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Abstract
Efficient vaccine delivery to mucosal tissues including mucosa-associated lymphoid tissues

is essential for the development of mucosal vaccine. We previously reported that claudin-4

was highly expressed on the epithelium of nasopharynx-associated lymphoid tissue (NALT)

and thus claudin-4-targeting using C-terminal fragment of Clostridium perfringens entero-
toxin (C-CPE) effectively delivered fused antigen to NALT and consequently induced anti-

gen-specific immune responses. In this study, we applied the C-CPE-based vaccine

delivery system to develop a nasal pneumococcal vaccine. We fused C-CPE with pneumo-

coccal surface protein A (PspA), an important antigen for the induction of protective immuni-

ty against Streptococcus pneumoniae infection, (PspA-C-CPE). PspA-C-CPE binds to

claudin-4 and thus efficiently attaches to NALT epithelium, including antigen-sampling M

cells. Nasal immunization with PspA-C-CPE induced PspA-specific IgG in the serum and

bronchoalveolar lavage fluid (BALF) as well as IgA in the nasal wash and BALF. These im-

mune responses were sufficient to protect against pneumococcal infection. These results

suggest that C-CPE is an efficient vaccine delivery system for the development of nasal

vaccines against pneumococcal infection.

Introduction
Because various pathogens infect through mucosal tissues, the induction of protective immuni-
ty at mucosal tissues is a primary strategy to prevent infectious diseases. In vaccine develop-
ment, injection-based immunization induces systemic immune responses but not mucosal
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immune responses and so fails to prevent invasion of pathogens at mucosal sites. In contrast,
mucosal vaccines (e.g., nasal and oral vaccine) induce both systemic and mucosal immune re-
sponses [1]. Therefore, mucosal vaccines have been considered to be ideal for the prevention of
and protection from infectious diseases. It is generally accepted that the development of an ef-
fective and safe vaccine delivery system is essential for the development of mucosal vaccine
against respiratory and intestinal infectious diseases.

Mucosa associated-lymphoid tissues (MALTs) play a pivotal role in the induction of anti-
gen-specific immune responses against mucosally administered antigens, since the tissues have
been shown to contain all the necessary immunocompetent cells for the initiation of antigen-
specific immune response [2–4]. Therefore, the delivery of antigen to MALT is a promising ap-
proach for the development of mucosal vaccine [5, 6]. A primary target of vaccine delivery is
MALT epithelium, where M cells are located and play an important role in antigen uptake
from the lumen and transport into MALTs [3]. Targeting M cells by using specific antibodies
[7, 8] and bacterial invasion molecules [9] as vaccine delivery vehicle efficiently deposited anti-
gen to MALT and induced immune responses against conjugated antigens. Another target is
epithelial cells, which cover the entire mucosal tissues and form tight junctions to seal off the
intercellular space. Tight junctions are composed of claudin, occludin, tricellulin, and zonula
occludens [10]. There are more than 20 members of the claudin family, whose expression pro-
files and functions differ among tissues.

We previously found that claudin-4 was highly expressed in nasopharynx-associated lym-
phoid tissue (NALT) [11] and thus targeting caludin-4 would be a logical delivery candidate
for a nasal vaccine. To this end, we used C-terminal fragment of Clostridium perfringens en-
terotoxin (C-CPE), a non-toxic element of Clostridium perfringens (CPE) that binds to clau-
din-4 [12, 13]. Our previous study showed that intranasal immunization of ovalbumin (OVA)
fused C-CPE induced OVA-specific systemic and mucosal immune responses by claudin-4
binding of C-CPE [11, 14]. These findings allow us to examine whether claudin-4-targeting
vaccines using C-CPE were effective for generating mucosal vaccines against infectious
diseases.

