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Abstract: Structural transformation and magnetic ordering interplays for emergence as well as
suppression of superconductivity in 122-iron-based superconducting materials. Electron and hole
doping play a vital role in structural transition and magnetism suppression and ultimately enhance
the room pressure superconducting critical temperature of the compound. This work models
the superconducting critical temperature of 122-iron-based superconductor using tetragonal to
orthorhombic lattice (LAT) structural transformation during low-temperature cooling and ionic radii
of the dopants as descriptors through hybridization of support vector regression (SVR) intelligent
algorithm with particle swarm (PS) parameter optimization method. The developed PS-SVR-RAD
model, which utilizes ionic radii (RAD) and the concentrations of dopants as descriptors, shows
better performance over the developed PS-SVR-LAT model that employs lattice parameters emanated
from structural transformation as descriptors. Using the root mean square error (RMSE), coefficient
of correlation (CC) and mean absolute error as performance measuring criteria, the developed PS-
SVR-RAD model performs better than the PS-SVR-LAT model with performance improvement of
15.28, 7.62 and 72.12%, on the basis of RMSE, CC and Mean Absolute Error (MAE), respectively.
Among the merits of the developed PS-SVR-RAD model over the PS-SVR-LAT model is the possibility
of electrons and holes doping from four different dopants, better performance and ease of model
development at relatively low cost since the descriptors are easily fetched ionic radii. The developed
intelligent models in this work would definitely facilitate quick and precise determination of critical
transition temperature of 122-iron-based superconductor for desired applications at low cost with
experimental stress circumvention.

Keywords: 122-iron-based superconductor; structural transformation; support vector regression;
ionic radii; particle swarm optimization; lattice parameters

1. Introduction

The discovery of superconducting property in iron-based materials has significantly
facilitated the exploitation of new classes of superconductors for commercial applica-
tions, especially in tapes and wires fabrications [1]. Among the classes of iron-based
superconductors, 122 type with structural formula AFe2As2 (where A represents “alkali”
or “alkali earth metal”) demonstrates fascinating and attractive characteristic features
such as ultra-high upper critical fields, high superconducting critical temperature and
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low anisotropy [2,3]. These aforementioned unique properties render the superconduc-
tor indispensable for applications where a high magnetic field is needed [4]. Iron-based
family (AFe2Se2), where the toxic arsenic is replaced with environmentally friendly sele-
nium, also falls within 122 families of iron-based superconductors [5]. The fact that the
122 family of iron-based superconductors serves as a competition playground between
superconductivity and spin density wave with itinerant 3D magnetic ordering (covering
incommensurate and longitudinal) contributes immensely to the uniqueness of this class
of material [6]. A single crystal of this family can be easily prepared with a high level of
purity without the formation of multiple phases, and this has contributed immensely to
the in-depth study of its physical properties. Spin density wave with a characteristic lattice
distortion from tetragonal symmetry to orthorhombic is often associated with the parent
compounds of the 122 superconducting family. Antiferromagnetic ordering is observed at
lower temperatures in this family (AFe2As2, where A = rare earth element) of iron-based
superconductor with 4F magnetic moments and a characteristic non-zero localization. Mag-
netic moment (4F) re-orientation occurs with 4F ferromagnetic component formation as a
result of doping (through which superconductivity emerges) when the superconducting
material houses 4F antiferromagnetic ordering [7]. Therefore, superconductivity appears
after applying external pressure or through doping in which the spin density wave order
is suppressed. In order to achieve room pressure superconductor, hole doping, electron
doping and iso-electronic substitutions are possible [8]. Iso-electronic substitution involves
the replacement of arsenic by other elements such as phosphorus or the application of
strong perturbation to Fe-As layer through perturbation of Fe environment since pnictogen
tetrahedrally coordinates the Fe atoms. The observed structural distortions after doping
as well as the ionic radii of the incorporated dopants are explored in this present work to
model superconducting critical temperature of the compound using hybrid support vector
regression and particle swarm optimization method.

