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In 2002, intracellular protein complexes known as the inflammasomes were
discovered and were shown to have a crucial role in the sensing of intracellular
pathogen- and danger-associated molecular patterns (PAMPs and DAMPs). Activation
of the inflammasomes results in the processing and subsequent secretion of the
pro-inflammatory cytokines IL-1β and IL-18. Several autoinflammatory disorders such
as cryopyrin-associated periodic syndromes and Familial Mediterranean Fever have
been associated with mutations of genes encoding inflammasome components.
Moreover, the importance of IL-1 has been reported for an increasing number of
autoinflammatory skin diseases including but not limited to deficiency of IL-1 receptor
antagonist, mevalonate kinase deficiency and PAPA syndrome. Recent findings have
revealed that excessive IL-1 release induced by harmful stimuli likely contributes to the
pathogenesis of common dermatological diseases such as acne vulgaris or seborrheic
dermatitis. A key pathogenic feature of these diseases is IL-1β-induced neutrophil
recruitment to the skin. IL-1β blockade may therefore represent a promising therapeutic
approach. Several case reports and clinical trials have demonstrated the efficacy of
IL-1 inhibition in the treatment of these skin disorders. Next to the recombinant IL-1
receptor antagonist (IL-1Ra) Anakinra and the soluble decoy Rilonacept, the anti-IL-1α

monoclonal antibody MABp1 and anti-IL-1β Canakinumab but also Gevokizumab,
LY2189102 and P2D7KK, offer valid alternatives to target IL-1. Although less thoroughly
investigated, an involvement of IL-18 in the development of cutaneous inflammatory
disorders is also suspected. The present review describes the role of IL-1 in diseases
with skin involvement and gives an overview of the relevant studies discussing the
therapeutic potential of modulating the secretion and activity of IL-1 and IL-18 in such
diseases.
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INTERLEUKIN-1 FAMILY

Cytokines comprise a variety of molecules secreted by immune and non-immune cells that
regulate important cellular functions and physiological processes especially in the hematopoietic
and immune systems. One important class of cytokines are the interleukins, a large family of
small secreted proteins that bind to specific membrane receptors on target cells. The history of
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interleukins, and particularly of interleukin-1 (IL-1), began in
1948 when Paul B. Beeson discovered an active unknown
substance obtained from rabbit leukocytes that was able to
cause fever (Beeson, 1948). Decades later, Dinarello et al.
(1974, 1977) identified two chemically and biologically distinct
pyrogenic molecules produced by neutrophils and monocytes
incubated with heat-killed Staphylococcus albus; he named them
human leukocytic pyrogens (LP). Before him, Gery et al. (1972)
reported that the stimulation of murine and human lymphocytes
with lipopolysaccharide (LPS), an essential component of
Gram-negative bacteria, led to the release of a soluble factor
that was able to enhance the response of T lymphocytes to
lectins (phytohemagglutinin and concanavalin A). In 1979, the
molecules with inflammatory properties reported by Charles
Dinarello and Igal Gery revealed to be the same, namely IL-1
(Rosenwasser et al., 1979). Following progress in sequencing
technologies, it turns out that the IL-1 family comprises a total
of eleven members with similar or distinct biological effects.
In addition to IL-1α and β, IL-18, IL-33, IL-36α, β and γ

are pro-inflammatory, whilst, IL-1 receptor agonist (IL-1Ra),
IL-36Ra, IL-37, and IL-38 are anti-inflammatory. Genes encoding
IL-1 family members are mostly located on human chromosome
2 with two exceptions, namely the genes encoding IL-18 and
IL-33 that are located on chromosomes 11 and 9, respectively.

IL-1β is not only secreted by immune cells such as
monocytes/macrophages, dendritic cells, neutrophils, B
lymphocytes and NK cells but also by non-immune cells
such as keratinocytes (Dinarello, 2009; Feldmeyer et al., 2010).
IL-1β is able to act on a broad range of cell types (Dinarello, 2009,
2011). It is a key mediator of the acute phase of inflammation
inducing local and systemic responses. Its effects are numerous
and include the secretion of downstream pro-inflammatory
mediators such as cyclooxygenase type-2 (COX-2), IL-6, Tumor
Necrosis Factor (TNF) and IL-1 itself (Dinarello, 1996; Weber
et al., 2010). In the body, the inflammatory effects of IL-1
manifest as fever, vasodilation and hypotension as well as an
increased sensitivity to pain. The pyrogenic activity of IL-1 is
due to the activation of NF-κB and the resulting expression of
COX-2, an enzyme involved in the synthesis of prostaglandins
(Lee et al., 2004).

IL-1 cytokines bind to and act through specific
receptors, which are characterized by intracellular
Toll/Interleukin-1 receptor (TIR) domains and an extracellular
immunoglobulin-like binding domain (Boraschi and Tagliabue,
2013). The IL-1 receptor family comprises several members
including IL-1R1, the decoy receptor IL-1R2, IL-1R accessory
protein (IL-1RaP or IL-1R3), IL-1R4 (T1 or ST2), IL-18Rα

(IL-1R5), IL-36R (IL-1R6), IL-18R accessory protein (IL-18Rβ

or IL-1R7), IL-1R8 (TIR8), IL-1R9 (IL-1RAPL2), and IL-1R10
(TIGIRR).

IL-1α/IL-1β, IL-18, and IL-36 initiate immune and
inflammatory responses by binding to IL-1R1, IL-18Rα,
and IL-36R, respectively. The co-receptor IL-1RaP interacts
with IL-1R1, IL-1R2, IL-1R4, and IL-36R while IL-18Rβ is a
unique accessory chain for IL-18Rα. The decoy receptor IL-1R2
lacks the cytoplasmic TIR domains and is therefore unable to
initiate a signaling cascade even in the presence of its accessory

receptor. IL-1R2 binds IL-1β with high affinity and IL-1α or
IL-1Ra with low affinity (Symons et al., 1995). The biological
activity of IL-1 family cytokines is tightly regulated not only by
decoy receptors but also by soluble receptor antagonists such
as IL-1Ra and IL-36Ra that can specifically antagonize IL-1α,
IL-1β, and IL-36. In addition, IL-1R1 can be released into the
extracellular space where, in its soluble form (sIL-1R1), it can
also function as a soluble decoy receptor and prevent the binding
of IL-1α, IL-1β, and IL-1Ra to membrane IL-1R1 (Burger et al.,
1995). Furthermore, IL-1R2 can also be cleaved and solubilized
by metalloproteinases resulting in an increased segregation of
IL-1β due to its higher affinity (Symons et al., 1995).

First identified and described as interferon-γ-inducing factor
(IGIF) (Nakamura et al., 1989, 1993), IL-18 received its current
name 3 years later (Ushio et al., 1996). In contrast to the strong
pyrogenic activity of IL-1α and IL-1β, IL-18 is only able to
induce fever at higher concentrations. IL-18 activates primarily
p38 MAPK and AP-1, but fails to activate NF-κB (Lee et al., 2004).
IL-18 activity is mainly regulated by a soluble protein called IL-18
binding protein (IL-18BP). IL-18BP differs from the other soluble
IL-1 receptors because it retains a unique binding sequence
composed by a single immunoglobulin domain (Dinarello et al.,
2013). Similar to the IL-1Rs, IL-18Rs can also be found in a
soluble form that is used as a biomarker for inflammatory diseases
such as rheumatoid arthritis (RA) and adult-onset Still’s disease
(AoSD) (Takei et al., 2011).

Both IL-1β and IL-18 are first synthesized as precursors which
need to be processed into their biologically active form by a
cytoplasmic protein complex known as the inflammasome. In
contrast, both pro and cleaved forms of IL-1α are biologically
active and induce, via IL-1R1 signaling, the production of TNFα

and IL-6 in human A549 epithelial cells and peripheral blood
mononuclear cells (PBMCs) (Kim et al., 2013). The transcription
of the IL-1α gene is regulated by a variety of stimuli including
proinflammatory or stress-associated stimuli and growth factors
(Di Paolo and Shayakhmetov, 2016). Pro-IL-1α lacks a signal
secretion peptide, however, its release from dying cells is able
to trigger acute inflammation (Chen et al., 2007). IL-1α can
be translocated to the plasma membrane where it signals in
an intra and paracrine manner but can also be secreted in its
mature form via both IL-1β-dependent or independent pathways
(Fettelschoss et al., 2011; Gross et al., 2012). Since pro-IL-1α

contains a nuclear localization signal, it can induce the expression
of proinflammatory genes independently of IL-1R1 signaling
(Werman et al., 2004). Because of the multiplicity of mechanisms
of action of IL-1α, it plays an important role in the maintenance
of homeostasis and the pathology of several human diseases (Di
Paolo and Shayakhmetov, 2016).

PATHOGEN RECOGNITION RECEPTORS

Pathogen recognition is fulfilled by a distinct set of receptors,
the so-called pathogen-recognition receptors (PRRs). These
include C-type lectin receptors (CLRs), Toll-like receptors
(TLRs), retinoic acid-inducible gene I (RIG-I)-like receptors
(RLRs), nucleotide-binding oligomerization domain (NOD)-like
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receptors (NLRs), AIM2-like receptors (ALRs), and partially
the complement system. Such PRRs have different localizations
and ligands. For example: the complement system acts as
an extracellular sensor for conserved pathogen motives
(carbohydrates) and host antibodies; TLRs are found on cellular
membrane and endosomes and bind to a variety of molecules
including nucleic acids (TLR3, TLR8, TLR9, and TLR13), small
proteins (TLR2, TLR4, TLR11, and TLR12), lipopeptides and
lipoproteins (TLR1, TLR2, and TLR6), glycolipids (TRL2, TLR4)
and small drugs (TLR4, TLR7) (Leifer and Medvedev, 2016).
CLRs are either localized at the cell surface or in endosomes and
primarily bind to carbohydrates (mannose, fucose, GlcNAc, and
β-1,3-glucan) in a Ca2+-dependent manner but the recognition
of proteins, lipids and inorganic compounds like CaCO3 has also
been reported (Zelensky and Gready, 2005).