Streptococcus pneumoniae (S. pneumoniae) is a key respiratory pathogen and causes pneu-
monia, meningitis, and otitis media [15, 16], which are calassfied more than 90 serotype [17,
18]. Polysaccharide-based injection-type vaccines are currently used as pneumococcal vaccines
and success to reduce the incident of pneumococcal disease [19, 20]. However, the effect of
these polysaccharide-based injection-type vaccines are only induced serotype specific immune
responses. Thus, they do not cover all stains of S. pneumoniae and thus are ineffective for unre-
lated strains. Therefore, it is necessary to develop a pneumococcal vaccine which is effective for
all strains of S. pneumoniae. Pneumococcal surface protein A (PspA) is a choline-binding sur-
face protein of S. pneumoniae and protects S. pneumoniae from killing by apolactoferrin [21].
PspA has high antigenicity, is expressed on all isolates of S. pneumoniae [22]. Additionally,
PspA induces cross-reactivity among different strains [23]. Moerover, PspA induces cross ac-
tive immune responses not only in mice but also in human [23, 24]. Thus, PspA is considered
to be an ideal vaccine antigen for the development of a pneumococcal nasal vaccine. In this
study, we used C-CPE as a nasal delivery vehicle of PspA to create a nasal vaccine against
pneumococcal infection.

Materials and Methods

Mice
Female BALB/c mice (age, 6 to 7 weeks) were purchased from SLC, Inc. (Shizuoka, Japan). In
some experiments, we checked murine condition at least once per day. Since mice havindg
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30% of body weight loss would lead to death soon, we monitored body weighy everyday. We
killed mice if they reach to 30% reductoin in their body weight or after 14 days after infection.
All experiments were approved by the Animal Care and Use Committee of Graduate School of
Pharmaceutical Sciences, Osaka University (#22-7-0) and the Animal Care and Use Committee
of the National Institute of Biomedical Innovation (approved # DS25-3R4), and conducted in
accordance with their guidelines.

Cell culture
Amouse fibroblast cell line (L cells) and mouse claudin-4-expressing L cells were kindly pro-
vided by Dr. S. Tsukita (Kyoto University, Kyoto, Japan) [12]. L cells and claudin-4-expressing
L cells were cultured in modified Eagle’s medium supplemented with 10% fetal bovine serum
in a 5% CO2 atmosphere at 37°C.

Preparation of PspA-C-CPE fusion protein
PspA cDNA was amplified by polymerase chain reaction (PCR) amplification (forward primer:
50-agggtaccgaagaatctcccgtagcc-30, KpnІ site is underlined; reverse primer: 50-gcttaattaattctgggg
ctggagtttc-30 PacІ site is underlined). pET16b-OVA-C-CPE, a G4S linker was inserted between
OVA and C-CPE [11], and PspA PCR products were digested by using KpnІ and PacІ. The
PspA fragment was inserted into pET-16b-C-CPE to yield pET16b-PspA-C-CPE. We also pre-
pared PspA fragment for pET16b-PspA by PCR amplification of PspA cDNA using different
primers (forward primer: 50-atgatgatgcatatggaagaatctcccgtagcc-30, NdeІ site is underlined; re-
verse primer: 50-gcgggatccttattctggggctggagtttc-30 BamHІ site is underlined). pET16b (Novag
en, Darmstadt, Germany) and PspA PCR products were digested by using NdeІ and BamHІ.
The resulting PspA fragment was inserted into pET16b to yield pET16b-PspA.

To obtain recombinant protein, the plasmids were transformed into Escherichia coli strain
BL21 (DE3). Protein production was induced by using isopropyl-D-thiogalactopyranoside.
The culture pellets were sonicated in buffer A (10 mM Tris-HCl [pH8.0], 400 mMNaCl, 5 mM
MgCl2, 0.1 mM PMSF, 1 mM 2-mercaptoethanol, and 10% glycerol). After centrifugation, the
supernatants were loaded onto HiTrap HP (GE Healthcare, Pittsburgh, PA, USA) columns.
PspA or PspA-C-CPE was eluted with buffer A containing 100~500 mM imidazole. The eluted
protein was loaded into a PD-10 column (GE Healthcare) for exchange with phosphate-buff-
ered saline (PBS). The concentration of purified protein was measured by using a BCA protein
assay kit (Pierce Chemical, Rockford, IL). The purity of the eluted protein was confirmed by
using the NuPAGE electrophoresis system (Life Technologies, Carlsbad, California, USA) fol-
lowed by staining with Coomassie brilliant blue.

