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Abstract: Tumor regrowth and heterogeneity are important clinical parameters during radiotherapy,
and the probability of treatment benefit critically depends on the tumor progression pattern in
the interval between the fractional irradiation treatments. We propose an analytic, easy-to-use
method to take into account clonal subpopulations with different specific growth rates and radiation
resistances. The different strain regrowth effects, as described by Gompertz law, require a dose-boost
to reproduce the survival probability of the corresponding homogeneous system and for uniform
irradiation. However, the estimate of the survival fraction for a tumor with a hypoxic subpopulation
is more reliable when there is a slow specific regrowth rate and when the dependence on the oxygen
enhancement ratio of radiotherapy is consistently taken into account. The approach is discussed
for non-linear two-population dynamics for breast cancer and can be easily generalized to a larger
number of components and different tumor phenotypes.

Keywords: tumor instability; radiotherapy; dose-boost

1. Introduction

A quantitative understanding of tumor growth is crucial for the clinical management
of disease, and tumor size is a main determinant of clinical severity and an important factor,
among other criteria [1], to assess the staging criteria before and during radiotherapy (RT).
Tumor regrowth during radiotherapy is, therefore, an important clinical parameter [2] and,
in particular, the dose-response relationship and, thus, the probability of treatment benefit
critically depend on the tumor heterogeneity and the regrowth pattern in the interval
between the fractional irradiation treatments.

To clearly evaluate the clinical results, the tumor cell survival fraction, S, after n
irradiations at dose per fraction d, in the overall treatment time t, is usually written as

− ln(S) = n(αd + βd2)− γt (1)

and depends on the tumor radiosensitivity, expressed by the parameters α and β, according
to the linear-quadratic model, and on the regrowth parameter γ = ln2/τe f f , where τe f f is
the the average clonogenic doubling time [3]. The above equation is, up to now, the usual
basis for RT scheduling, and would predict the probability P of tumor control, defined as
P = exp[−cS], with c as the clonogen number.

The underlying assumption of the general approach in Equation (1) is the uniform
response to the therapy and a common specific regrowth rate of the whole set of cancer cells.
Concerning the regrowth during radiotherapy, one has that: (a) the untreated tumor growth
has been usually described by means of the Gompertz law (GL) [4–8], a non linear growth
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pattern previously proposed in actuarial mathematics [9]; (b) in a transplantable rat tumor,
it was shown that control and regrowth curves after radiotherapy could be fitted by the
same Gompertzian law, provided adjustments for the initial lag and the estimated number
of clonogens immediately after irradiation were performed [10]; (c) Gompertzian growh
has been assumed to describe human tumor repopulation during fractional radiotherapy
by Hansen et al. [11] and by O’Donougue [12].

Regarding the non-homogeneus response, an insufficient oxygen supply is at the
root of the radioresistance phenomenon. Indeed, within bulky tumors, hypoxic and well-
oxygenated clonal strains coexist, the first generally needing an escalated dose to achieve
the same survival fraction with respect to the second. Alternatively, it would be mandatory
to irradiate the tumor with the same high dose, but such an approach could be detrimental
for nearby healthy tissues. Hence, the need to diversify the radiation dose within tumor
volume on the basis of its oxygenation landscape: to boost hypoxic areas while limiting
unnecessary high radiation dose to well-oxygenated subvolumes.

For this purpose, various instrumental options are being studied to identify hypoxic
areas within tumors, thus, introducing the Oxygen Guided Radiation Therapy (OGRT)
era [13]. Electron Paramagnetic Resonance is still not clinically available; however, its
therapeutic value has been proven for fibrosarcoma in mice and in preliminary human ex-
periences [14,15]. Indeed, Electron Paramagnetic Resonance images may direct the location
of radiation tumor boosts to enhance tumor cures [16]. On the other hand, some PET imag-
ing has already been verified to be effective in guiding oxygen-based radiotherapy [17–19]
and to transform the radiotracer uptake into oxygen partial pressure maps, determining
the volume of the hypoxic target (HTV).

In such a context, mathematical models can assist a radiation oncologist in dose
prescription, for example by evaluating the integrated boost directed to hypoxic subvol-
umes [20]. In this article, we propose an analytic method, which considers cancer’s inherent
clonal diversity both in non-homogenous specific regrowth rates and in the corresponding
radioresistance to estimate the dose-boost of some subpopulations to maintain the same
tumor control of homogeneous treatments.