Retinoic acid-inducible gene I (RIG-I)-like receptors and
NLRs are exclusively located in the cytosol. RLRs include RIG-I,
MDA5 and the co-receptor LGP2. They are specialized in the
sensing of viral double-stranded RNA (Reikine et al., 2014). NLRs
constitute an expanding family of receptors able to detect a
variety of molecules. They are composed of several domains: the
central NOD or nucleotide-binding domain (NBD) that includes
a NTPase NACHT domain controlling self-oligomerization, and
the leucine-rich repeat (LRR) domain involved in ligand sensing
(Schroder and Tschopp, 2010). On their N-terminal extremity,
NLRs have either a pyrin domain (PYD), a caspase-recruitment
domain (CARD) or a baculoviral inhibition of apoptosis protein
repeat domain (BIR) and are consequently named NLRPs,
NRLCs or NAIPs, respectively.

THE INFLAMMASOMES

In 2002, the group of Prof. Tschopp described a multiprotein
complex able to oligomerize and activate inflammatory caspases
leading to the processing of IL-1β and IL-18 (Martinon et al.,
2002). This complex was named NLR PYD-containing protein 1
(NLRP1)-inflammasome and was shown to contain the scaffold
NLRP1 interacting via PYD with the adaptor protein apoptosis-
associated speck-like protein containing a CARD (ASC, also
known as PYCARD) which can then recruit the inflammatory
procaspase, caspase-1(also known as IL-1β-converting enzyme
or ICE). Upon sensing of appropriate ligands and subsequent
inflammasome activation, procaspase-1 is autocatalytically
cleaved and activated (Wilson et al., 1994). Active caspase-1
can then process IL-1β and IL-18 and the biologically active
cytokines are secreted in an unconventional golgi/endoplasmic
reticulum-independent manner (Keller et al., 2008). The NLRP1
inflammasome is able to sense bacterial peptidoglycan muramyl
dipeptide (MDP) (Hsu et al., 2008) and can be activated in
keratinocytes by ultraviolet B (UVB) irradiation (Feldmeyer
et al., 2007). Mutations in the Nlrp1 gene have been linked
to susceptibility to vitiligo-associated autoimmune diseases
(Jin et al., 2007), systemic lupus erythematosus (SLE) and RA
(Masters, 2013). Gain-of-function mutations of the NLRP1 gene
were recently described in two skin disorders, namely multiple
self-healing palmoplantar carcinoma (MSPC) and familial

keratosis lichenoides chronica (FKLC). NLRP1 mutations result
in the blockade of the autoinhibitory effect of NLRP1 PYD
domain and lead to an increased activation of the inflammasome
(Zhong et al., 2016). NLRP1 also contains a C-terminal CARD
domain which mediates direct interaction with caspase-1.
A recent study has demonstrated that anthrax lethal factor
can cleave the PYD domain of murine but not human NLRP1
causing its activation. This identifies proteolysis as an alternative
activation mechanism for NLRP1 (Chavarria-Smith et al., 2016).

The NLRP3 inflammasome is the best characterized
inflammasome to date, and a broad range of stimuli can induce
its activation. These include PAMPs such as LPS, fungal zymosan,
bacterial toxins, and also the bacteria Listeria monocytogenes
(Meixenberger et al., 2010), S. aureus (Munoz-Planillo et al.,
2009), and Propionibacterium acnes (Kistowska et al., 2014b; Qin
et al., 2014), as well as yeasts like Candida albicans (Hise et al.,
2009) and of the Malassezia spp. (Kistowska et al., 2014a). NLRP3
can also be activated by danger-associated molecules that are not
derived from pathogens but often associated with cellular stress,
the so-called DAMPs, including extracellular ATP (Mariathasan
et al., 2006), asbestos (Dostert et al., 2008), amyloid-β (Halle
et al., 2008), DNA:RNA hybrids (Kailasan Vanaja et al., 2014),
and crystals such as gout-causing monosodium urate (MSU)
(Martinon et al., 2006), silica (Dostert et al., 2008), or cholesterol
(Duewell et al., 2010). Interestingly, the study of patients
with autosomal dominant cold-induced urticaria, later termed
familial cold autoinflammatory syndrome (FCAS), allowed the
identification of mutations in the CIAS1/cryopyrin/NLRP3 gene
(Hoffman et al., 2001). These studies permitted major advances
in the identification and understanding of autoinflammatory
diseases but also resulted in a gain of interest in IL-1β biology
and its role in inflammatory disorders.

Since such a broad range of stimuli can activate the
NLRP3 inflammasome, it is believed that a common mechanism
triggered by diverse activators leads to NLRP3 activation. Several
events such as the release of oxidized mitochondrial DNA
(Shimada et al., 2012), production of reactive oxygen species
(ROS) (Dostert et al., 2008), mitochondrial stress (Zhou et al.,
2011), lysosomal rupture with cathepsin B release (Hornung
et al., 2008), changes in intracellular calcium (Ca2+) levels
(Murakami et al., 2012) and potassium (K+)-efflux (Petrilli et al.,
2007) have been reported to be associated to inflammasome
activation (Figure 1). Whether all or only a part of these
events are required for NLRP3 inflammasome activation is
not clear. Munoz-Planillo et al. (2013) suggested that the
sole reduction of intracellular K+ was sufficient for NLRP3
inflammasome activation but recent reports have suggested that,
in certain circumstances, inflammasome activation can occur
independently of K+-efflux (Gross et al., 2016) or phagocytosis of
bacteria (Chen et al., 2016). Moreover, the activity of the NRLP3
inflammasome has also been reported to be controlled by kinases
such as Bruton’s tyrosine kinase (BTK) interacting with NLRP3
and ASC thus favoring the recruitment of caspase-1 (Ito et al.,
2015), and JNK or Syk kinases regulating ASC oligomerization
(Hara et al., 2013; Okada et al., 2014). ROS were shown to activate
NEK7, a kinase involved in the control of mitosis, causing its
direct binding to the LRR domain of NLRP3 and modulating
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FIGURE 1 | Regulation of IL-1/18 production and current IL-1/18 antagonists. Pathogen- and danger-associated molecular patterns can induce the formation
of a functional inflammasome via events including mitochondrial stress with release of oxidized mtDNA, ROS, lysosomal destabilization with cathepsin B release,
changes in intracellular calcium (Ca2+) and potassium (K+) efflux. Also, mutations of NACHT-PYD domains of NLRP3 in cryopyrin-associated periodic syndromes
(CAPS) lead to the activation of the NLRP3 inflammasome. Similarly, mutations of B30.2 domains in familial Mediterranean fever (FMF) and of PSTPIP1 in PAPA
syndrome or accumulation of geranylgeranylated proteins (GG-proteins) in mevalonate kinase deficiency (MKD) lead to activation of the pyrin inflammasome.
Activated inflammasomes recruit procaspase-1 via the adaptor ASC. Autocatalytically cleaved and activated caspase-1 can then process IL-1β and IL-18. The
secreted cytokines bind to the IL-1 receptor (IL-1R1:IL-1RaP) and IL-18 receptor (IL-18Rα:IL-18Rβ), respectively, resulting in NF-κB and MAPKs signaling. Soluble
IL-1R1 (sIL-1R1), IL-1R2 and IL-18 binding protein (IL-18BP) can block the signaling pathway. Caspase-1 activity can be modulated by the specific inhibitors
Pralnacasan and Belnacasan. The activation of the NLRP3 inflammasome can be inhibited with Glibenclamide and curcumin inhibiting or downregulating the
ATP-sensitive K+-channels P2X7, respectively; with Resveratrol increasing autophagy and inhibiting mitochondrial stress; and with the specific NLRP3 inhibitors
MCC950 and BHB. Anakinra and the secreted IL-1 receptor antagonist (IL-1Ra), absent in deficiency of IL-1 receptor antagonist (DIRA) patients, compete with
IL-1β and IL-1α (not shown) for binding to the IL-1 receptor. Rilonacept acts as a soluble decoy binding IL-1β and with lower affinity IL-1α (not shown) and IL-1Ra.
The recombinant antibodies Canakinumab, Gevokizumab, LY2189102, and P2D7KK specifically target and neutralize IL-1β. Similarly, GSK-1070806 and
MABp1 inhibits IL-18 and IL-1α (not shown), respectively. Blue arrows: inhibitory effect; dotted arrow: low affinity; ASC, apoptosis associated speck-like domain
protein containing a CARD; MSU, monosodium urate; mtDNA, mitochondrial DNA; ROS, reactive oxygen species.

its function (He et al., 2016; Shi et al., 2016). The consensual
and unifying mechanism leading to NLRP3 inflammasome is
currently a matter of intense debate and investigation.