Flow cytometric analysis
Claudin-4-expressing L cells were incubated with PspA or PspA-C-CPE for 1 h at 4°C. The
cells were washed with 0.1% bovine serum albumin (BSA) in PBS and incubated with mouse
anti-His tag antibody (clone 13/45/31-2, mouse IgG1, Pierce) for 1 h at 4°C. After being washed
with 0.1% BSA in PBS, the cells were incubated with fluorescein-labeled goat anti-mouse IgG
(H+L) antibody (Rockland, Gilbertsville, PA, USA) for 30 min at 4°C. The cells were washed
with 0.1% BSA in PBS and analyzed by flow cytometry (FACSCalibur, Becton Dickinson, New
Jersey, USA).

For the intracellular cytokine analysis, mononuclear cells were isolated from the lung and
nasal passages as previously reported [25, 26]. The isolated cells were incubated in RPMI1640
medium containing 10% fetal calf serum with 50 ng/mL of phorbol 12-myristate 13-scetate
(Sigma-Aldrich, St Louis, MO), 750 ng/mL of ionomycin (Sigma-Aldrich), and 5 μg/ml of
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brefeldin A (BioLegend, San Diego, CA) for 4 h at 37°C. After washing with PBS, cells were
stained with zombie (BioLegend) for 15 min at room temperature and subsequently treated
with anti-mouse CD16/32 (clone 93, BioLegend) for 15 min at roofem temperature. After
washing with PBS containing 2% newborn calf serum, the cells were staind with fluorescein iso-
thiocyanate-rat anti-mouse CD4 (clone RM4-5, BioLegend) for 30 min at 4°C, fixed with 4%
paraformaldehyde for 15 min at 4°C, permeabilized with Perm/Wash (BD Biosciences, San
Diego, CA), and then stained with phycoerythrin-rat anti-mouse IL-17 (clone TC11-18H10,
BD Biosciences) for 30 min at 4°C as previously reported. The cells were analyzed by flow cy-
tometry (Miltenyi Biotec, Auburn, CA).

Immunohistologic analysis
NALT from mice was embedded in Tissue-Tek OCT compound (Sakura Finetek Japan, Tokyo,
Japan) and cut into 6-μm sections. Sections were fixed with 100% acetone for 1 min at 4°C, and
nonspecific binding was blocked by treating with 2% fetal calf serum in PBS for 30 min at
room temperature. Sections were washed with 0.05% Tween in PBS and incubated with PspA
or PspA-C-CPE (both were biotinylated by using a biotinylation kit from Thermo Fisher Scien-
tific (Massachusetts, USA)) and fluorescein-conjugated Ulex europaeus agglutinin 1 (UEA-1)
at 4°C overnight. After being washed with 0.05% Tween in PBS, sections were stained with
Alexa Fluor 546-conjugated streptavidin for 30 min at room temperature. Sections were
washed with 0.05% Tween in PBS and stained with 4',6-diamidino-2-phenylindole (DAPI). Fi-
nally, sections were washed with 0.05% Tween in PBS, mounted in Fluoromount (Diagnostic
BioSystems, California, USA), and observed by fluorescence microscopy (BZ-9000, Keyence,
Osaka, Japan).

Immunization
Mice were nasally immunized with vehicle (PBS), 5 μg of PspA alone, 2 μg of C-CPE alone or
PspA-C-CPE once weekly for 3 consecutive weeks. One week after the last immunization,
serum, nasal wash fluid, and bronchoalveolar lavage fluid (BALF) were collected. Nasal wash
fluid was obtained by using 200 μL PBS. BALF were collected by using 1 mL PBS.

