy library (Scipy,
2021). Among the integrate methods offered by this function it was
used the Radau option, i.e. the fifth-order implicit Runge-Kutta
method of the Radau IIA family. DE was implemented using the
differential_evolution method available in the package optimize from
the scipy. The SA was executed aided by SALib library (Herman and
Usher, 2017).

TABLE 6 | Model parameters values that fit non-survivors data. All other model
parameters values were those from Table 5.

Parameter Unit Value

βapm (day-1(copies/mL)-1) 1.51 × 10−2

βtke (day-1(copies/mL)-1) 1.0 × 10−6

πci (day-1(cells/mL)-1(pg/ml)) 9.96 × 10−2

FIGURE 2 | The numerical results presented in Panels A, B, C and D represent the solution of Eqs 1, 15, 14 and 13, respectively. These numerical solutions were
fitted for patients without CRS. Interval used for initial conditions and parameters are given in Table 2.
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4 RESULTS

This section presents the predictions of the mathematical
model presented in Section Materials and methods,
comparing them with experimental data (Long et al., 2020;
To et al., 2020; Zhou et al., 2020). Since one of the papers
present cytokines levels for patients that survived and died
due to COVID-19 (Zhou et al., 2020), we decided to divide
our numerical simulations into two distinct scenarios:
survivors and non-survivors.

This section also presents the results of the SA, identifying the
ten parameters that most affect the outputs of the model.

First Scenario: Survivors
Initially, as a validation step, we calibrated the model using data
from patients that survived COVID-19 to check if the proposed
model can fit the available cohort data. The model was able to
represent viremia, cytokines, IgG and IgM from the patient data
without CRS (Figure 2).

Second Scenario: Non-survivors
The second scenario simulates the immune response of non-
survivors patients. Figure 3 presents the results. For this scenario,
most of the parameters obtained in the first calibration were kept,
except for πci, βapm and βtke. We choose to modify only these three
parameters because they are directly related to the hypothesis that

SARS-CoV-2 infects effector APCs and T cells, causing the
production of pro-inflammatory cytokines in a distinct rate of
non-infected cells. More specifically, βapm and βtke represent the
rate in which the SARS-CoV-2 infects effector APCs and CD8+

T cells, respectively, and πci represents the rate in with infected
immune cells produce pro-inflammatory cytokines. The new
values for these three parameters were found after a new
calibration using the DE optimisation method and are
presented in Table 6.

Figure 4 presents the impacts of βapm and βtke in the cytokine
levels. The idea is to evaluate each one separately: first, we
consider that βapm is equal to zero, i.e., the SARS-CoV-2 is not
able to infect APCs. In this case, only CD8+ T cell can be infected
and induce the production of large amounts of cytokines that can
start the CRS. Then we do the opposite: we consider that βtke is
equal to zero, i.e., the SARS-CoV-2 is not able to infect CD8+

T cells. In this case, only APCs can be infected. Therefore, the
model was re-fitted twice: in the first case, all model parameters
were adjusted again, except by βapm, which was set to zero. In the
second case we did the same, but this time we considered that βtke
is equal to zero. The results of both evaluations are then compared
to the results obtained when both cells can be infected. Figure 4
presents the impacts of these changes for viremia, cytokines, IgG
and IgM. Table 7 presents the new values of some model
parameters to fit non-survivors data when βapm or βtke are
equal to zero.

FIGURE 3 | The numerical results presented in Panels A, B, C and D represent the solution of Eqs 1, 15, 14 and 13, respectively. These numerical solutions were
fitted for patients with CRS adjusting the values of βapm , βtke and πci , and keeping all other parameters and initial conditions values found in the previous adjust. Interval of
the parameters are given in Table 3.
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Sensitivity Analysis
Figure 5 shows the main Sobol index (Sim) over time for Eqs 1,
13–15, considering that βapm ≠ 0 and βtke ≠ 0, i.e. both APCs and
T CD8+ can be infected by SARS-CoV-2. Although the SA was
performed for all 40 model parameters, some of then have small
influence in the output produced for these equations and, for this
reason, we decided to present in Figure 5 only the 10 parameters
that have more impact in the results produced by the model.