The electronic structure that is close to Fermi energy controls the close proximity
between phase transition (magnetic and structural) and superconductivity. A surface
within momentum space that occupies all the fermionic states with momentum less than
the Fermi momentum is referred to as the Fermi surface. Iron d-orbital are the occupants
of iron-based superconductor Fermi surface, which make the surface very sensitive to
doping, temperature and pressure [9]. The 122 iron-based superconducting compounds
crystalize at room temperature into tetragonal I4/mmm-139 space group while cooling to
lower temperature, resulting in structural transformation from tetragonal to orthorhombic
structure, and the unit cell characterizing the low-temperature phase enjoys 45◦ rotation
in the x–y plane with large basal cell edges. Magnetic transition often follows the ob-
served structural transformation. The structural transition is driven by the orbital ordering,
which, in turn, induces anisotropy in the parent magnetism and ultimately triggers the
magnetic transition. Structural transformation to Fmmm orthorhombic structure takes
place during low-temperature cooling, which controls the emergence of superconductivity
in the compound. The superconducting critical temperature of 122-iron-based supercon-
ductors attains its highest value when the magnetism in the host compound is strongly
hindered or totally destroyed. Destruction of magnetism is induced through high-pressure
application and hole or electron doping. The hole-doping that ultimately increases FeAs
positive charges further suppresses magnetism for the emergence of superconductivity.
Superconductivity is favored in these materials with magnetic ground destabilization. The
magnetic interactions which drive the magnetic ordering produce electron-pairing interac-
tion that serves as the background of superconductivity. Therefore, co-existence between
magnetism and superconductivity often arises in doped samples. Sustenance of room
temperature tetragonality at low-temperature scenarios sometimes promotes supercon-
ductivity emergence. This sustenance is achieved through foreign material incorporation
into the parent compound. Ionic radii (RAD) of the incorporated dopants as well as the
concentration of each of the dopants serve as the descriptors for developing the particle-
swarm-based support vector regression PS-SVR-RAD model while the lattice parameters
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of the doped samples are employed in developing the PS-SVR-RAD model for estimating
the superconducting critical temperature of the doped samples.

Support vector regression belongs to a class of machine learning intelligent algorithms
which conveniently, effectively and efficiently minimize generalized error bound using
structural risk minimization principle [10,11]. The algorithm employs a kernel trick for data
mapping and transformation to feature space where the regression problem is precisely
addressed. The initial definition of error threshold called “epsilon” and the possible
inclusion of non-zero slack variables enable the algorithm to address non-linear regression
problems with close proximity between the measured and estimated target. As such,
real-life applications of the SVR algorithm cuts across many fields of study [12–19]. The
algorithm parameters such as the defined error threshold epsilon, penalty factor and
mapping function parameter are very germane to the successful acquisition of patterns
connecting the desired model target with the descriptors. An evolutionary algorithm with
swarm operational principle is employed for the selection of optimal combinatory choice of
these parameters. The outstanding features of the employed particle swarm optimization
algorithm include fast convergence, difficulty in trapping inside local solutions and evasion
of premature convergence.

The rest of the manuscript is organized in the following structure: Section 2 discusses
the mathematical foundation of the support vector regression and particle swarm optimiza-
tion algorithms, while Section 3 presents the physical description and acquisition of the
dataset employed for computation. The computational details of the developed hybrid
model are also presented in Section 3. Section 4 presents the results of the developed
models. A comparison of the performance of PS-SVR-RAD and PS-SVR-LAT models is
presented in section four. Section 5 presents the conclusions.

2. Mathematical Details of the Hybridized Algorithms

The mathematical explanations of the support vector regression algorithm and that of
the particle swarm optimization algorithm are contained in this section.

2.1. Mathematical Background of the Support Vector Regression

The primary objective of the support vector regression (SVR) algorithm is to acquire
the pattern and function connecting the descriptors with the target [20]. Consider 122-iron-
based superconductors doped with external materials while the distorted lattice parameter
(for the case of PS-SVR-LAT), ionic radii as well as dopant concentration (in the case of PS-
SVR-RAD) and superconducting temperature (Tj) are expressed as

{
(ϕ0, T0), . . . , (ϕj, Tj)

}
,

where ϕj represents the descriptors. The algorithm aims at establishing a relationship
shown in Equation (1) [21].