Measurement of PspA-specific antibody production by enzyme-linked
immune sorbent assay (ELISA)
PspA-specific antibody production was determined by ELISA. Accordingly, 96-well immuno-
plates were coated with PspA (0.05 μg/well) at 4°C overnight. The immunoplates were treated
with 1% BSA in PBS for 2 h at room temperature to prevent nonspecific binding. After the
plates were washed with 0.05% Tween in PBS, 2-fold serial dilutions of samples were added to
wells, and the plates were incubated at 4°C overnight. After the plates were washed with 0.05%
Tween in PBS, goat anti-mouse IgG or IgA conjugated with horseradish peroxidase (Southern-
Biotech, Birmingham, AL) was added to the immunoplates and incubated for 1 h at room tem-
perature. After the plates were washed with 0.05% Tween in PBS, PspA-specific antibodies
were detected by using TMB peroxidase substrate and reading the absorbance at 450 nm.

S. pneumoniae culture and infection
S. pneumoniae Xen10 (parental strain, A66.1 serotype 3; Caliper Life Sciences) were growth in
brain–heart infusion broth at 37°C in a 5% CO2 atmosphere, with no aeration. S. pneumoniae
Xen10 cells were washed and diluted with D-PBS. One week after the last immunization, mice
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were nasally challenged with 5.0 × 106 CFU of S. pneumoniae Xen10. The survival of mice was
monitored for 14 days.

Data analysis
Data were expressed as the mean ± SEM. Statistical analysis was performed by using the non-
parametric Mann–Whitney’s U test. (GraphPad Software, California)

Results

Preparation of PspA-fused C-CPE protein
To investigate whether a C-CPE based claudin-4-targeting vaccine delivery system can be used
as a nasal pneumococcal vaccine, we genetically fused PspA with C-CPE (PspA-C-CPE). We
previously found that C-terminus of C-CPE is an activite portion to interacti with claudin-4
[27]. Thus, we fused PspA with N-terminus of C-CPE to maintain the claudin-4-binding activ-
ity of C-CPE (Fig 1A). Purification of PspA and PspA-C-CPE proteins was confirmed by Coo-
massie brilliant blue staining (Fig 1B).

We then checked the binding activity of PspA-C-CPE to claudin-4. We previously reported
that OVA-fused with C-CPE bound to claudin-4 [11]. Likewise, PspA-C-CPE efficiently
bound to claudin-4-expressing L cells but not to parent L cells (Fig 2A). We also confirmed
that PspA alone did not bind to L cells regardless of whether they expressed claudin-4 (Fig 2A).

We next investigated whether PspA-C-CPE bound to NALT epithelium. As seen for the
binding of PspA-C-CPE to claudin-4-epxressing L cells, PspA alone did not bind to NALT epi-
thelium, whereas the PspA-C-CPE construct efficiently bound to epithelium (Fig 2B). Addi-
tionally, PspA-C-CPE also bound to UEA-1+ M cells, a finding consistent with a previous
report that M cells also expressed claudin-4 [28]. These data indicate that PspA-C-CPE main-
tained binding activity to claudin-4, allowing the efficient binding of PspA-C-CPE to NALT
epithelium, including M cells.