The absent in melanoma 2 (AIM2) inflammasome
recognizes viral and bacterial double-stranded DNA (dsDNA)
via its PYHIN domain (Muruve et al., 2008). AIM2, like NLRP3,
recruits caspase-1 via the adaptor protein ASC. Increased levels
of AIM2 were found in keratinocytes of patients with psoriasis
and atopic dermatitis, causing acute and chronic skin barrier
disruption-related inflammation (Ito et al., 2015).

The NLRC4 inflammasome is activated by bacterial flagellin
(Mariathasan et al., 2004) and type 3 secretion system proteins
(Miao et al., 2010). NLRC4 contains a CARD domain and
is therefore able to recruit and activate caspase-1 without the

adaptor ASC. Salmonella typhimurium is reported to activate
NLRC4 by inducing its phosphorylation by protein kinase C
δ-type (PKCδ) (Qu et al., 2012). Moreover, NLRC4 can recruit
NLRP3 resulting in increased caspase-1 processing (Qu et al.,
2016). Reported NLRC4 gene mutations cause recurrent fever
flares and macrophage activation syndrome (MAS) (Canna
et al., 2014), neonatal-onset enterocolitis and fatal or near-fatal
episodes of autoinflammation (Romberg et al., 2014). A missense
mutation of NLRC4 was also associated with FCAS (Kitamura
et al., 2014).

The pyrin inflammasome is encoded by the MEFV gene and
contains PYD, TRIM, and B30.2 domains. This inflammasome
is activated by bacterial toxins like Clostridium difficile toxin
B (TcdB) and C3 toxins (Park et al., 2016). Mutations in
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this gene are the cause of familial Mediterranean fever (FMF)
(Chae et al., 2006) and the recently described disease-entity
pyrin-associated autoinflammation with neutrophilic dermatosis
(PAAND) (Masters et al., 2016). Mevalonate kinase deficiency
(MKD) was also linked to the activation of the pyrin
inflammasome (Park et al., 2016).

Other less characterized inflammasomes include NLRP2,
NLRC2, NLRP6, NLRP7, and NLRP12. Besides their role in
caspase-1 activation, they possess roles in activating/inhibiting
NF-κB as well as MAPK pathways and autophagy (Lupfer and
Kanneganti, 2013).

The involvement of caspase-5 in the processing of IL-1 was
already described in the original publication describing the
inflammasome (Martinon et al., 2002), but it is only a decade
later that its role in cell death was reported (Kayagaki et al.,
2011, 2015). Human caspase-4, caspase-5 and the orthologous
murine caspase-11 are activated by cytosolic LPS (Shi et al., 2014)
and can cleave the substrate gasdermin D (GSDMD). GSDMD
creates pores in the cell membrane resulting in pyroptosis,
an inflammatory form of programmed cell death (He et al.,
2015; Shi et al., 2015). Activated GSDMD can also induce the
formation of the NLRP3 inflammasome and subsequent IL-1β

and IL-18 secretion. This process known as the non-canonical
inflammasome activation, can occur either in a caspase-
1/inflammasome-dependent or independent manner (Man and
Kanneganti, 2016). Indeed, caspase-8, an initiator caspase mainly
involved in apoptosis, can be involved in the activation of
the NF-κB pathway and IL-1β/IL-18 processing. Recognition
by dectin-1 of extracellular fungi such as Candida albicans
results in the formation of a complex with CARD9, Bcl-10,
MALT1, ASC and caspase-8 which, once activated, can directly
process IL-1β. Interestingly, dectin-1 dependent internalization
of fungi drives instead the NLRP3 inflammasome (Gringhuis
et al., 2012). Moreover, activation of caspase-8 through the Fas-
signaling pathway can also lead to the direct processing of IL-1β

and IL-18 independently of caspase-1 and ASC (Bossaller et al.,
2012).

Other enzymes that are described to process IL-1 family
members include neutrophil-derived elastase, cathepsin G and
proteinase 3 (myeloblastin), mast cell-derived chymase and
granzyme B from cytotoxic lymphocytes and natural killer cells
(Afonina et al., 2015).

INHIBITION OF IL-1 SIGNALING

IL-1β Antagonists
Given the key role of IL-1β in inflammatory and
autoinflammatory disorders, several IL-1 inhibitors have
been developed and evaluated especially in life-threatening
autoinflammatory syndromes. To date, the most efficient way to
block IL-1 signaling consists of biologics that specifically target
IL-1 or IL-1R1 (Figure 1 and Table 1).

Anakinra (Kineret R©; Sobi, Inc.) is a recombinant non-
glycosylated homolog of IL-1Ra that competes with both
IL-1α and IL-1β for the binding to IL-1R1 thus impairing
the recruitment of IL-1RaP and downstream NF-κB/MAPKs
signaling. It is the first biologic developed to specifically
target IL-1. Anakinra was first approved in 2001 for the
treatment of RA. A decade later, its use was extended
to the treatment of cryopyrin-associated periodic syndromes
(CAPS) in Europe and for the severest form of CAPS,
namely chronic infantile neurological cutaneous and articular
syndrome (CINCA) in the USA. Anakinra has a short half-
life of 4–6 h and therefore common posology requirements
are daily subcutaneous injections of 100 mg/day for RA and
1–2 mg/kg/day for CINCA.

Rilonacept (Arcalyst R©; Regeneron) is a long-acting dimeric
fusion protein consisting of portions of IL-1R1 and IL-1RaP
linked to the Fc portion of human immunoglobulin G1 (IgG1).
Rilonacept acts a soluble decoy binding IL-1β, but also IL-
1α and IL-Ra, therefore inhibiting their association with cell
surface receptors (IL-1Trap). Rilonacept binds three times
stronger to IL-1β than to IL-1α and 12 times stronger to

TABLE 1 | Biologics and inhibitors of IL-1, IL-18, and inflammasome activation.

Name Trade name Company Class Target h1/2 Status

Anakinra Kineret R© Sobi, Inc. recIL-Ra IL-1α, IL-1β 4–6 hours Marketed

Rilonacept Arcalyst R© Regeneron srR (IL-1Trap) IL-1α, IL-1β, IL-Ra ∼7.5 days Marketed

Canakinumab (ACZ855) Ilaris R© Novartis mAb (IgG1/κ) IL-1β 23–26 days Marketed

Gevokizumab (XOMA 052) XOMA mAb (IgG2/κ) IL-1β 22 days Phase 3† discontinued

LY2189102 Eli Lilly and Co mAb (IgG4) IL-1β 16.8 days Phase 2

P2D7KK A∗STAR mAb (IgG1) IL-1β ∼2 weeks∗ Preclinical

Pralnacasan (VX-740) Vertex SMI Caspase-1 nd Phase 2†

Belnacasan (VX-765, HMR3480) Vertex SMI Caspase-1 nd Phase 2†

MCC950 SMI NLRP3 nd Preclinical

BHB SMI NLRP3 nd Preclinical

Glibenclamide (glyburide) Generic SMI KATP 10 hours Marketed

MABp1 XilonixTM XBiotech mAb (IgG1/κ) IL-1α 8 days Phase 3‡ Phase 2

GSK-1070806 GlaxoSmith-Kline mAb (IgG1/κ) IL-18 23–30 days Phase 2

srR, soluble recombinant receptor; SMI, small molecule inhibitor; KATP, ATP-sensitive potassium channels; h1/2, half-life; nd, not determined. ∗Estimation. †Clinical trial
was terminated. ‡Only for the treatment of colorectal and non-small cell lung cancers.
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IL-1β than to IL-1Ra. It was approved by the FDA in 2008
for the treatment of CAPS including FCAS and Muckle-Wells
syndrome (MWS). Rilonacept has a half-life of 6.3–8.6 days
which allows a weekly subcutaneous administration of 320 mg
(loading dose) followed by weekly injections of half the loading
dose.

Canakinumab (ACZ885, Ilaris R©; Novartis) is a human
anti-IL1β monoclonal IgG1/κ isotype antibody with a terminal
half-life of 23–26 days and can be therefore administered as a
single subcutaneous injection every 2 months.

Canakinumab was approved by the FDA in 2009
for the treatment of CAPS and active systemic juvenile
idiopathic arthritis. Recently, it received approval from the
FDA as first-line treatment for TNF receptor associated
periodic syndrome (TRAPS), MKD and FMF (FDA,
2016).

Gevokizumab (XOMA 052; XOMA) is a recombinant
humanized anti-IL-1β antibody. In contrast to Canakinumab,
which neutralizes IL-1β by competing for binding to IL-
1R, Gevokizumab modulates IL-1β bioactivity by reducing its
affinity for IL-1R1:IL-1RAcP signaling complex (Blech et al.,
2013).

The clinical development of this antibody was interrupted in
2016 after a phase 3 clinical trial evaluating Gevokizumab for the
treatment of uveitis in patients with Behçet’s disease did not meet
the primary endpoint criteria (Xoma, 2015, 2016).

Gevokizumab showed promising results in phase 2 trial on
acne vulgaris (Xoma, 2013) but failed to show benefits in the
treatment of pyoderma gangrenosum (Xoma, 2016).

LY2189102 (Eli Lilly and Co) is a high affinity anti-IL-1β

humanized monoclonal immunoglobulin G4 with a terminal
half-life of 16.8 days (Bihorel et al., 2014). A weekly treatment
of patients suffering from type 2 diabetes mellitus (T2DM)
with LY2189102 for 3 months resulted in modest reductions in
glycated hemoglobin and blood glucose (Sloan-Lancaster et al.,
2013). No further studies have been conducted to date.