Being aware of the constitutive heterogeneity within a tumoral tissue, we discuss a
mathematical model of cell behavior affected by ionizing radiations and based on only
two cell populations with opposite patterns of oxygenation: well-oxygenated versus
hypoxic ones. Indeed, the homogeneous case is taken into account only to show the
difference when the non-homogeneity is present. Moreover, the proposed algorithm can
be easily generalized to a larger number of strains, corresponding to different levels of
non-homogeneous tumor cell behavior.

2. Materials and Methods

The non-homogeneous tumor structure and its role in radiotherapy effects is quanti-
tatively discussed in this section. General macroscopic growth laws for a cell population
N(t) are solutions of the differential equation ( for a classification see [21])

1
N(t)

dN(t)
dt

= f [N(t)] (2)

where f (N) is the specific growth rate, and its N dependence describes the feedback effects
during the time progression. If f (N) = constant, the growth follows an exponential pattern,
with no limit for t → ∞. On the other hand, a saturation is obtained by the Gompertz
equation, i.e.,

1
N(t)

dN(t)
dt

= αg − kg ln
N(t)
N0

Gompertz , (3)

where αg and kg are constants and N0 is the initial value. By defining

αg + kg ln N0 = kg ln N∞, (4)



J. Pers. Med. 2021, 11, 527 3 of 11

one obtains
1

N(t)
dN(t)

dt
= −kg ln

N(t)
N∞

, (5)

where N∞ is the carrying capacity, i.e., the steady state is reached for dN/dt = 0, when N
is equal to N∞.

The GL is the solution of the previous equation, i.e.,

N(t) = N0eln(N∞/N0)[1−exp(−kgt)]. (6)

The evaluation of GL regrowth effects during radiotherapy for a homeogeneous tumor,
considering the linear-quadratic model, is reported in Appendix A (where we also depict
the growth pattern without radiotherapy). Immediately after n doses with the time interval
∆τ, the depletion of the cell number is

N(n) = N0eln(N∞/N0)I(n)−(αd+βd2)L(n) (7)

where
I(n) = 1− e−(n−1)kg∆t (8)

and

L(n) =
1− e−nkg∆t

1− e−kg∆t . (9)

Equations (7)–(9) apply to a cell population with a unique specific regrowth rate.
However, the tumor mass can be produced by strains with different clonal behaviors, and
therefore the previous analysis has to be generalized.

For two-population (N(1)(t), N(2)(t)) dynamics, with N(t) = N(1)(t)+ N(2)(t), where
each population evolves according the GL, with the parameters k(1)g , k2)

g , N(1)
∞ , and N(2)

∞ , the
radiotherapy effects after n treatments depend on the balance between the two sets of cells.
Let us define the fraction of initial population 1 as N(1)

0 = χN0 (therefore N(2)
0 = (1− χ)N0)

and its fraction of carrying capacity as N(1)
∞ = ρN∞ (N(2)

∞ = (1 − ρ)N∞)). Moreover,
k(1)g 6= k(2)g .

After each dose, the two populations grow according to different patterns and, before
the next dose, they contribute with distinct weights to the total number of cells. By
iteraction, the final result for population 1 is (see Appendix A)

N(n)(1) = N(1)
0 eln(ρN∞/χN0)I1(n)−(α1d1+β1d2

1)L1(n) (10)

where
I1(n) = 1− e−(n−1)k(1)g ∆t (11)

and

L1(n) =
1− e−nk(1)g ∆t

1− e−k(1)g ∆t
. (12)

Analogous formulas for the second cell group are obtained by the substitutions
ρ→ (1− ρ), χ→ (1− χ), k(1)g → k2)

g , α1 → α2, β1 → β2, d1 → d2. Notice that α1 6= α2 and
β1 6= β2 describe different radiotherapy resistances of the two subpopulations, and d1 6= d2
is the dose-boost of the components.

Finally, N(n)(1) + N(n)(2) = N(n) gives the analytic expression that is applied in the
next section.
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3. Results

Let us first consider the case of homogeneous radioresistance and different specific
regrowth rates of the subpopulations. Their combined effect for hypoxic strain will be
considered later on.

3.1. Uniform Radioresistance and Different Specific Growth Rates

For illustrative purposes, let us show the two population dynamics, with different
specific rates for breast cancer in vivo with N∞ = 3.1× 1012, N0 = 4.8× 109 [6] without any
drug for an initial small strain, which, however, gives a large contribution to the carrying
capacity N∞. Figure 1 depicts the evolution of the two populations for χ = 0.8, ρ = 0.4,
k(1)g = 0.01, k(2)g = 0.02 in day −1 and for k(1)g = 0.007 in day −1.
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population 2 k2=0.02

population 1 K1=0.007

population 2 k2=0.02

subpopulation evolution in the relevant time interval
ro=0.4, chi=0.8, no radiation

Figure 1. The fraction of the total number of cells of the two strains, growing with different specific

rates. Two fractions, 80%/20% of N0 and 40%/60% of N∞, with k(1)g = 0.01, k(2)g = 0.02 in day (−1),

α = 0.3 Gy(−1), β = 0.03 Gy(−2). k(1)g = 0.007 in day (−1) is shown. The time interval corresponds to
the standard treatment of 25 days.