Nasal immunization with PspA-C-CPE efficiently induces PspA-specific
antibody responses in both the respiratory and systemic compartments
Based on the efficient delivery of vaccine antigen to nasal epithlium including NALT by the use
of PspA-C-CPE, our next experiment was aimed to investigate the PspA-specific immune re-
sponses induced by nasal immunization with PspA-C-CPE. In this study, mice were nasally
immunized with mock, PspA alone, or PspA-C-CPE once a week for 3 weeks. One week after
the last immunization, serum and respiratory samples (nasal wash and BALF) were collected
for ELISA analysis to measure the production of PspA-specific antibodies. Mice nasally immu-
nized with PspA-C-CPE showed higher levels of PspA-specific serum IgG (Fig 3A). In addition
to systemic immune compartment, PspA-specific IgA responses were induced in the nasal
washes (Fig 3B). Furthermore, mice nasally immunized with PspA-C-CPE showed higher lev-
els of PspA-specific IgA and IgG responses in the BALF (Fig 3C and 3D). These findings indi-
cate that the efficient delivery of PspA by nasal immunization using C-CPE was coincident
with the induction of strong PspA-specific antibody responses in the respiratory tract and sys-
temic immune compartments.

Nasal immunization with PspA-C-CPE induces protective immunity
against S. pneumoniae infection
Finally, we evaluated whether the PspA-specific immune response induced by nasal immuniza-
tion with PspA-C-CPE was sufficient to protect against pneumococcal infection. One week
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after the last immunization, mice underwent respiratory challenge with S. pneumoniae (5 × 106

CFU/mouse). We monitored the survival rate until 14 days after infection. Few mice could sur-
vive after pneumococcal infection when they were nasally immunized with mock (less than
15%) or PspA alone (less than 60%) (Fig 4). In contrast, more than 80% of the mice survived in
the same condition when mice received nasal immunization with PspA-C-CPE (Fig 4).

IL-17 is known to play important roles in the clearance of pneumococcal infection [29].
Thus, it is possible that IL-17-type innate immunity induced by C-CPE provides protective im-
munity against pneumococcal infection. However, we found that C-CPE alone did not induce
IL-17-producing cells in the nasal passage and lung (S1 and S2 Figs). Consequently, mice re-
ceiving nasal administration of C-CPE alone could not survive after pneumococcal infection
(S3 Fig). Thus, C-CPE alone did not induce IL-17-type innate immunity, which was

Fig 1. Construction and preparation of PspA-C-CPE. (A) Schematic illustration of PspA-C-CPE. PspA
was fused with C-CPE at its N-terminus. A G4S linker was inserted between PspA and C-CPE. (B) PspA and
PspA-C-CPE were expressed in Escherichia coli as His-tagged proteins and purified by Ni-affinity
chromatography. The PspA and PspA-C-CPE recombinant protein were applied to SDS-PAGE followed by
staining with Coomassie brilliant blue. Lane 1, size ladder; lane 2, PspA; lane 3, PspA-C-CPE.

doi:10.1371/journal.pone.0126352.g001
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insufficient to protect against pneumococcal infection. These findings indicate that nasal im-
munization with PspA-C-CPE induced PspA-specific acquired immunity, which was required
for the protection against pneumococcal infection.

Discussion
In this study, we showed that claudin-4-targeting using C-CPE elicited PspA-specific systemic
and respiratory antibody responses that were sufficient to induce protection against pneumo-
coccal infection. Various approaches for a vaccine delivery system have been reported. M cells
have been shown to be potential target cells for vaccine delivery to MALTs. Some pathogens
(e.g., Salmonella, reovirus, Yersinia, E. coli) use M cells as an invasion site, and the underlying
molecular mechanisms including the ligand and receptor have been revealed [9, 30–32]. For in-
stance, σ1, a surface protein of reovirus, binds to α2,3-sialic acid on M cells to invade its host
[33]. FimH expressed on enterobacteria acts as a ligand for glycoprotein 2 for the organism’s
invasion through M cells [32]. CPE binds claudin-4 which is expressed in intestinal mucosa
[34] to show their pathogenesis. It was reported that claudin-4 is also expressed on antigen-
sampling M cells in the NALT and GALT [28]. Thus, claudin-4 is a potent target to deliver vac-
cine to M cells. Our current study extend microbe-based vaccine delivery to MALT by showing
the ability of C-CPE to bind to respiratory epithelial cells, including NALT M cells.