P2D7KK is another neutralizing monoclonal antibody against
IL-1β developed by A∗STAR researchers in Singapore. It shares
the same mechanism of action as Canakinumab but with an
in vitro neutralization potency that is 11 times higher. P2D7KK
has not been evaluated in human subjects yet but has shown
promising effects in three different inflammatory animal models
(Goh et al., 2014).

Virus-like particles (VLPs)-based vaccination constitutes
a novel approach to target cytokines (Assier et al., 2017).
Recombinant mutated IL-1β chemically cross-linked to
bacteriophage Qβ VLPs (hIL1βQβ) was investigated in a
phase 1 clinical trial for T2DM resulting in safe production of
specific IL-1β antibodies in the treated patients (Cavelti-Weder
et al., 2016).

Inflammasome Inhibitors
Other possibilities to block IL-1β include the targeting of
caspase-1 and NLRP3. Two caspase-1 inhibitors have been
developed, namely Pralnacasan (VX-740) and Belnacasan
(VX-765, also HMR3480) (Vertex Pharmaceuticals). These orally
absorbed compounds are synthetized as prodrugs which are

then converted into the active principle, VRT-018858 and
VRT-043198, respectively.

Pralnacasan has been evaluated in clinical trials for the
treatment of RA and osteoarthritis but due to safety issues its
development has been interrupted (Braddock and Quinn, 2004;
Vertex, 2007).

Belnacasan was shown to inhibit IL-1β and IL-18 release
from PBMCs of FCAS patients in vitro (Stack et al., 2005). It
induces anti-inflammatory effects in a mouse model of delayed-
type hypersensitivity (DTH) (Wannamaker et al., 2007) and it has
been evaluated in phase 1 and 2a clinical trials in the setting of
epilepsy and psoriasis (Vertex, 2011).

NLRP3 inhibitors include MCC950, β-hydroxybutyrate
and glibenclamide. MCC950 is a small-molecule able to
block canonical and non-canonical NLRP3-induced ASC
oligomerization without interfering with NLRC4 and AIM2
activity or TLR signaling (Coll et al., 2015). MCC950 has
been shown to be effective for the treatment of CAPS in mice
harboring activating Nlrp3 mutations (Coll et al., 2015) and in
mouse models of dermal and airway inflammation (Primiano
et al., 2016). β-hydroxybutyrate (BHB) is an anti-inflammatory
molecule that specifically targets NLRP3 activity. In murine
models of FCAS and MWS, BHB inhibited constitutive NLRP3
inflammasome activation (Youm et al., 2015). Glibenclamide
(glyburide), is an anti-diabetic drug used in the treatment of
T2DM. It inhibits the ATP-sensitive K+ channel and was shown
to block the NLRP3 inflammasome activation induced by LPS,
ATP, nigericin and silica (Lamkanfi et al., 2009). These inhibitors
present a potential advantage in the treatment of CAPS since
they specifically target the NLRP3 inflammasome impacting both
IL-1β and IL-18 secretion.

Resveratrol and curcumin are natural polyphenols found in
several plants and are able to block IL-1β secretion. Resveratrol
was described to inhibit NLRP1, NLRP3, and NLRC4 activation
by preventing mitochondrial damage and augmenting autophagy
(Chang et al., 2015). Moreover, Resveratrol was shown to directly
bind and block COX-2 activity (Zykova et al., 2008) which
is known to be involved in NLRP3 activation (Hua et al.,
2015). Curcumin has been shown to impair IL-1β secretion in
PMA-treated macrophages by downregulating P2X7 receptor and
thus inhibiting the TLR4/MyD88/NF-κB pathway (Kong et al.,
2016).

IL-1α and IL-18 Blockers
In contrast to IL-1β, the development of IL-1α and IL-18
inhibitors is less advanced. The monoclonal antibody against
IL-1α, MABp1 (XilonixTM; XBiotech) is the only biologic
that specifically target this cytokine and it is currently under
investigation for the treatment of advanced cancer (Hong et al.,
2014; Hickish et al., 2017).

MABp1 has been evaluated for the treatment of psoriasis
(Coleman et al., 2015), acne vulgaris (Carrasco et al., 2015),
T2DM (Timper et al., 2015) and is currently being evaluated in
patients with hidradenitis suppurativa (HS) who were refractory
to anti-TNFα treatment (discussed below).

The only agent targeting the cytokine IL-18 is the
GSK-1070806 antibody (GlaxoSmithKline). In a study for
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the treatment of T2DM, GSK-1070806 did not reveal any
improvement in glucose control (McKie et al., 2016). However,
neutralization of IL-18 was shown to reduce the severity of
dextran sulfate sodium-induced colitis in mice (Siegmund et al.,
2001; Sivakumar et al., 2002).

SKIN DISEASES WITH IL-1
INVOLVEMENT

Keratinocytes are the most abundant cells in the skin and act
as a barrier against water loss and entry of pathogens and
irritants. Human keratinocytes constitutively express IL-1α, IL-β,
and IL-18 and possess all inflammasome components (Feldmeyer
et al., 2007).

Inflammation in the skin with extensive release of IL-1β is
often associated with neutrophilic infiltration as first line of
defense. In the absence of infection, neutrophils can become
detrimental for the host by causing tissue damage (Navarini et al.,
2016).

Monogenic Autoinflammatory Diseases
Monogenic autoinflammatory diseases are a rare group of
hereditary syndromes with early manifestation in childhood.
They present as inflammatory recurrent flares of fever and
skin lesions. Neutrophilic dermatosis is the most common
pathological hallmark of these syndromes (Lipsker et al.,
2016).

Cryopyrin-associated periodic syndromes are disorders
caused by mutations in the NLRP3 gene, previously known
as cold-induced autoinflammatory syndrome 1, which results
in uncontrolled processing of IL-1β and IL-18 (Figure 1).
CAPS is a spectrum of three syndromes of increasing
severity: familial cold autoinflammatory syndrome (FCAS,
OMIM #120100), Muckle-Wells syndrome (MWS, OMIM
#191900) and chronic infantile neurological cutaneous and
articular syndrome (CINCA, OMIM #697115) also known as
neonatal-onset multisystem inflammatory disease (NOMID).
They phenotypically share episodes of recurring fever, urticaria-
like skin-lesions, conjunctivitis and inflammatory joint pain.
In MWS and CINCA, progressive hearing loss and eye
inflammation occur; in CINCA, the most severe form of CAPS,
central nervous system inflammation is the most devastating
symptom leading to increased intracranial pressure and aseptic
meningitis (Goldbach-Mansky, 2011). The mutations in the
NLRP3 gene causing FCAS, MWS and CINCA were identified
long before the discovery of the inflammasome (Hoffman et al.,
2001; Aksentijevich et al., 2002). To date, 182 mutations in
the NLRP3 gene have been reported in the online registry
of hereditary autoinflammatory disorders mutations (Infevers,
2017).

Mouse models for FCAS and MWS were generated by
knocking-in NLRP3 with a L351P and A350V mutation,
respectively. Mating of these mice with Il1r1−/− mice confirmed
the pivotal role of IL-1β in the pathogenesis of these diseases but
did not completely rescue the phenotype suggesting a possible
IL-18 involvement (Brydges et al., 2009). Generation of FCAS

mice lacking both IL-1 and IL-18 receptors did not prevent the
mice from succumbing to the disease; this could be explained by
residual inflammation due to increased pyroptosis (Brydges et al.,
2013).

Although mutations in NLRP3 gene are the major cause of
CAPS, mutation in NLRC4 and NLRP12 have also been reported
in few cases (Jeru et al., 2008; Kitamura et al., 2014).

Biologics against IL-1β have revealed successful in the
treatment of CAPS. In 2003, a remarkable response after
6 months treatment with 100 mg/day of Anakinra, as was
reported in two MWS patients (Hawkins et al., 2003). Anakinra
was later revealed to be successful for the treatment of
FCAS (Hoffman et al., 2004) and CINCA (Lovell et al.,
2005). In a first clinical trial, 18 patients with CINCA
received injections of 1-2 mg/kg/day Anakinra resulting in
a rapid response in all patients (ClinicalTrials.gov Identifier:
NCT00069329) (Goldbach-Mansky et al., 2006). Withdrawal
of treatment resulted in relapse of the disease within days
and re-administration recovered the drug’s effects. Another
open-label study proved the efficacy of Anakinra treatment in
5 FCAS patients over a period of 16 months (ClinicalTrials.gov
Identifier: NCT00214851) (Ross et al., 2008).

In an open-label study, five patients with FCAS received a
300 mg loading dose of Rilonacept, resulting in improvement
of all symptoms within days of drug administration
(ClinicalTrials.gov Identifier: NCT00094900) (Goldbach-
Mansky et al., 2008). Under treatment with 100 mg/week
(max. 320 mg/week) symptoms were under control in all patients
for 24 months. In a randomized double-blind, placebo controlled
clinical trial, 47 patients with FCAS and MWS were enrolled and
injected weekly with 160 mg Rilonacept for 6 weeks. Ninety-six
percent of the patients receiving Rilonacept experienced at least
a 30% reduction in the mean key symptom score in contrast to
29% of patients receiving placebo (ClinicalTrials.gov Identifier:
NCT00288704) (Hoffman et al., 2008).