A more interesting case is the comparison between the survival fraction evaluated for
homogeneous and inhomogeneous systems with the same total carrying capacity, initial
value N0, and uniform irradiation.

Let us consider the homogeneous treatment of 50 Gy with a daily dose of d = 2 Gy
and assume that the initial total number of cells, N0, consists of two fractions, 80%/20% of
N0, with the parameters k(1)g = 0.01 and k(2)g = 0.02 in day −1 and the percentages of the
total carrying capacity, N∞, given by 40%/60%. For breast cancer α = 0.3 Gy(−1), β = 0.03
Gy(−2).

Figure 2 shows the dependence on the number of doses of the survival fraction
S = N(n)/N0. The system consists of a slower and large initial subpopulation (χ = 0.8,
k(1)g = 0.01 in day −1) and a faster, small strain (1− χ = 0.2, k(2)g = 0.02 in day −1), which
gives a substantial contribution to the total carrying capacity (1− ρ = 0.6). The results are
compared with a homogeneous system with the same values of N0, N∞, and kg = k(1)g in
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day −1. In other terms, one evaluates the role of a fast, small strain in the evolution and in
the radiotherapy effects of the tumor.

2 4 6 8 10 12 14 16 18 20 22 24
number of doses

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

ln
(S

)

k1=0.01,k2=0.02,d=2 uniform

homogeneous population K=0.01, d=2

k1=0.007,k2=0.02,d=2 uniform

homegeneous population K=0.007, d=2

25 doses, d=2 Gy per day - uniform irradiation
ro=0.4, chi=0.8

Figure 2. Estimate of the survival fraction with with two fractions, 80%/20% of N0 and 40%/60%
of N∞, with k(1)g = 0.01, k(2)g = 0.02 in day (−1), α = 0.3 Gy(−1), β = 0.03 Gy(−2), kg = k(1)g .

k(1)g = 0.007 in day (−1) is shown.

Therefore, in the case of uniform resistance (α1 = α2, β1 = β2) but different regrowth
parameters, the non linearity of the dynamics translates as dose-boosting to have, for the
inhomogeneous case, the same survival fraction obtained by uniform irradiation. The
increase of the dose for the fast strain is depicted in Figure 3 and turns out to be about 20%.
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k1=0.01, k2=0.02,d1=2, d2=2.2

k1=0.01,k2=0.02,d1=2,d2=2.4

25 doses, dose boost
ro=0.4,chi=0.8

Figure 3. Estimate of the dose-boost with the same parameters of Figure 2.
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Since the regrowth effects depend on the interval between the doses, Figures 4 and 5
concern, respectively, the survival probability for the “hyperfractionated” schedule (68 doses,
d = 1.2 Gy, and two times per day) and the “hypofractionated” one (five doses, 5 Gy, and
five days), with the same parameters as in Figure 2, independently of the effective use
of these fractionations for breast cancer. In fact, the hyperfractionated treatment requires
a dose-boost of about 10% but the hypofractionated schedule completely minimizes the
effects of regrowth inhomogeneity.
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K1=0.01,k2=0.02,d1=1.2,d2=1.2

homogeneous population K=0.01,d=1.2

k1=0.01,k2=0.02,d1=1.2,d2=1.4

hyperfractionation - 68 doses , d=1.2 , 2 times per day
ro=0.4,chi=0.8

Figure 4. Estimate of the dose-boost with the same parameters of Figure 2 for a hyperfraction-
ated schedule.
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hypofractionation - 25 Gy in 5 doses , 1 per day
ro=0.4,chi=0.8

Figure 5. Estimate of the dose-boost with the same parameters of Figure 2 for a hypofraction-
ated schedule.
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All previous illustrative analyses considered an equal response of the two subpopu-
lations to radiotherapy, i.e., α1 = α2 and β1 = β2. However, an increased radioresistance
of tumor clonogens is directly correlated with unequal specific growth rates due to the
various metabolic activities of the cells of the clonal strains. Therefore, for consistency, both
features of the subpopulations have to be taken into account. This aspect is discussed in
the next subsection for hypoxic strains.