Professional antigen-sampling cells, M cells are covered by short villi and less densed
mucus, and thus physically and chemically accessible to mucosally- administered antigen from
the lumen of respiratory and intestinal tracts [3]. Basement of M cells form a pocket structure
where dendritic cells are located [3], allowing efficient antigen transport to the dendritic cells.
Then, dendritic cells present antigen to underlining T cells and B cells for the initation of anti-
gen-specific immune responses [4]. Our current study demonstrated that PspA-C-CPE bound
to M cells, which resulted in the internalization of antigen into NALT for the induction of
PspA-specific antibody responses. In addition, we found that PspA-C-CPE bound to not only
M cells but also NALT epithelium (Fig 2B), which might further enhace the antigen deposition

Fig 2. Binding of PspA-C-CPE to claudin-4-expressing cells. (A) Claudin-4-expressing L cells and parent
L cells were treated with PspA or PspA-C-CPE. Their bindings were detected by using an anti-His tag
antibody followed by staining with fluorescein-labeled secondary antibody. Violet histograms are PspA or
PspA-C-CPE; the green line histogram is control. (B) Binding of PspA-C-CPE to NALT epithelium. NALT
sections were fixed with acetone and stained with biotinylated-PspA or biotinylated-PspA-C-CPE followed by
staining with Alexa Fluor 546-conjugated streptavidin. M cells were detected by staining with fluorescein-
conjugated UEA-1. Yellow arrows indicate PspA-C-CPE bound to M cells. Red, biotinylated-PspA or
biotinylated-PspA-C-CPE; green, UEA-1; blue, DAPI. Scale bar is 100 μm (left) or 50 μm (right).

doi:10.1371/journal.pone.0126352.g002
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into NALT. To this end, our previous study showed that C-CPE reversibly opens tight junc-
tions and enhances mucosal absorption [35]. Therefore, C-CPE likely opens the tight junctions,
allowing the fused antigen uptake through the epithelial cell layer. Moreover, claudin-4 con-
tains a clathrin-sorting signal sequence in its C-terminal intracellular region [36, 37], leading
to the possibility that PspA-C-CPE is taken up by epithelial cells via clathrin-dependent
endocytosis.

Regarding the safety of a PspA-C-CPE-based vaccine, the parent CPE protein is known to
causes food poisoning by binding to claudin-expressing intestinal epithelium [34]. CPE has
two domains: the N-terminal domain contains the toxic function, whereas the C-terminal do-
main has the claudin-binding function. In the food poisoning mechanism of CPE, claudin-
4-CPE complexes on intestinal cells oligomerize through their N-terminal domains, subse-
quently leading to alternated membranes permeability and cell death [34]. Because C-CPE
lacks the toxic N- terminal domain of CPE [38, 39], C-CPE likely is non-toxic. We found nor-
mal levels of aspartate transaminase, alanine aminotransferase, and urea nitrogen in the blood
of mice nasally immunized with C-CPE [40]. Therefore, a nasal vaccine delivery system using
C-CPE is a safe and effective tool for the development of mucosal vaccines.

Currently, polysaccharide-based vaccine is approved for use as a pneumococcal vaccine in
humans. However, this vaccine only induces serotype-specific immune responses. In contrast,

Fig 3. Induction of PspA-specific systemic and respiratory antibody responses by intranasal
immunization with PspA-C-CPE.Mice were nasally immunized with vehicle, PspA alone, or PspA-C-CPE
(PspA; 5 μg) once weekly for 3 weeks. One week after the last immunization, PspA-specific serum IgG (A),
nasal IgA (B), BALF IgG (C), and IgA (D) were measured by ELISA. Data are shown as mean ± SEM and are
representative of two independent experiments. Vehicle, n = 4; PspA, n = 5; PspA-C-CPE, n = 5. Values were
compared by using the non-parametric Mann–Whitney U test. *P < 0.01.