Neutralization of IL-1β with Canakinumab for the treatment
of CAPS was first described in a phase 3 study involving
35 patients. In the first open-label part, all patients received
a single subcutaneous 150 mg Canakinumab injection: 34
individuals had a complete response at day 29. In the second,
double-blind, placebo-controlled, randomized withdrawal part of
the study, all patients receiving the drug remained in remission
whereas 13 out of 16 patients receiving placebo experienced
a disease flare. In the third and final open-label part, all
enrolled patients received Canakinumab and 97% sustained
clinical and biochemical remission at the end of the study
(ClinicalTrials.gov Identifier: NCT00465985) (Lachmann et al.,
2009). Several other studies support the efficacy of Canakinumab
in the treatment of CAPS. In an open-label, phase 3 study with
166 patients, 78% of Canakinumab-naïve patients had a complete
response and 90% of the assessed patients were relapse-free over
the study period (ClinicalTrials.gov Identifier: NCT00685373)
(Kuemmerle-Deschner et al., 2011a). In another study, pediatric
MWS and CINCA patients achieved complete response within
1 week after the first Canakinumab injection (ClinicalTrials.gov
Identifier: NCT00487708) (Kuemmerle-Deschner et al., 2011b).
An additional report revealed that treatment with Canakinumab
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of CINCA resulted in clinical improvement in five out of six
patients but none experienced a full remission (ClinicalTrials.gov
Identifier: NCT00770601) (Sibley et al., 2015). Recently, a
long-term (26 months) open-label study of 19 CAPS patients,
revealed that 95% of the patients were relapse-free at the end of
the study and the treatment was well tolerated (ClinicalTrail.gov
Identifier: NCT00991146) (Yokota et al., 2016). Finally, results
from the β-confident register enrolling 288 CAPS patients showed
sustained safety of Canakinumab over a follow up period of up to
5 years. Eighty-six patients experienced severe adverse reactions
but only five discontinued the treatment (Hoffman et al., 2016,
meeting abstract) (ClinicalTrail.gov Identifier: NCT01213641).

Extensive studies on the pathogenesis of CAPS have revealed
how mutant NLRP3 has defective interaction with the IL-1β

maturation inhibitor cyclic AMP (Lee et al., 2012) or with its
negative regulator CARD8 (Ito et al., 2014). Small molecule
inhibitors were shown to be beneficial in mice models of
FCAS and MWS; the anti-inflammatory molecule BHB inhibits
constitutive NLRP3 inflammasome activity (Youm et al., 2015).
Additionally, the specific NLRP3 inhibitor MCC950 showed
efficacy in mouse models of CAPS harboring activating NLRP3
mutations (Coll et al., 2015), and in mouse models for dermal
and airway inflammation (Primiano et al., 2016).

Familial Mediterranean fever (FMF, OMIM #249100) is
an autosomal recessive disorder caused by gain-of-function
mutations in the MEFV gene encoding pyrin (French FMF
Consortium, 1997). Pyrin contains a 14-3-3 binding motif which,
when phosphorylated, regulates the compartmentalization
(Jeru et al., 2005) and inhibits the activity of pyrin (Park et al.,
2016). Pyrin mutations or inactivation of effector kinases
by bacterial toxins leave the protein unphosphorylated and
free to form a pyrin-inflammasome and activate caspase-1
(Chae et al., 2006; Figure 1). The current first-line treatment
for FMF is colchicine, which, via RhoA effector kinases, can
lead to pyrin phosphorylation and result in its inactivation
(Park et al., 2016). Symptoms of FMF include periodic fever
attacks, abdominal and chest pain, serositis, amyloidosis and
cutaneous inflammation (Jesus and Goldbach-Mansky, 2014).
Recently, a specific dominantly inherited S242R mutation in the
14-3-3 binding motif has been identified and shown to result in
pyrin-associated autoinflammation with neutrophilic dermatosis
(PAAND), an autoinflammatory disease with distinct clinical
features such as severe recurrent neutrophilic dermatosis, fever
and absence of serositis and amyloidosis (Masters et al., 2016).

In 2008, treatment of FMF using IL-1β antagonists was
first reported in patient that received 50 mg/day Anakinra
subcutaneously without interrupting colchicine. Fever attacks
and chest pain were reduced during Anakinra treatment but
reappeared upon discontinuation (Calligaris et al., 2008). Recent
results of a double-blind, placebo-controlled, randomized study
involving 14 colchicine-resistant FMF patients showed that those
who received Anakinra daily at a subcutaneous dosage of 100 mg
had significantly less fever attacks per month (1.7 vs. 3.5 in
the placebo group) (ClinicalTrials.gov Identifier: NCT01705756)
(Ben-Zvi et al., 2017).

Previously, Rilonacept was also shown to be a possible
treatment option for colchicine-resistant or -intolerant FMF

patients: in a small randomized, double-blind, alternating
treatment study, Rilonacept given at 2.2 mg/kg weekly reduced
the attack frequency to 0.77 per month in comparison to
2 per month in the placebo-treatment group. (ClinicalTrials.gov
Identifier: NCT00582907) (Hashkes et al., 2012).

IL-1β inhibition with Canakinumab was also reported to be
effective in colchicine-resistant FMF patients. In a 6-month,
phase 2, open-label, single-arm study, seven children who
experienced FMF attacks under daily colchicine treatment
received three monthly subcutaneous injections of Canakinumab
(2 mg/kg). The median attack rate per month decreased from 2.7
to 0.3 during the treatment period (ClinicalTrials.gov Identifier:
NCT01148797) (Brik et al., 2014). In a second study, nine patients
received three consecutive injections of 150 mg Canakinumab
every 4 weeks. During the treatment period, only one patient
had an attack (peritonitis) and five patients experienced an attack
in the 2-months follow up period (ClinicalTrials.gov Identifier:
NCT01088880) (Gül et al., 2015). In a retrospective longitudinal
outcome study, the effects of long-term Canakinumab treatment
in 14 colchicine-resistant FMF patients were assessed. All patients
responded to the treatment but four relapsed during the follow-
up. The shortening of Canakinumab administration intervals
from 8/6 weeks to 4 weeks resulted in partial to full clinical
remission (Laskari et al., 2017).

Deficiency of IL-1 receptor antagonist (DIRA, OMIM
#612852) is very rare autoinflammatory disease with onset in
the neonatal period and presents as systemic inflammation,
pustular skin lesions, joint swelling, periostitis and multifocal
osteomyelitis (Altiok et al., 2012). DIRA is caused by homozygous
mutations in the IL1RN gene. It was first described in nine
children harboring mutations leading to the synthesis of a
truncated non-functional form of IL-1Ra (Aksentijevich et al.,
2009; Figure 1). Around the same time, another group reported
the case of a 49-day-old baby presenting a 175-kb homozygous
deletion in chromosome 2 which was spaced over six IL-1
family members including IL1RN. This patient completely
recovered after Anakinra treatment (Reddy et al., 2009). Another
case report described the positive response to Anakinra in a
3 month-old child with confirmed DIRA (Schnellbacher et al.,
2013).

More recently, treatment of a 12 year-old child suffering from
DIRA due to a novel IL1RN mutation with 150 mg Canakinumab
given every 6 weeks led to complete remission without side effects
(Ulusoy et al., 2015).

A pilot open-label study to assess the efficacy of Rilonacept
treatment for DIRA was completed in April 2016 but results are
yet to be published (ClinicalTrials.gov Identifier: NCT01801449).
Preliminary data on safety and efficacy in six patients suggests
that a weekly injection of 4.4 mg/kg Rilonacept is required to
achieve remission (Neal et al., 2014, meeting abstract).

Tumor Necrosis Factor Receptor Associated Periodic
Syndrome (TRAPS, OMIM #142680) is an autosomal dominant
inherited disorder linked to mutations of TNFRSF1A gene
encoding the TNFα receptor 1 (McDermott et al., 1999; Hull
et al., 2002). These mutations produce a misfolded receptor
defective in shedding that accumulates in the cytoplasm and
results in enhanced NF-κB activation, ROS production and
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impaired autophagy (Bachetti and Ceccherini, 2014). TRAPS
symptoms include long-lasting (more than 1 week) fever
associated with abdominal pain, skin lesions, and serositis.
Various types of skin lesions occur, most frequently erythematous
patches and plaques that can be migratory and associated with
underlying myalgia.

Anti-TNF treatments were shown to be partially beneficial
in TRAPS but may also cause paradoxical inflammatory attacks
(Drewe et al., 2007). In contrast, IL-1 blockade seems to be
more beneficial. Indeed, remarkable improvement was reported
in TRAPS patients treated with Anakinra (Simon et al., 2004;
Gattorno et al., 2008; Greco et al., 2015). Specifically targeting
IL-1β was also shown to be successful for the treatment of TRAPS.
In 2012, it was first reported that a woman who was taken off
anti-TNF treatment and received 150 mg Canakinumab every
8 weeks instead, had complete remission (Brizi et al., 2012).
Recently, the results of an open-label, proof-of-concept, phase 2
study were released: 20 patients received 150 mg Canakinumab
every 4 weeks for 4 months. 19/20 patients achieved clinical
remission at day 15 and all relapsed after withdrawal of the drug
(ClinicalTrials.gov Identifier: NCT01242813) (Gattorno et al.,
2017). Interestingly, a mutation or duplication of the TNFRSF11A
gene coding for the receptor RANK was associated in three
patients with recurrent episodes of fever. Analysis of serum from
one patient revealed increased levels of inflammatory cytokines
and particularly an eightfold increase for IL-18 (Jeru et al.,
2014).