T(ϕ) = ω× ϑ(ϕ) + c (1)

where the vector weight, bias and the mapping function are, respectively, represented as
ω, c and ϑ(ϕ). SVR algorithm minimizes the Euclidean norm ‖ω‖2 and implements a
parameter called penalty parameter for penalizing and regularizing distortion (ionic radii
in the case of PS-SVR-RAD model) in 122-iron-based superconducting data outside the
loss zone purposely to reduce the complexity of the final model. Equation (2) presents the
modification of the optimization problem while the governing constraints are expressed in
Equation (3) [13,22].

Min E =
‖ω‖2

2
+ α

r

∑
j=1

(
δj + δ∗j

)
(2)

 tj −ω× ϑ(ϕj)− c ≤ ε + δj
ω× ϑ(ϕj) + c− tj ≤ ε + δ∗j

δ∗j ≥ 0, δj ≥ 0
(3)

The expression presented in Equation (3) considers a situation whereby the objective
of the SVR algorithm in Euclidean minimization becomes difficult due to other external con-
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straints. Slack variables (δ∗j and δj) maintain the minimization principle of model Euclidean
norm. The penalty parameter α strikes a balance between model complexity and error
minimization below the threshold value represented as epsilon ε [15]. The experimentally
measured superconducting critical temperature for 122-iron-based superconductors for
all the considered doped compounds is represented as tj in Equation (3). In an attempt to
solve the optimization problem through Lagrange formalisms, multipliers (ψ∗ and ψ) are
introduced. The optimization problem is transformed as presented in Equation (4) with
the expression presented in Equation (5) as constraints [23].

− 1
2

z
∑
j,i

(
ψj − ψ∗j

)(
ψi − ψ∗i

)
ϑ(ϕj, ϕi)−

z
∑
j

ψj
(
tj + ε

)
+

z
∑
j

ψ∗j
(
tj − ε

)
= 0

(4)


z
∑
j

(
ψj − ψ∗j

)
= 0

0 ≤ ψj, ψ∗j ≤ α, j = 1, 2, . . . , z
(5)

If the optimal solutions of the convex optimization problem are assumed to be
ψ = [ψ1, ψ2, . . . . . . , ψz] and ψ∗ =

[
ψ∗1 , ψ∗2 , . . . . . . , ψ∗z

]
, then the weight vector and the bias

can be computed and presented as shown in Equations (6) and (7), respectively.

ω∗ =
z

∑
j

(
ψj − ψ∗j

)
ϑ(ϕj) (6)

c∗ = 1
sv

∑0<ψj<α

(
tj −∑ϕj∈Sv (ψj − ψ∗j )ϑ(ϕj, ϕi)− ε

)
+ 1

sv
∑0<ψj<α

(
tj −∑ϕi∈Sv (ψi − ψ∗i )ϑ(ϕj, ϕi)− ε

) (7)

where the number of acquired support vectors during model development is represented
as sv. Equation (8) presents the final regression function, where the expression for the
implemented non-linear mapping function is shown in Equation (9).

T(ϕ) =
z

∑
j=1

(
ψj − ψ∗j

)
ϑ(ϕj, ϕ) + c∗ (8)

ϑ(ϕj, ϕi) = exp
(
−λ‖ϕj − ϕi‖2

)
(9)

where λ = kernel parameter.
The kernel parameter (λ), penalty parameter (α) and the error threshold (ε) contribute

immensely to the precision and accuracy of the model. These parameters are fine-tuned in
a combinatory form in this work using the particle swarm optimization approach.

2.2. Description of the Particle Swarm Optimization Method

The particle swarm optimization (PSO) algorithm is a stochastic population-based
evolutionary optimization method developed by Eberhart and Kennedy in 1995 [24]. The
social-behavioral pattern of the swarm combined with their intelligence forms the basis of
this algorithm [25]. The particles within the swarm navigate and transverse the search space
for objective function evaluation. Particles in the swarm are identified by their previous as
well as current positions and velocities [26]. The main stages of the algorithm operational
principles include particle fitness evaluation, updating the global as well as individual best
and updating the velocity and position of every particle [27]. Equations (10) and (11) are
implemented while updating the velocity and position of swarm particles [10,28].

vm(k + 1) = ηvm(k) + µ1σ1(ςm(k)− xm(k)) + µ2σ2(γm(k)− xm(k)) (10)
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xm(k + 1) = xm(k) + vm(k + 1) (11)

where m is the number of particle, vm(k) = velocity of mth particle in iteration period k,
xm(k) = position of mth particle in iteration period k, η = coefficient of inertial weight,
µ1 = coefficient of personal learning, µ2 = coefficient of global learning, σ1 = selected
random number within the range of 0–1, σ2 = selected random number within the range of
0–1, γm(k) = best position of the swarm in iteration period k and ςm(k) = individual best
position in iteration period k.