doi:10.1371/journal.pone.0126352.g003
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we used PspA as a vaccine antigen in this study because PspA is highly antigenic and induces
cross-activity among various pneumococcal strains [23, 41, 42]. PspA-specific IgA responses
purportedly prevent colonization or the initial step of invasion of S. pneumoniae [43]. In addi-
tion, PspA-specific serum IgG responses are also important for the elimination of invasing S.
pneumoniae [26]. PspA has an ability to interact with and fix complement component C3 and
inhibit its deposition. Indeed, PspA-negative S. pneumoniae is immediately cleared from blood
because of their inability to inhibit complement function [44]. Therefore, it is plausible that
PspA-specific serum IgG prevents the PspA-mediated inhibition of complement function and
facilitates bacterial elimination in a complement-dependent manner. Although the exact im-
munologic function of PspA-specific IgA in the respiratory tract remains unknown, surface
choline-binding proteins, including PspA, are required for colonization of the nasal cavity [45].
Our current study demonstrated that nasal immunization with PspA-C-CPE induces PspA-
specific serum IgG responses and respiratory IgA responses (Fig 3A–3D). Consequently,
PspA-C-CPE likely prevents initial invasion by S. pneumoniae in the respiratory tract and le-
thal pathogenesis in the systemic compartments. Although PspA was wildly cross-reactive to
various pneumococcal isolate, the distinct degrees of cross-reactivity were reported [41, 46]. In
this issue, one possibile strategy for the improvement is to use PspA derived from selective
clades (e.g., PspA4 and PspA5) for the high degree of cross reactivity [42]. Further, additional
pneumococcal antigens such as pneumococcal surface adhesion A and pneumolysin can be
combined for the strong protection against pneumococcal infection [47, 48].

In summary, we genetically prepared C-CPE fused with PspA and confirmed that
PspA-C-CPE efficiently bound to NALT epithelium, including M cells. These functions led to
the induction of PspA-specific antibody responses in both the systemic compartment and re-
spiratory tract; these responses were sufficient to convey protection against pneumococcal in-
fection. These findings suggest that C-CPE is an effective nasal vaccine delivery system for
protection against pneumococcal infection.

Fig 4. PspA-C-CPE-mediated induction of protective immunity against pneumococcal infection.Mice
were nasally immunized with vehicle, PspA alone, or PspA-C-CPE (PspA; 5μg) once weekly for 3 weeks.
One week after the last immunization, mice were intrarespiratory challenged with S. pneumoniae (5.0 × 106

CFU/mouse), and their survival was monitored for 14 days. Survival was compared between groups by using
the non-parametric Mann–Whitney U test. **P < 0.05, *P < 0.01. Data were collected four experiments.
Vehicle, n = 35; PspA, n = 45; PspA-C-CPE, n = 59.

doi:10.1371/journal.pone.0126352.g004
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Supporting Information
S1 Fig. C-CPE alone did not induce IL-17-producing cells at the nasal passage.Mice were
nasally immunized with vehicle or C-CPE alone (2 μg) once weekly for 3 weeks. One week
after the last immunization, nasal passage were collected for measurement of IL-17-produceing
cells. Bar is median. Data are representative of two independent experiments (n = 5 for each ex-
periment).
(TIF)

S2 Fig. C-CPE alone did not induce IL-17-producing cells at the lung.Mice were nasally im-
munized with vehicle or C-CPE alone (2 μg) once weekly for 3 weeks. One week after the last
immunization, lung were collected for measurement of IL-17-produceing cells. Bar is median.
Data are representative of two independent experiments (n = 5 for each experiment).
(TIF)

S3 Fig. C-CPE alone could not provide the protective immunity against pneumococcal in-
fection.Mice were nasally immunized with vehicle or C-CPE alone (2 μg) once weekly for 3
weeks. One week after the last immunization, mice were intrarespiratory challenged with S.
pneumoniae (5.0 × 106 CFU/mouse), and their survival was monitored for 14 days. Data are
representative of two independent experiments (n = 10 for each experiment).
(TIF)
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