5 DISCUSSION

It can be seen in Panel A of Figure 2 that after 30°days, viruses
were almost eliminated, but the concentrations of IL-6 (Panel B),
IgG (Panel C), and IgM (Panel D) antibodies remain at high
levels. Cytokines start to decrease after 27°days approximately. It
is expected that IgG remains at high levels after the resolution of
the inflammation. For how long these levels remain high is still an
open question in the case of COVID-19. Moreover, after 30°days,
the immune response has not ended, and the inflammation has
not been regulated. In the presence of inflammation and viruses,
the cells of the immune system continue to migrate, causing more
inflammation. It is important to highlight that, after the complete
elimination of the virus, the inflammation will decrease until it
ceases, and the concentration of cells and molecules of the
immune system will return to a homeostatic level. However,
this process will occur slowly because themodel does not consider
an anti-inflammatory response.

As one can observe in Figure 3, after 30°days, the virus
concentration (Panel A) tends to zero. On the other hand, the
IL-6 concentration (Panel B) starts to increase considerably after
ten days, achieving its peak around the 21st °day. After the peak, it
decreases slowly. It can also be observed that the IL-6
concentrations are much higher in this scenario than in the
previous one presented in Panel B of Figure 2, i.e., the non-
survivors peak is about three times higher than the survivors one.
We believe that this huge increase in IL-6 levels was due to the

FIGURE 4 |Deterministic numerical solution ofEqs 1, 15, 14 and 13 for the non-survivors case considering three hypothesis: 1) Infection of both effector APCs and
CD8+ T cells (complete, with βapm ≠0 and βtke ≠0); 2) Infection of CD8+ T cells only (βapm � 0); and 3) Infection of effector APCs only (βtke � 0). Panels A, B, C and D
present the results for viremia, cytokines, IgG and IgM, respectively.

TABLE 7 |Model parameters values that fit non-survivors’ data, when considering
that only APCs (βtke � 0) or only T CD8+ cells (βapm � 0) are infected by SARS-
CoV-2. The parameter presented in Table 2were re-estimated using DE. All other
model parameters values were those from Table 5.

Parameter βtke = 0 βapm = 0

V 67 48
βapm 9.24 × 10−2 0.0
βtke 0.0 8.0 × 10−5

βap 8.15 × 10−1 1.52 × 10−4

πcapm 3.67 × 102 4.81 × 101

πci 3.53 × 10−2 2.03 × 10−2

πctke 1.55 × 10−2 8.88 × 10−2

πv 9.70 × 10−1 8.80 × 10−1

kv1 3.61 × 10−4 3.04 × 10−3

kv2 8.00 × 10−5 2.23 × 10−7

kv3 3.18 × 10−2 1.03 × 10−1

δ c 4.15 × 102 8.25 × 101
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CRS. Numerical results reveal that the CRS was caused mainly by
effector APCs that are producing a considerable amount of pro-
inflammatory cytokines. The infection of APCs was responsible for
deregulating the innate immune response as well as for impairing the
activation of the adaptive immune system. It is noteworthy that several
other factors may contribute to CRS, among them a deficiency of the
immune system in building an effective response against the virus at
the beginning of the infection and a deficiency in controlling
exacerbated inflammation.

In Figure 4, we observe that the infection of mature APCs,
CD8+ T cells, or both cells simultaneously by SARS-CoV-2 can be
determinant to the outcome of the disease. In other words, all
hypotheses are plausible from a numerical perspective. The main
differences in results are that the production of cytokines, IgG,
and IgM (Panels B, C and D, respectively) starts later when βapm is
equal to zero, i.e., when only CD8+ T cells are infected by SARS-
CoV-2. Also, infected CD8+ T cells impact both the day of the
peak as well as its value (Panel A). We also observed that it is
possible to obtain a similar result to the new fit of infected APC
cells if we make βapm � 0 in the original adjustment, i.e., those
obtained when both mature APCs and CD8+ T cells are infected
simultaneously by SARS-CoV-2. This result was not presented in
this paper because it is close to the one obtained by the new fit,
indicating that infected APCs influence the joint fitting more than
infected CD8+ T cells.