3. Computational Presentation and Methodology of the Developed Hybrid Model

The employed computational strategies for algorithm hybridization are presented
in this section. Acquisition and physical description of the dataset are also contained in
this section. The section further presents a stoichiometric formulation of the 122 family of
superconductors that can be modeled using the developed PS-SVR-RAD model.

3.1. Description of the Dataset and Stoichiometric Expression of the Compounds That Are Well
Captured within the PS-SVR-RAD Model

Structural lattice parameters that serve as the descriptors to the developed PS-SVR-
LAT model and their corresponding superconducting critical temperature are extracted
from the literature [29–31]. The descriptors of the developed PS-SVR-RAD model are
the ionic radii and the concentrations of the dopants. An experimental dataset from 21
compounds of 122-iron-based superconductors was employed in building the PS-SVR-LAT
model, while the development of the PS-SVR-RAD model utilizes 44 data points extracted
from distorted 122-iron-based superconductors. Equation (12) presents the stoichiometric
expression of the 122 family of iron-based superconductors whose superconducting critical
temperature can be estimated by the developed PS-SVR-RAD model.

PS− SVR− RAD = D1−α AαFe2−βBβψ2−γCγ (12)

where A = alkali or alkali earth metal, D = foreign element attached to alkali or alkali
earth metal, α = concentration of D dopant. B = foreign element attached to iron as
dopant, β = concentration of B, ψ = arsenic or selenium, C = foreign element attached
to arsenic or selenium as dopant and γ = concentration of C. Each of the investigated
122 family of iron-based superconductors used for modeling and simulation is subjected to
the stoichiometric description presented in Equation (12). The uniqueness of this expression
is that it allows the incorporation of four different dopants into the parent 122 type of
pnictide, while the superconducting critical temperature is estimated by the developed
PS-SVR-RAD model. During descriptors extraction for implementation using the PS-SVR-
RAD model, dopants that are absent within the description of Equation (12) are assigned
a zero value. For example, during extraction of modeling data for the Ba0.67K0.33Fe2As2
122-iron-based superconductor, D is the ionic radius of barium (Ba) since the atoms of
potassium are replaced with that of barium, A is the ionic radius of potassium (K), α = 0.33,
B = β = 0, ψ represents the ionic radius of arsenic and C = γ = 0. It should be noted
that the effective ionic radii of the constituent elements with diverse ionic charges and
spins were employed as descriptors to the developed PS-SVR-RAD model due to the
existence of a non-linear relationship between them and the superconducting transition
temperature, as revealed from the conducted preliminary statistical analysis. The employed
effective ionic radii in picometer (pm) and their corresponding elements are summarized as
(138, 50, 152, 167, 150, 135, 58, 184, 60, 65, 103.2) = (K, Se, Rb, Cs, Tl, Ba, As, S, Ni, Co,
La). The comprehensive details of the employed dataset for the developed models are
presented in the Supplementary Materials section of the manuscript.

3.2. Computational Strategies Employed for Hybrid Model Development

The development of PS-SVR-LAT and PS-SVR-RAD, with which superconducting crit-
ical temperatures of 122-iron-based superconductors are estimated, was conducted within
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a MATLAB computing environment environment (MATLAB, 2015a, 2015, MathWorks,
Natick, MA, USA). The essence of a particle swarm optimization algorithm inclusion in
support vector regression algorithm is to optimize the parameters influencing the perfor-
mance SVR in a combinatory manner so the precision, robustness and accuracy of the
hybrid algorithm can be enhanced. The available ionic radii and the concentration of the
dopants for developing the PS-SVR-RAD model are randomized initially to ensure uniform
data distribution within the training and testing data subset. Similar randomization was
conducted for the proposed PS-SVR-LAT model, while the crystal lattice parameters of
doped 122-iron-based superconductors are the descriptors in this case. Data separation
and division in the ratio of 1:4 follow immediately after randomization procedures for
testing and training samples, respectively. This indicates that 17 data points and 4 data
points are, respectively, available for the training and testing stage of PS-SVR-LAT model
development, while 36 and 8 data points are the separated training and testing set of data
for the case of the PS-SVR-RAD model. The training set of data helps in support vectors
acquisition and generation, while the efficacy and precision of the model are assessed using
a testing set of data. The implemented test-set cross-validation technique in this work is
due to the limited data characterizing this area of research. Procedures for optimization
algorithm hybridization with support vector regression are itemized as follows.