Mevalonate kinase deficiency (MKD) is an autosomal
recessive metabolic disorder caused by mutations in the MVK
gene (Haas and Hoffmann, 2006). Mevalonate kinase is an
enzyme involved in the synthesis of cholesterol and isoprenoids.
Mutations in this gene lead to shortage of geranylgeranylated
proteins which cause the activation of the pyrin inflammasome
and subsequent secretion of IL-1β (Mandey et al., 2006; van der
Burgh et al., 2013; Park et al., 2016; Figure 1). Two forms of
the disease exist. The less severe hyperimmunoglobulinemia D
syndrome (HIDS; OMIM #260920) is characterized by sporadic
fever episodes with skin lesions (widespread erythematous
macules and papules), lymphadenopathy, abdominal and joint
pain, diarrhea and headache (van der Meer et al., 1984). The
rare, more severe form of the disease mevalonic aciduria
(MVA; OMIM #610377) presents all above symptoms chronically
(Berger et al., 1985).

In 2005, the case of a 38-year-old HIDS patient with
recurrent fever episodes with symptom normalization following
100 mg/day Anakinra treatment was reported (Bodar et al.,
2005). As fever episodes in HIDS occur at irregular intervals
of 2–8 weeks (van der Burgh et al., 2013), Anakinra treatment
“on-demand” appears to be an optimal mode of management
with significant clinical response in 8 out 12 attacks (Bodar et al.,
2011). Treatment of HIDS with Canakinumab was first reported
in a 7-year-old child where 4 mg/kg administered every 4 weeks
resulted in the prevention of fever attacks (Tsitsami et al., 2013).
Recently, a retrospective study of 144 MKD patients described
the response to different therapeutic approaches, including IL-1
antagonists. Anakinra given only during attacks resulted in three
complete and five partial responses whereas out of the 19 patients

who received Anakinra as maintenance therapy, 3 exhibited a
complete remission, 13 a partial remission and 3 did not respond.
Canakinumab led to complete remission in four patients and
partial remission in a patient resistant to all other therapies
(Ter Haar et al., 2016). In an open-label, single treatment arm
study, 9 HIDS patients received Canakinumab every 6 weeks for
6 months followed by a withdrawal phase lasting up to 6 months
and a 24 month-long-term treatment period. Canakinumab
treatment reduced the frequency of flares from a median of
5 flares to 0 (unpublished results; Aróstegui et al., 2015, oral
presentation) (ClinicalTrials.gov Identifier: NCT01303380).

PAPA syndrome (pyogenic arthritis, pyoderma gangrenosum,
and acne, OMIM #604416) is a hereditary autosomal dominant
autoinflammatory syndrome caused by gain-of-function
mutations in the PSTPIP1 gene (Lindor et al., 1997; Wise et al.,
2002). The resulting mutated protein interacts with, and activates
pyrin, causing dysregulated processing of IL-1β and IL-18
(Shoham et al., 2003; Figure 1). PAPA syndrome is characterized
by early onset of recurrent sterile arthritis with neutrophilic
infiltrates, with variable skin involvement including pyoderma
gangrenosum and severe nodulo-cystic acne in adolescence and
beyond.

In the first report of PAPA, Anakinra was administered to
control arthritis flares in patients presenting the PAPA mutation
while not presenting PG symptoms (Dierselhuis et al., 2005).
Efficacy of Anakinra was subsequently reported again in a patient
presenting the triad of symptoms; after 5 days of daily Anakinra
administration at 100 mg per day, the skin lesions improved
and after 1 month the ulcer due to PG completely healed with
concomitant disappearance of arthritis and acne (Brenner et al.,
2009).

The use of Canakinumab for the treatment of PAPA has also
been reported: 150 mg Canakinumab given every 8 weeks led
to complete healing of PG and disappearance of acne lesions
in a single patient (Geusau et al., 2013). IL-18 levels were
reported to be elevated in a PAPA syndrome patient treated with
cyclosporine. Although PG was treated, acne and splenomegaly
were not, suggesting a possible role for IL-18 (Kanameishi
et al., 2016). The treatment of PAPA syndrome is challenging,
however, since the response to therapy varies largely between
patients.

Blau syndrome (BS, OMIM # 186580) is an autosomal
dominant granulomatous disease caused by a mutation in
CARD15/NOD2 gene (Miceli-Richard et al., 2001). NOD2 is an
intracellular receptor able to sense the bacterial peptidoglycan
MDP (McDermott et al., 1999), and signals via the NF-κB
pathway (Franchi et al., 2009). Mutations of NOD2 are also
linked to Crohn’s disease (CD; OMIM #266600) and early-onset
sarcoidosis (EOS, OMIM #609464); in EOS and BS, mutations
in the nucleotide-binding oligomerization domain results in
increased NF-κB activity (Maekawa et al., 2016).

IL-1β inhibition was shown in individual case reports to be
useful for the treatment of BS. Indeed, a patient treated with
Anakinra exhibited inflammatory symptom improvement and
normalization of plasma cytokine levels (Aróstegui et al., 2007).
The use of Canakinumab was also reported for the treatment of
Blau syndrome-related uveitis in a young patient and resulted in
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disease remission and stabilization of proinflammatory cytokine
expression comparable to that seen in healthy controls (Simonini
et al., 2013).

Polygenic Autoinflammatory Diseases
and Chronic Inflammatory Diseases
PASH syndrome (pyoderma gangrenosum, acne, and
suppurative hidradenitis) is an autoinflammatory syndrome
similar to but distinct from PAPA. It was first described in two
patients presenting both pyoderma gangrenosum and acne
without suffering from pyogenic arthritis (Braun-Falco et al.,
2012). The genetic background of PASH syndrome is very
heterogeneous; the absence of a PSTPIP1 gene mutation was
first reported, however, researchers recently found a PSTPIP1
gene mutation in a PASH patient (Calderon-Castrat et al.,
2016). Moreover, mutations in other genes involved in this
autoinflammatory disease including NLRP3, MEFV, NOD2, and
NCSTN have also been described in PASH (Marzano et al., 2014a;
Duchatelet et al., 2015).

Treatment of PASH with Anakinra was reported in only one
patient and resulted in partial remission (Braun-Falco et al.,
2012).

In addition to PAPA and PASH, other phenotypically related
syndromes are emerging. They include PASS (pyoderma
gangrenosum, acne, suppurative hidradenitis, and axial
spondyloarthritis), PAPASH (pyogenic arthritis, pyoderma
gangrenosum, acne, and HS) and PsAPASH (psoriatic arthritis,
pyoderma gangrenosum, acne, and HS) (Bruzzese, 2012;
Marzano et al., 2013; Saraceno et al., 2015). Recently, a PASS
patient treated with 100 mg/day Anakinra and improvement
of all symptoms was reported, after Anakinra discontinuation
relapse occurred within 3 days (Leuenberger et al., 2016).

Schnitzler syndrome (SchS) is a rare late-onset inflammatory
disease considered as a sporadic acquired autoinflammatory
disorder characterized by recurrent fever, urticarial skin
lesions, arthritis and lymphadenopathy accompanied with
IgM gammopathy. Treatment with Anakinra was reported to
completely abrogate the symptoms within 24 h in several case
reports (de Koning et al., 2006; Dybowski et al., 2008; Sonnichsen
et al., 2016).

In a prospective, open-label study, all patients receiving
Rilonacept for up to 1 year showed a rapid clinical response over
the treatment duration with nearly complete remission in four
of eight patients (ClinicalTrials.gov Identifier: NCT01045772)
(Krause et al., 2012).

Canakinumab treatment in SchS was first positively reported
in a patient switching from Anakinra (de Koning et al., 2011).
In an open-label, single-treatment arm trial, eight additional
patients switched from Anakinra to monthly injections of 150 mg
Canakinumab for 6 months. Clinical remission was observed in
all patients at day 14 and lasted up to 6 months (full duration
of the trial) in seven out of eight patients (ClinicalTrials.gov
NCT01276522) (de Koning et al., 2013). In another case, injection
of Canakinumab every 8 weeks resulted in the disappearance
of the symptoms until drug withdrawal (ClinicalTrials.gov
Identifier: NCT01245127) (Vanderschueren and Knockaert,

2013). Recently, a phase 2, randomized placebo-controlled,
multi-center trial including 20 patients confirmed the potential
of Canakinumab for the treatment of SchS. 7 days after initial
injection, 5/7 patients who received the drug showed significant
improvement when compared to placebo treated patients (0/13).
In the open-label trial phase, all patients received Canakinumab,
and after 14 days, 15/20 exhibited complete remission and 5
partial remission (ClinicalTrials.gov Identifier: NCT01390350)
(Krause et al., 2017).

Hidradenitis suppurativa (HS; OMIM #142690, #613736,
#613737), also known as acne inversa, is a chronic skin disease
of the hair follicles affecting the axillary, inguinal and anogenital
regions with formation of nodules and abscesses (Kurzen et al.,
2008). Mutations in the γ-secretase genes NCSTN, PSENEN, and
PSEN1 impairing the Notch signaling in hair follicles have been
found in some HS patients (Pink et al., 2012). TNF-α, IL-1β, and
IL-10 levels were frequently increased in HS lesions (van der Zee
et al., 2011). Moreover, IL-17, caspase-1 and NLRP3 are elevated
in lesions of HS skin (Lima et al., 2016).