From the results of the sensitivity analysis (Figure 5), we can
observe that the most influential parameters in respect to the
dynamics of the virus (Panel A), cytokines (Panel B), IgG (Panel

C), and IgM (Panel D) populations are related to the APCs. We
observe that βap, cap1 and cap2 are among the ten most influential
parameters for the virus, cytokines, IgG and IgM populations.
The parameter βapm is among the most influential for the virus,
cytokines, IgG, and IgM populations. The virus replication rate πv

has a great influence on the virus, IgG, and IgM dynamics.
It is worth mentioning that the experimental data presents a

huge variation (observe that the scale adopted is log10),
challenging the calibration process reported in Section 4. The
severity of the disease could explain this. The literature reports
that severe/critical patients tend to peak in the second week of
illness, with values ranging from 5.57 to 9.66 log10 copies/mL,
whereas mild/moderate patients tend to peak in the first week of
illness, with values ranging from 3.25 to 6.40 log10 copies/mL (Lui
et al., 2020). Thus, one possible explanation for the considerable
variation observed in the viremia is that the dataset mixes patients
with distinct disease severity degrees. In such a case, the
numerical results represent an average value for distinct
severity degrees. Nevertheless, some factors suggest a
prevalence of severe/critical patients in the dataset: 1) the need
for hospital admission; 2) the fact that the viremia peak observed
in the numerical result occurs around the 15th°day, with a value
about 6.0 log10 copies/mL, which is compatible with the one
reported for severe/critical patients (Lui et al., 2020).

COVID-19 is a new disease, and for this reason, some
studies and datasets seem to contradict each other. Different
studies in the literature adopt distinct methods and metrics,
so it is not easy to gather their data to create a much larger

FIGURE 5 | Panels A, B, C, and D represents the Sobol main index over time of Eqs 1, 15, 14 and 13, respectively. The main Sobol indexes were evaluated for all
model parameters, but Panels A, B, C, and D presents the 10 parameters with largest influence in the results.
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dataset. In addition, the experimental data used in this paper
to calibrate the model comprises a reduced number of
patients and measurements. In this sense, the results
presented in this work have limitations due to the
restrictions imposed by data availability.

This paper has analysed the hypothesis that the infection of
immune defence cells causes the CRS in patients with COVID-
19, mainly macrophages and CD8+ T cells, by the SARS-CoV-2.
Although at first our numerical results suggest that this
hypothesis may be correct, we must stress that the limitations
described in this section could lead us to obtain an adjustment
that supports, falsely, the hypothesis. Another limitation that
can weaken our conclusions is that the combinations of values
associated with other parameters except βapm, βtke, and πci, were
not explored. We did not include parameters that are not related
to the hypothesis evaluated in this paper and that can be
associated to other theories found in the literature. For
example, a paper from Garvin et al. (2020) indicates that the
pathology of COVID-19 is likely the result of Bradykinin (BK)
Storms rather than CRS. However, given the induction of IL-2
by BK, the two may be intricately linked. These theories could
eventually lead to results similar or better to those obtained in
our work.

Other techniques could be considered to distinguish survivors
and non-survivors groups. The use of ODEs wasmotivated by our
prior experience in using this tool to describe the dynamics of the
immune response. Although we are not specialists in other
techniques, such as deep learning, we believe that present
limitations in the available data set can make it difficult or
even impossible to use data driven models.

In the near future, we intend to explicitly represent the
dynamics of different pro-inflammatory cytokines such as
GM-CSF, TNF-α, IL-6, IL-8, among others. In addition, the
model can be extended by considering anti-inflammatory
responses through the incorporation of regulatory T cells
(Treg cells), macrophages in a regulatory phenotype (Mreg
phenotype), and anti-inflammatory cytokines such as IL-10.
Finally, we also plan to use this model to reproduce the
immune response against the SARS-CoV-2 vaccines.
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