Step I: Initialization of optimization algorithm parameters: the user-defined parame-
ters in PSO such as the maximum iteration number (kmax), size of the swarm population
(Ps) coefficient of personal learning (µ1), coefficient of global learning µ2, probable solution
search space and inertial weight are initiated. For the PS-SVR-RAD model, the upper search
spaces for the probable hyper-parameter solutions are 1000, 0.009 and 0.009 for the penalty
factor, error threshold epsilon and kernel parameter for the Gaussian mapping function,
respectively. The lower search spaces for the same order of hyper-parameter are defined
as 1, 0.0001 and 0.0001. The upper search spaces of the developed PS-SVR-LAT model
are defined as 500, 0.8 and 0.8, while the lower bounds of the search space are defined
as 1, 0.1 and 0.1 for the penalty factor, error threshold epsilon and kernel parameter for
the Gaussian mapping function, respectively. It is worth mentioning that a random initial
search was conducted before the choice of upper and lower limits of search spaces.

Step II: Random initialization of the swarm velocity and position: the potential solu-
tions of the optimization problems as represented by swarm positions and velocities are
randomly generated within the limits of the search spaces. These velocities and positions
are subsequently updated from generation to generation until global solutions are attained.

Step III: Fitness of the particle in swarms: the particle fitness is evaluated through
the development of SVR based model while the root mean square error (RMSE) of the
estimated superconducting critical temperature of the testing set (TS) of data serves as the
fitness of the particle. The implemented procedures for SVR algorithm development for
each particle are as follows; (a) mapping function selection from Gaussian, sigmoid and
polynomial function (b) training of SVR algorithm with mth particle, training dataset and
the selected mapping function in Step a. (c) Support vectors generated and acquired at
Step b are subjected to validation and evaluation using a testing dataset through RMSE
computation. (d) The trained SVR algorithm is evaluated using RMSE obtained from Step
c. (e) Step b to Step d are repeated for other particles in the swarm, while the best particle
position (as represented by the lowest RMSE of the testing set of data) is recorded and
saved as ςm(k). (f) Repeat Step a to Step e for other mapping functions, while the best
particle position as represented by the lowest testing data RMSE for all the investigated
mapping functions is recoded and saved as γm(k).

Step IV: Updating the position of individual best if necessary: if ςcurrent > ςm,
update as ςcurrent = ςm. Proceed to the next step if otherwise. ςcurrent represents the
current position.

Step V: Updating the global position if necessary: if ςcurrent > γm, then update as
ςcurrent = γm. Proceed to the next step if otherwise.
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Step VI: Check for the maximum number of particles: if the indexed particle is greater
than the defined maximum number of particles at the commencement of the optimization
process, proceed to the next step. Go back to Step III if otherwise.

Step VII: Global best position for fitness function evaluation: with γm, compute the
fitness function of the particles.

Step VIII: Updating the velocity and position: the positions of the particles are updated
using Equation (11), while Equation (10) updates the velocity.

Step IX: Stopping criteria: the entire cycles are repeated continuously, and the algo-
rithm is brought to stop if 50 consecutive iterations converge to the same RMSE value for
the testing dataset or the defined maximum iteration number is achieved. Figure 1 presents
a comprehensive flow chart of the developed PS-SVR-RAD and PS-SVR-LAT models.
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4. Results and Discussion

This section presents the outcomes of the developed PS-SVR-LAT and PS-SVR-RAD
models. The dependence of the convergence of the developed models with the size of the
populations is investigated. A comparison of the performances of the developed models
is presented.