The use and success of Anakinra for the treatment of HS has
been a matter of controversy (van der Zee and Prens, 2013; Zarchi
et al., 2013; Leslie et al., 2014; Menis et al., 2015; Russo and
Alikhan, 2016). However, in a recent double-blind, randomized,
placebo controlled trial, 20 patients were treated with Anakinra
or placebo daily for 12 weeks. HS clinical response after 12 weeks
was 78% in Anakinra-treated patients versus 30% in the placebo
group (ClinicalTrials.gov Identifier: NCT01558375) (Tzanetakou
et al., 2016).

Treatment with Canakinumab was reported in one HS patient
with concomitant PG. HS healed after the first injection and
PG after 4 months of treatment (Jaeger et al., 2013). Recently
a double-blind, randomized, placebo-controlled clinical trial
investigating the efficacy of anti-IL-1α therapy in HS patients
who were refractory to anti-TNF drugs was completed. Patients
receiving MaBp1 every 2 weeks for 12 weeks showed a 60%
response rate in comparison to 10% in the placebo group
(ClinicalTrials.gov Identifier: NCT02643654) (Xbiotech, 2017).

SAPHO syndrome (synovitis, acne, pustulosis, hyperostosis,
osteitis) is a chronic inflammatory disorder targeting bones, skin
and joints (Chamot et al., 1987). Skin manifestations include
palmoplantar pustulosis, psoriasis, severe acne and HS (Firinu
et al., 2016).

Dysregulation of the ATP receptor P2X7 in SAPHO PBMCs
causes in increased processing of IL-1β suggesting a possible
therapeutic approach: 100 mg/day Anakinra treatment in a
47-year-old female resulted in the disappearance of the symptoms
within 3 months (Colina et al., 2010). In a short-term open
study 6 SAPHO patients received 100 mg/day Anakinra, with
clinical response reported in 5/6 patients (Wendling et al.,
2012).

Behçet’s disease (BD) is a chronic multisystem disease that
features vasculitis leading to clinical symptoms comprising
bipolar aphtosis (oral and genital), uveitis, polyarthritis and
skin lesions including sterile non-follicular pustules on the skin
and erythema nodosum (Mazzoccoli et al., 2016). The etiology
of BD is still unclear but there is an association with genetic
factors like human leukocyte antigen (HLA)-B51 or the extrinsic
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factor heat shock protein from Streptococcus sanguinis which
could activate the innate immune system via TLR signaling
(Alpsoy, 2016). Anti-IL-1β therapy is an effective treatment of
Behçet’s disease. Treatment with Anakinra of nine BD patients
refractory to anti-TNF resulted in a response in eight individuals
(Cantarini et al., 2015). Treatment of three BD patients with
150 mg Canakinumab every 6–8 weeks resulted in complete
remission of all clinical manifestations and relapse was not
observed at long-term follow up (Vitale et al., 2014). A recent
retrospective study showed that the treatment of patients with
Canakinumab or Anakinra for at least 12 months led to complete
and sustainable remission of the disease (Emmi et al., 2016)
and was also effective for BD-related uveitis (Fabiani et al.,
2016).

A phase 3 clinical trial evaluating Gevokizumab for the
treatment of patients with BD uveitis was terminated because it
did not meet the primary endpoint criteria. However, decreased
disease severity was observed in the setting of this trial
(ClinicalTrial.gov Identifier: NCT01965145) (Xoma, 2015).

Neutrophilic Dermatoses
Pyoderma gangrenosum (PG) is a rare non-infectious
neutrophilic dermatosis characterized by sterile pustular
skin lesions that rapidly evolve into tender skin ulcers with
undermined borders of varying size and depth, sometimes
exposing underlying tendons or muscles. PG is frequently
associated with systemic diseases. Increased expression of
IL-1β was found in lesional skin of PG patients compared to
healthy skin (Marzano et al., 2014b; Kolios et al., 2015). In an
open-label, proof of concept study evaluating the anti-IL-1β

monoclonal antibody Gevokizumab, six patients with active
ulcers received three subcutaneous injections once every 4 weeks
and four out of six patients had a complete clearance of the
target ulcer, 1 a partial (90%) closure of the ulcer and 1 did not
respond (ClinicalTrials.gov Identifier: NCT01882504) (Huang
et al., 2014, poster). A phase 3 trial of the same drug was
prematurely terminated after the company’s decision to interrupt
clinical development of Gevokizumab. However, preliminary
results with 25 patients treated with gevokizumab did not
apparently reveal any significant benefit (ClinicalTrials.gov
Identifier: NCT02326740 and NCT02315417) (Xoma, 2016).
Canakinumab treatment was first reported in a PG patient
with concomitant HS. Ulceration disappeared after 4 months
and complete remission was achieved after 12 months of
treatment (Jaeger et al., 2013). In an open-label study, five
steroid-refractory PG patients were treated with Canakinumab
once with 150 mg at onset and then optionally at weeks 2 and
8 if response was suboptimal. At the week 16 study endpoint
80% of the patients showed decreased size of target ulcers and
60% were in complete remission (ClinicalTrials.gov Identifier:
NCT01302795) (Kolios et al., 2015). A case report described
complete healing of a PG patient that received a Canakinumab
monthly at a 150 mg dose for 3 months (Galimberti et al., 2016).
The involvement of IL-1α in the pathogenesis of PG is currently
being investigated in a phase 2 open label study of MABp1
(ClinicalTrials.gov Identifier: NCT01965613) (unpublished
data).

Sweet’s syndrome (SwS) or acute febrile neutrophilic
dermatosis, is a neutrophilic dermatosis with systemic symptoms
characterized by fever, tender red cutaneous nodules or papules,
occasionally covered with vesicles, pustules or bullae, usually
affecting the upper limbs, face and neck. SwS is frequently
observed in patients with leukemia or connective tissue diseases.
Overexpression of proinflammatory genes including IL-1β is
reported in lesional skin of SwS patients (Marzano et al., 2014b;
Imhof et al., 2015).

Anakinra (100 mg/day) resulted in symptom resolution within
4 days and subsequent remission for 19 months in one case
reported (Delluc et al., 2008). Another case report described
disappearance of skin lesions within a month of Anakinra
treatment and reappearance of symptoms upon withdrawal
(Kluger et al., 2011).

Amicrobial pustulosis of the skin folds (APF) is a rare,
chronic cutaneous disease presenting aseptic pustular lesions
in cutaneous folds and usually occurring in young women
affected by autoimmune diseases such as SLE (Marzano et al.,
1996).

Treatment of APF with Anakinra was described in one patient
who had increased levels of IL-1α expression in lesional skin,
was refractory to steroid therapy and TNF antagonists. Daily
subcutaneous injection of Anakinra for 1 month resulted in
clearance of the lesions (Amazan et al., 2014).

Other Diseases with Skin Involvement
Acne Vulgaris
Acne vulgaris is a common inflammatory and potentially severe
skin disease associated with colonization of the pilo-sebaceous
unit by the commensal bacterium P. acnes. P. acnes is considered
to contribute to inflammation in acne and has been shown
to activate the NLRP3 inflammasome in human monocytes
(Kistowska et al., 2014b; Qin et al., 2014) and in sebocytes
(Li et al., 2014). Therefore, IL-1β is thought to play an important
role in acne pathogenesis. Gevokizumab was evaluated in a
double-blind, randomized, placebo-controlled phase 2 trial for
the treatment of inflammatory facial lesions. Patients who
received 0.6 mg/kg Gevokizumab once a month for 3 months
showed a significant clinical response associated with reduction
of inflammatory acne lesions in comparison to the control group
(ClinicalTrial.gov Identifier: NCT01498874) (Xoma, 2013). On
the other hand, an open label, phase 2 study testing the anti-IL-1α

antibody MABp1 on 11 patients showed a 36% decrease in lesion
counts (Carrasco et al., 2015).

Malassezia-Associated Skin Diseases
The fungal genus Malassezia is linked to several inflammatory
skin diseases such as seborrheic dermatitis (seborrheic eczema),
pityriasis versicolor (tinea versicolor), atopic eczema, psoriasis,
Malassezia folliculitis and Onychomycoses (Gaitanis et al.,
2012). The etiological agent of pityriasis versicolor, Malassezia
was shown to activate the NLRP3 inflammasome via the
dectin-1 and Syk signaling cascade, causing the release of
IL-1β (Kistowska et al., 2014a). To date, no IL-1 blocker has
been evaluated for the treatment of Malassezia-associated skin
diseases.
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Psoriasis is an immune-mediated inflammatory disease that
affects 2–3% of the global population. It affects primarily the skin
and the joints. Psoriasis vulgaris manifests as red, scaly patches
of the skin. In lesions, keratinocytes express IL-1α, IL-1β, and
IL-18 which regulate the expression of genes involved in the
pathogenesis of psoriasis including S100A7 and LL-37 (Perera
et al., 2012). By binding to cytosolic DNA, LL-37 has been
shown to impair the activation of the AIM2 inflammasome,
which is highly expressed in psoriatic lesions (Dombrowski et al.,
2011). However, LL-37 is able to induce secretion of IL-18
from keratinocytes independently of caspase-1 (Niyonsaba et al.,
2005). IL-1α inhibition for the treatment of plaque psoriasis was
investigated in a small size (eight patients), open-label, single-arm

trial. 200 mg of MABp1 injected subcutaneously every 3 weeks
until evaluation at day 56 showed an average of 13% decrease of
the PASI score (Coleman et al., 2015), which is lower than that
obtained with the current approved therapies using anti-TNF,
-IL-17A, and -IL-12/IL-23 (Mansouri and Menter, 2015).