3.2. Including Hypoxia

To evaluate the amount of radiation dose to eradicate hypoxic clonal strains, the previous
Equations (10)–(12) are now applied for two populations with different parameters of the
linear-quadratic model. Let us first consider a small hypoxic component with a low growth
rate with respect to a larger subpopulation. The dependence of the oxygen enhancement ratio
(OER) on the dose per fraction is included by assuming α/αH = OER and (α/β)H = (α/β)
OER where αH and βH are the hypoxis clonogen subpopulation parameters.

In Figure 6, the dependence of the survival fraction on the number of doses is depicted
for different dose-boosts of the hypoxic component. The initial (pre-treatment) size of the
hypoxic component is (1− χ =) 20% of the total population. The growth rates are specified
by ρ = 0.4, χ = 0.8, kg(2) = 0.0033, kg(1) = kg = 0.01, α = 0.3 Gy(−1), β = 0.03 Gy(−2),
and OER= 1.5. The resulting dose-boost is about 30%.

2 4 6 8 10 12 14 16 18 20 22 24
number of doses

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

ln
(S

)

k1=0.01,k2=0.0033,d1=2,d2=2,OER=1.5

homogeneous system k1=0.01,d=2

k1=0.01,k2=0.0033,d1=2,d2=2.4,OER=1.5

k1=0.01,k2=0.0033,d1=2,d2=2.6,OER=1.5

Standard treatment 50 Gy, d=2, 1 per day
ro=0.4,chi=0.8

Figure 6. The survival fraction for ρ = 0.4, χ = 0.8, kg(2) = 0.0033, kg(1) = kg = 0.01, α = 0.3
Gy(−1), β = 0.03 Gy(−2), and OER = 1.5.

According to the results in Figure 5, the hypofractionated treatment reduced the effects
of the non-linear progression when a small but faster strain was considered. However, for
hypoxia, the subpopulation was not only smaller but also slower than the main strain and,
therefore, let us evaluate the response to that schedule, including OER.

The result is reported in Figure 7: a substantial enhancement of the daily dose is required.
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2 3 4 5
number of doses

-12
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-8
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-4

-2

0

ln
(S

)

k1=0.01,k2=0.0033,d1=5,d2=5,OER=1.5

homogeneous system k=0.01,d=5

k1=0.01,k2=0.0033,d1=5,d2=6.OER=1.5

k1=0.01,k2=0.0033,d1=5,d2=7,OER=1.5

k1=0.01,k2=0.0033,d1=5,d2=8,OER=1.5

hypofractionation with hypoxic component
ro=0.4,chi=0.8

Figure 7. The survival fraction for hypofractionation with ρ = 0.4, χ = 0.8, kg(2) = 0.0033,
kg(1) = kg = 0.01, α = 0.3 Gy(−1), β = 0.03 Gy(−2), and OER = 1.5.

4. Toward a Patient Oriented Implementation of the Algorithm

The redefinition of the doses when subpopulations with different specific rates and
radioresistances contribute to the tumor progression depend on the parameters ρ and χ
and on the ratio kg(2)/kg(1). Let us discuss the possibility of estimating such parameters
with a view toward patient-oriented therapy. For tumor growth, there is a well known
linear correlation between the two parameters, αg and kg, of the GL, i.e., α/kg = γ [5,8].
Accordingly, a single parameter describes the GL progression rate of a specific strain.

To date, PET-CT processing programs allow the following numerical parameters to be
obtained: the volume of a region of interest drawn by us (for example of the whole tumor
if the 18-F-FDG metabolism tracer is used or of its hypoxic component if the 18-F-FMISO
hypoxia tracer is used); the SUV (standardized uptake value) can be the maximum or
average and can be calculated with all tracers used; the TLG (total lesion glycolysis) is valid
for 18-FDG, which indicates the total amount of metabolism tracer contained in the area of
interest that we can draw around the metabolically active lesion; the TBR (tumor to blood
ratio) in which we can calculate, for each pixel, the ratio between the F-MISO concentration
and the blood concentration obtained from a venous blood sample during the acquisition
of the PET image; and the TMR (tumor to muscle ratio), a simpler calculated ratio between
the concentration of F-MISO in the hypoxic tumor tissue and that in a reference region
containing well-oxygenated tissue.