4.1. Hybrid Model Convergence with the Population Size

The sensitivities of the developed PS-SVR-LAT and PS-SVR-RAD models to hyper-
parameters are presented in Figures 2 and 3, respectively. Figure 2a presents the conver-
gence of RMSE between measured and estimated superconducting critical temperature
for the testing set of data. The presented convergence depends on the size of the swarm
population, while local convergence was observed with the exploration of the search space
by 10 particles. Optimum convergence was attained with a population size of 50, while
a further increase in population size beyond this optimum value has no global solution
convergence significance. The variation of penalty factor with population size is presented
in Figure 2b for the developed PS-SVR-LAT model that employs lattice parameters of
iron-based superconductor as descriptors. The presence of 10 particles within the search
space leaves the convergence of the penalty factor to a lower value. Optimum convergence
was attained with a population size of 50, as presented in Figure 2b. The error threshold
epsilon for the developed PS-SVR-LAT model investigated at different population sizes
is presented in Figure 2c, while the convergence of this parameter does not depend on
the population size. A similar value of convergence is attained using different numbers of
particles in the search space.

Figure 2d depicts the variation of the value of the mapping function parameter with the
particle population size. A total of 10 particles exploring the defined search space converge
at a lower value, while global convergence was achieved with a particle population size
of 50 and 100. For the sensitivity and convergence of the developed PS-SVR-RAD model,
Figure 3 presents the model convergence and sensitivity variations as a function of the
population size. Figure 3a shows the error convergence of the model. The obtained results,
as presented in the figure, show that the model convergence does not change with changes
in the size of the particle population. This confirms the robustness of the developed PS-
SVR-RAD model. Similar convergence was achieved with penalty factor convergence,
epsilon sensitivity convergence and kernel parameter sensitivity convergence, as presented
in Figure 3b–d, respectively. The values of each of the parameters as obtained from PSO
are presented in Table 1 for the developed PS-SVR-LAT and PS-SVR-RAD models.

Table 1. Global solutions for support vector regression (SVR) parameters obtained using particle
swarm optimization (PSO). (PS = particle sarm, LAT = lattice, RAD = radii).

Hyper-Parameter PS-SVR-LAT PS-SVR-RAD

Epsilon 0.8 0.0001
Mapping function Gaussian Gaussian

Population size 50 10
Lambda hyper-parameter E-7 E-7

Penalty factor 128.9911 9.8887
Kernel parameter 0.7263 0.009



Materials 2021, 14, 4604 9 of 14

Materials 2021, 14, x FOR PEER REVIEW 9 of 15 
 

 

while a further increase in population size beyond this optimum value has no global so-
lution convergence significance. The variation of penalty factor with population size is 
presented in Figure 2b for the developed PS-SVR-LAT model that employs lattice param-
eters of iron-based superconductor as descriptors. The presence of 10 particles within the 
search space leaves the convergence of the penalty factor to a lower value. Optimum con-
vergence was attained with a population size of 50, as presented in Figure 2b. The error 
threshold epsilon for the developed PS-SVR-LAT model investigated at different popula-
tion sizes is presented in Figure 2c, while the convergence of this parameter does not de-
pend on the population size. A similar value of convergence is attained using different 
numbers of particles in the search space. 

 

Figure 2. Convergence and PS-SVR-LAT model sensitivity to hyper-parameters. (a) PS-SVR-LAT model sensitivity to root 
mean square error(RMSE) at various population size (b) PS-SVR-LAT model sensitivity to penalty factor at various pop-
ulation size (c) PS-SVR-LAT model sensitivity to epsilon at various population size (d) PS-SVR-LAT model sensitivity to 
kernel parameter at various population size. 

Figure 2. Convergence and PS-SVR-LAT model sensitivity to hyper-parameters. (a) PS-SVR-LAT model sensitivity to
root mean square error(RMSE) at various population size (b) PS-SVR-LAT model sensitivity to penalty factor at various
population size (c) PS-SVR-LAT model sensitivity to epsilon at various population size (d) PS-SVR-LAT model sensitivity to
kernel parameter at various population size.