Generalized pustular psoriasis (GPP; OMIM # 614204, #
602723) is a rare, severe form of psoriasis caused by mutations
in the IL36RN and CARD14 genes. Treatment of GPP with
Anakinra (Viguier et al., 2010) and Gevokizumab (Mansouri
et al., 2015) resulted in a reduction in GPP area and severity
index.

Moreover, the caspase-1 inhibitor Belnacasan (VX-765) was
evaluated in a phase 2a trial against psoriasis but patients

TABLE 2 | Selected clinical trials targeting IL-1 in inflammatory skin diseases.

Syndrome Drug CTI n Ph Design Reference

CINCA Anakinra NCT00069329 18 1 O, W Goldbach-Mansky et al., 2006

FCAS Anakinra NCT00214851 8 1 O Ross et al., 2008

FCAS Rilonacept NCT00094900 5 2 O Goldbach-Mansky et al., 2008

FCAS/MWS Rilonacept NCT00288704 47 3 R-B-P, W Hoffman et al., 2008

CAPS Canakinumab NCT00465985 35 3 O, R-B-P, W Lachmann et al., 2009

MWS/CINCA Canakinumab NCT00487708 34 2 O Kuemmerle-Deschner et al., 2011b

CAPS Canakinumab NCT00685373 166 3 O Kuemmerle-Deschner et al., 2011a

CINCA Canakinumab NCT00770601 6 3 O Sibley et al., 2015

CAPS Canakinumab NCT00991146 19 3 O Yokota et al., 2016

CAPS Canakinumab NCT01213641 288 pr O Hoffman et al., 2016

FMF Anakinra NCT01705756 25 3 R-B-P Ben-Zvi et al., 2017

FMF Rilonacept NCT00582907 14 2 R-B-AT Hashkes et al., 2012

FMF Canakinumab NCT01148797 7 2 O Brik et al., 2014

FMF Canakinumab NCT01088880 9 2 O Gül et al., 2015

DIRA Rilonacept NCT01801449 6 2 O Neal et al., 2014

TRAPS Canakinumab NCT01242813 20 2 O, W Gattorno et al., 2017

MKD/HIDS Canakinumab NCT01303380 9 2 O, W Aróstegui et al., 2015

SchS Rilonacept NCT01045772 8 2 O Krause et al., 2012

SchS Canakinumab NCT01276522 8 2 O de Koning et al., 2013

SchS Canakinumab NCT01245127 1 2 O Vanderschueren and Knockaert, 2013

SchS Canakinumab NCT01390350 20 2 R-B-P, O Krause et al., 2017

HS Anakinra NCT01558375 20 2 R-B-P Tzanetakou et al., 2016

HS MABp1 NCT02643654 20 2 R-B-P Xbiotech, 2017

BD (uveitis) Gevokizumab NCT01965145† 83 3 R-B-P Xoma, 2015

PG Gevokizumab NCT01882504 6 2 O Huang et al., 2014

PG Gevokizumab NCT02326740† 9 3 R-B-P, O Xoma, 2016

PG Gevokizumab NCT02315417† 16 3 R-B-P, O Xoma, 2016

PG Canakinumab NCT01302795 5 2 O Kolios et al., 2015

PG MABp1 NCT01965613 10 2 O na

Acne vulgaris Gevokizumab NCT01498874 127 2 R-B-P Xoma, 2013

Acne vulgaris MABp1 na 11 2 O Carrasco et al., 2015

Psoriasis Belnacasan NCT00205465 64 2 R-B-P Vertex, 2011

sJIA Anakinra NCT00339157 24 2 R-B-P Quartier et al., 2011

sJIA Rilonacept NCT01803321 24 1 R-B-P Lovell et al., 2013

sJIA Canakinumab NCT00886769 84 3 R-B-P Ruperto et al., 2012

AoSD Anakinra NCT01033656 22 2 R-O-CD Nordstrom et al., 2012

CTI, ClinicalTrial.gov Identifier; n, number of enrolled individuals; Ph, phase; pr, prospective; R, randomized; O, open-label; B, double-blind; P, placebo-controlled;
W, withdrawal phase; AT, alternating treatment; CD, comparator drug; na, not available. In bold: studies having only preliminary or not peer-reviewed results. †Clinical trial
was terminated.

Frontiers in Pharmacology | www.frontiersin.org 12 May 2017 | Volume 8 | Article 278

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-08-00278 May 18, 2017 Time: 16:46 # 13

Fenini et al. IL-1 Inhibition in Skin Diseases

did not respond to this therapy (ClinicalTrial.gov Identifier:
NCT00205465) (Vertex, 2011).

Systemic juvenile idiopathic arthritis (sJIA) is a juvenile
form of polyarticular arthritis that also presents with systemic
symptoms including fever and skin lesions. Standard treatment
includes non-steroidal anti-inflammatory drugs, corticosteroids,
anti-IL-1 and anti-IL-6 (Cimaz, 2016).

IL-1 blockade with Anakinra, Canakinumab, and Rilonacept
has shown positive results in three clinical trials by Quartier
et al. (2011) (ClinicalTrials.gov Identifier: NCT00339157),
and Ruperto et al. (2012) (ClinicalTrials.gov Identifier:
NCT00886769) and Lovell et al. (2013) (ClinicalTrials.gov
Identifier: NCT01803321), respectively. These studies are
extensively discussed in the review by Giancane et al. (2016)
in this issue.

Adult-onset Still’s disease (AoSD) is a rare form of
inflammatory arthritis that shares symptoms with sJIA but
presents during adulthood.

Treatment of AoSD with Anakinra has shown efficacy
in several studies (Castaneda et al., 2016). In an open,
randomized study involving 22 patients, Anakinra treatment
was compared to disease-modifying anti-rheumatic drugs
(DMARDs). Patients receiving ≥10 mg/day of Anakinra
showed a better overall response in comparison to DMARDs
(ClinicalTrials.gov Identifier: NCT01033656) (Nordstrom et al.,
2012). In another report, three patients with refractory AoSD that
were switched from Anakinra to Rilonacept showed prolonged
complete remission (Petryna et al., 2012). Treatment of AoSD
with Canakinumab was first reported in two patients resistant
to Anakinra and resulted in improvement of both systemic
symptoms and polyarthritis (Kontzias and Efthimiou, 2012). In
another report, a patient receiving 150 mg Canakinumab every
8 weeks showed long-term improvement of systemic symptoms
but active arthritis persisted up to 14 months follow-up (Lo Gullo
et al., 2014).

Graft-versus-host disease (GvHD) is a severe complication
after allogeneic hematopoietic stem cell transplantation
(allo-HSCT). Acute GvHD occurs in 35–50% of transplanted
patients and about half of them will eventually develop chronic
GvHD (Jacobsohn and Vogelsang, 2007). Skin manifestations
include erythema, morbilliform exanthema, and confluent
erythroderma, but in the severest forms (Grade IV) widespread
skin detachment (Lipsker et al., 2016). First-line treatment for
GvHD consists of corticosteroids and calcineurin inhibitors
followed by anti-TNF, anti-IL-2 or mTOR inhibitors (Dignan
et al., 2012).

The efficacy of Anakinra in the treatment of GvHD was
assessed in 1994 in an open-label, phase 1/2 trial of 17
steroid-resistant GvHD patients. Anakinra was continuously
administered per infusion for 1 week. In 63% of the
patients, acute GvHD improved by at least one grade (Antin
et al., 1994). A second double-blind, placebo-controlled
randomized trial on 181 patients investigated the role of
IL-1 in the initial T-cell mediated development of the disease
by giving Anakinra during conditioning (4 days) and for
10 days after allo-HCT. There was no difference between

IL-1ra- and placebo-treated patients with 61 and 59% of them,
respectively, developing moderate to severe GvHD (Antin et al.,
2002).

Recently, in a murine model of acute GvHD, it was
demonstrated that conditioning therapy before allo-HCT
resulted in NLRP3 activation in the recipient. Microflora
translocation and uric acid released by dying cells were able
to activate the inflammasome. Inhibition of NLRP3 with
glibenclamide, the IL-1β antagonist Anakinra or gene deletion
of Nlrp3 or Asc in mice resulted in delayed and reduced mortality
(Jankovic et al., 2013).

Similarly, the blockade of IL-18R in mice has been shown to
prevent the early phase of GvHD pathogenesis (Li et al., 2015).

CONCLUSION

Thanks to the discovery of the inflammasome and to major
advances in the understanding of biological properties and
clinical relevance of IL-1 family members,’ the use of IL-
1 antagonists has been quite intensely investigated for the
treatment of inflammatory and autoinflammatory diseases
(Table 2). The introduction of IL-1 antagonists represents a major
breakthrough in the management of several autoinflammatory
diseases, including not only cryopyrinopathies but also other
inflammatory conditions refractory to standard therapies where
neutrophils play an important pathogenic role. Clinical responses
to IL-1β antagonists suggest that this cytokine plays a critical role
in the pathogenesis of autoinflammatory disorders. Indeed, many
studies have demonstrated that there is no loss in therapeutic
efficacy when Anakinra is substituted with the IL-1β-specific
antagonist Canakinumab, suggesting that in comparison to IL-
1α and/or IL-18, IL-1β likely plays a predominant role in a
substantial number of diseases described in this review.

Due to the rarity of autoinflammatory syndromes, sample size
represents a major limitation of clinical studies. Nevertheless,
retrospective studies, including online registers such as the β-
confident register for CAPS, that collect data from several reports
have definitively helped establishing solid data on the efficacy and
safety of IL-1 antagonists for these pathologies.
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