Using the volume and SUV variations of the areas with FMISO-uptake, one sets the
parameter ρ. The other important parameter, χ could be estimated as follows. The ratio
of the metabolic rates of the two subpopulations, g, estimated by PET, can be considered
proportional to the corresponding ratio of the parameters driving the growth rate γ1/γ2.
Therefore, (see Equation (4))

g = c
γ1

γ2 = c
ln[N1

∞/N1
0 ]

ln[N2
∞/N2

0 ]
= c

ln[N∞ρ/χN0]

ln[N∞(1− ρ)/(1− χ)N0]
, (13)

where c is a constant. Therefore, χ is the solution of the equation
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(1− χ)g/c/χ = (N∞/N0)
(g/c−1) (1− ρ)g/c

ρ
. (14)

Since N∞/N0 is large and 0 < χ < 1, g/c ' 1. However, the precise determination by
PET of the relation between the metabolic activities and the specific growth rates is not an
easy task and, for a first numerical indication of the dose-boost, one can implement the
proposed algorithm by assuming χ ' ρ (i.e., the same weight of the strains at the initial
observation and in the carrying capacities) and increasing χ (i.e., decreasing 1− χ) since
the second strain has a lower rate and larger radioresistance.

In summary, the undetermined parameters are kg and χ, since the other ones in
Equations (10)–(12), are fixed. The distribution function of kg for many cancer phenotypes
is known [6,8] and the variation of χ gives a band of values for the dose-boost, for different
OER values.

5. Conclusions

The results of the previous sections suggest how to apply the proposed method to
evaluate the modification of irradiation treatment when the cancer progression originates
from two (or more) cell groups with different specific replication rates and radioresistances.
An analogous analysis was carried out for chemotherapy, implying modification of the
Simon–Norton hypothesis [22].

Cellular inhomogeneity, partially promoted by a non-uniform oxygen supply, pro-
duces different rates of cell proliferation inside tumors, which could negatively affect
the responsiveness to oncologic treatments. Such an intra-tumoral dose diversification
preludes personalized radiotherapy with new technological facilities that are able to iden-
tify different metabolic areas within tumor tissues. Although PET CT is not suitable to
differentiate various subclones during RT in everyday practice, some hypoxic specific
tracers are still available, (i.e., FAZA and F-MISO) and are able to depict a baseline oxygen
tissue map [23,24].

The proposed approach involves two-population dynamics; however, tumoral oxy-
genation can change quantitatively, both spatially and temporally. In fact, the above
simplification has to be generalized for a more complete description of the tumor response
to radiation by a larger number of subpopulations to consider some other fundamental
parameters, such as the tumor stroma and microenvironment, cell signaling, and im-
mune cascades.
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Appendix A

Let us call N0 the initial cell number consisting of N(1)
0 = χN0 and N(2)

0 = (1− χ)N0.
The firts dose, at time t = 0 (the possible delay between the intial clinical observation and
first dose can be easily included) gives

N(1)
1 = N(1)

0 e[−α f (1)d−β f (1)2d2], (A1)

N(2)
1 = N(2)

0 e[−α(1− f (1))d−β(1− f (1))2d2], (A2)
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with N1 = N(1)
1 + N(2)

1 .
By defining the fraction of the carrying capacity due to strain 1 and strain 2, respec-

tively, as N(1)
∞ = ρN∞ and N(2)

∞ = (1− ρ)N∞, the evolution after the first dose and before
the second one, 1+ → 2−, according to GL gives

N(1)
2− = N(1)

0 eλ1ln( ρN∞
χN0

)+[−αd−βd2](1−λ1) (A3)

N(2)
2− = N(2)

0 e
λ2ln( (1−ρ)N∞

(1−χ)N0
)+[−αd−βd2](1−λ2) (A4)

where N2− = N(1)
2− + N(2)

2− ,
λ1 = 1− e−k1∆t (A5)

and
λ2 = 1− e−k2∆t, (A6)

with k1, k2 as the GL parameters. By iterative procedure,

N(n)(1) = N(1)
0 eln(N(1)

∞ /N(1)
0 )I1(n)−(αd+βd2)L1(n) (A7)

where
I1(n) = 1− e−(n−1)k(1)g ∆t (A8)

and

L1(n) =
1− e−nk(1)g ∆t

1− e−k(1)g ∆t
, (A9)

with analogous formulas for the second cell group by the substitutions ρ→ (1− ρ), χ→
(1− χ), and λ1 → λ2.

If the two strains also have different resistances to radiotherapy, the previous equations
can be easily generalized by considering α → α1 or α2 and α → β1 or β2. The results in
Section 3 are based on N(n) = N(n)(1) + N(n)(2) and on Equations (21)–(23) and the
analogous equations for strain 2.

For sake of completeness, in Figure A1 we show the growth pattern of the two
subpopulations without radiotherapy (i.e., α = β = 0) for different ratios of the growth
parameter k1, k2, with the same parameters of Figure 1.
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Figure A1. Subpopulation fractions for different rates of the fast/slow subpopulation, with the same
parameters as in Figure 1.
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