4.2. Evaluation and Comparison of the Performance of the Developed Hybrid Models

A comparison of the performance of the developed PS-SVR-RAD and PS-SVR-LAT
models is presented in Figure 4 using RMSE, MAE and CC performance metrics for the
training and testing phases of model development. Figure 4a,b, respectively, presents the
comparison of the performance of the developed PS-SVR-RAD and PS-SVR-LAT models
during the training phases using RMSE and MAE metrics. The developed PS-SVR-RAD
model outperforms the PS-SVR-LAT model with performance superiority of 31.60 and
67.92%, as presented in Figure 4a,b, respectively. A similar comparison on the basis of CC
shows a performance improvement of 25.65%, as presented in Figure 4c. Testing stage
performance comparison is presented in Figure 4d–f on the basis of RMSE, MAE and CC,
respectively. The developed PS-SVR-LAT model shows a superior performance of 68.43,
68.22 and 12.73% on the basis of RMSE, MAE and CC, respectively, over the PS-SVR-RAD
model. The performances of each of the developed models with their corresponding
evaluation parameters are presented in Table 2 for the training and testing phase of model
development. Considering the entire data points (training and testing sets), the developed
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PS-SVR-RAD model performs better than the PS-SVR-LAT model, with performance
improvement of 15.28, 7.62 and 72.12%, on the basis of RMSE, CC and MAE, respectively,
using the root mean square error (RMSE), coefficient of correlation (CC) and mean absolute
error as performance measuring criteria.
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Table 2. Comparison of the model performance evaluation parameters. (CC = correlation coefficient,
RMSE = root mean square error, MAE = mean absolute error).

Stage Training Testing

Model CC RMSE MAE CC RMSE MAE

PS-SVR-
RAD 0.768 2.2987 1.6868 0.9897 0.8329 0.6426

PS-SVR-
LAT 0.965 1.7468 0.5411 0.8637 2.6389 2.0222
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Figure 4. Performance evaluation and comparison for the developed PS-SVR-RAD and PS-SVR-LAT models.(a) comparison
of the root mean square error of the developed model during training phase (b) comparison of the mean absolute error of
the developed model during training phase (c) comparison of the correlation coefficient of the developed model during
training phase (d) comparison of the root mean square error of the developed model during testing phase (e) comparison of
the mean absolute error of the developed model during testing phase (f) comparison of the correlation coefficient of the
developed model during testing phase.

4.3. Comparison of the Results of Developed Hybrid Models with Experimental Values

A comparison of the outcomes of the developed hybrid PS-SVR-LAT and PS-SVR-
RAD models with the experimental values is presented in Table 3. The table also presents
the absolute error between the estimated superconducting critical temperature (Tc) and
measured values. The results of the developed PS-SVR-RAD model agree well with the
measured values, while only a few compounds show little deviation. The results of the
developed PS-SVR-LAT model also agree well with the measured values. The intrinsic
properties of the SVR-based algorithm with excellent modeling strength, even with a
limited number of data points, enhance the predictive capacity of the developed hybrid
PS-SVR models.
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Table 3. Outcomes of the developed hybrid models and their comparison with the measured values [29–31].

Iron-Based
Compound Tc (K) PS-SVR-RAD

(K)
Absolute

Error
Iron-Based
Compound Tc (K) PS-SVR-LAT

(K)
Absolute

Error

KFe2Se2 30.00 30.00 0.00 KFe2Se2 30.00 30.32 0.32
K0.86Fe2Se1.82 31.00 31.00 0.00 K0.86Fe2Se1.82 31.00 30.20 0.80
K0.8Fe2Se1.96 29.50 29.50 0.00 K0.8Fe2Se1.96 29.50 31.37 1.87

K0.86Fe1.84Se2.02 30.00 30.00 0.00 * K0.8Fe2Se2 33.00 31.48 1.52
K0.8Fe1.6Se2 32.00 32.00 0.00 K2Fe4Se5 32.00 32.23 0.23

Rb0.78Fe2Se1.78 32.00 32.00 0.00 K0.86Fe1.84Se2.02 30.00 30.80 0.80
Rb0.8Fe2Se2 31.00 27.61 3.39 * K0.8Fe1.6Se2 32.00 31.40 0.60

* Cs0.86Fe1.66Se2 30.00 30.00 0.00 Rb0.78Fe2Se1.78 32.00 31.20 0.80
Cs0.8Fe2Se1.96 27.00 27.00 0.00 Rb2Fe4Se5 32.00 32.80 0.80

TlFe1.7Se2 22.50 22.50 0.00 Cs0.86Fe1.66Se2 30.00 27.81 2.19
* Tl0.75K0.25Fe1.85Se2 31.00 27.61 3.39 Cs0.8Fe2Se1.96 27.00 27.80 0.80
Tl0.61K0.39Fe1.76Se2 25.10 25.10 0.00 Cs2Fe4Se5 29.00 29.80 0.80
Tl0.58Rb0.42Fe1.72Se2 32.00 32.00 0.00 * Tl0.75K0.25Fe1.85Se2 31.00 30.83 0.17

* K0.8Fe2Se1.4S0.4 32.80 33.20 0.40 Tl0.61K0.39Fe1.76Se2 25.10 26.67 1.57
K0.8Fe2Se1.6S0.4 33.20 33.20 0.00 Tl2Fe4Se5 31.00 29.49 1.51
K0.8Fe2Se1.2S0.8 24.60 24.60 0.00 Tl0.58Rb0.42Fe1.72Se2 32.00 31.43 0.57
K0.8Fe2Se0.8S1.2 18.20 18.20 0.00 Rb2Fe4Se5 28.00 29.00 1.00
BaFe1.9Co0.1As2 19.00 19.00 0.00 K0.8Fe2Se1.4S0.4 32.80 28.30 4.50

BaFe1.866Co0.134As2 25.00 25.00 0.00 K0.8Fe2Se1.6S0.4 33.20 28.14 5.06
BaFe1.81Co0.19As2 19.00 19.00 0.00 * K0.8Fe2Se1.2S0.8 24.60 24.32 0.28
BaFe1.85Co0.15As2 25.00 25.00 0.00 K0.8Fe2Se0.8S1.2 18.20 23.26 5.06

* BaFe1.85Co0.15As2 25.50 25.00 0.50
BaFe1.8Co0.2As2 24.50 24.50 0.00

BaFe1.85Co0.15As2 25.30 25.00 0.30
BaFe1.84Co0.16As2 22.00 22.00 0.00
BaFe1.9Ni0.1As2 20.00 20.00 0.00

BaFe1.91Ni0.09As2 18.00 18.00 0.00
* Ba0.6K0.4Fe2As2 38.00 37.50 0.50
Ba0.6K0.4Fe2As2 35.00 37.50 2.50
Ba0.6K0.4Fe2As2 37.50 37.50 0.00

Ba0.67K0.33Fe2As2 38.00 37.55 0.45
Ba0.65K0.35Fe2As2 34.00 34.00 0.00
Ba0.55K0.45Fe2As2 23.00 27.61 4.61
Ba0.3K0.7Fe2As2 22.00 22.00 0.00
Ba0.1K0.9Fe2As2 9.00 17.72 8.72

K0.8Fe2As2 31.00 31.00 0.00
* Cs0.8Fe2Se2 30.00 27.61 2.39

Tl0.63K0.37Fe1.78Se2 29.00 29.00 0.00
Ba0.55K0.45Fe2As2 30.00 27.61 2.39

* Ba0.87La0.13Fe2As2 22.50 27.61 5.11
K0.8Fe1.78Se2 32.00 32.00 0.00
Rb0.8Fe1.6Se2 32.40 32.40 0.00

* test set of data.

5. Conclusions

The superconducting transition temperatures of 122 families of iron-based supercon-
ductors are modeled in this work using hybridization of particle swarm optimization
algorithm with support vector regression. The developed PS-SVR-LAT model employs
the lattice parameters emanated from tetragonal to orthorhombic structural transforma-
tion as descriptors while the ionic radii, as well as the concentration of the incorporated
dopants, serve as the descriptors to the developed PS-SVR-RAD model. The developed
PS-SVR-RAD model outperforms the PS-SVR-LAT model with performance superiority
of 31.60 and 67.92% using RMSE and MAE for performance comparison for the training
phase of model development. The developed PS-SVR-RAD model can easily model the
122-type of iron-based superconductors with four different incorporated dopants. The
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performance superiority, flexibility to accommodate multiple dopants at the same time
and ease of implementation (since the ionic radii descriptors are easily fetched) of the
developed PS-SVR-RAD model are of immense significance in effectively tailoring the
superconducting critical temperature of a doped 122-type iron-based superconductor for
specific and desired applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14164604/s1. The supplementary material contains the set of data employed in building
the presented models.
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