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Copyright © 2014 Mingkai Qu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Estimating standard-exceeding probabilities of toxic metals in soil is crucial for environmental evaluation. Because soil pH and
land use types have strong effects on the bioavailability of trace metals in soil, they were taken into account by some environmental
protection agencies in making composite soil environmental quality standards (SEQSs) that contain multiple metal thresholds
under different pH and land use conditions. This study proposed a method for estimating the standard-exceeding probability map
of soil cadmium using a composite SEQS. The spatial variability and uncertainty of soil pH and site-specific land use type were
incorporated through simulated realizations by sequential Gaussian simulation. A case study was conducted using a sample data
set from a 150 km2 area in Wuhan City and the composite SEQS for cadmium, recently set by the State Environmental Protection
Administration of China.Themethodmay be useful for evaluating the pollution risks of trace metals in soil with composite SEQSs.

1. Introduction

With increasing industrialization and rapid urbanization in
many regions of the world, contamination by trace metals
in the terrestrial environment has become widespread in
a global context [1]. Accumulation of trace metals such
as cadmium (Cd) in soil may impact soil quality, reduce
soil biological activity, and hinder the effective supply of
nutrients. More importantly, trace metals can be largely
enriched through the food chain and other ways, directly
or indirectly threatening human health [2]. Therefore, envi-
ronmental protection agencies often set soil environmental
quality standards (SEQSs) for trace metal concentrations in
soil, and the standards may have the force of law to land
management and environmental remediation.

An important aim of many soil environmental surveys is
to delimit the zones potentially contaminated by toxicmetals,
for which we need to know the spatial distribution of a toxic
metal in soil in the surveyed area. Over the last 20 years,
spatial interpolation techniques, such as kriging, have been
often used to interpolate the spatial distributions of trace
metals in soil and further delineate their standard-exceeding

areas [3, 4]. However, the smoothing effect, commonly
found in the maps generated by interpolation methods, often
results in less variation in the estimated values than in the
observed values [5, 6]. It is widely known that this problem
causes low values to be overestimated and high values to be
underestimated. There is always some uncertainty associated
with an optimal estimate by kriging or indeed any other
form of interpolation, and a decision made purely on the
basis of such an estimate carries with it the risk that an
unsampled site is declared “safe” where the soil is toxic or
“toxic” where it is not [7]. There is an increasing awareness
that an estimate is more valuable in the presence of a measure
of the associated uncertainty, and this is particularly the case
in prediction of environmental variables where the prediction
uncertainty is required to support decision-making about
further management [8]. Sequential simulation methods,
such as sequential Gaussian simulation (SGS), provide a
useful solution for this problem, because simulated realiza-
tions overcome the smoothing effect and spatial uncertainty
measures such as threshold-exceeding probabilities can be
estimated from a number of simulated realizations [5, 9]. In
addition, interpolated values at unsampled locations never
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exceed the limits of maximum and minimum values of
samples within corresponding neighborhoods, but simulated
values by SGS are not limited by the bounds.

In environmental modeling, estimating the probability
of a trace metal exceeding a threshold (or cutoff) value is
an effective method for spatial (i.e., site-specific) uncertainty
assessment, which is crucial for environmental evaluation
and decisionmaking [5, 10–12]. Zonesmay then be delineated
and ranked according to the probabilities with which the
unknown concentrations of a pollutant exceed the threshold
at all locations in a study area. If remediation or further
sampling is needed then they should be done first in the
zones with the largest probabilities of contamination. There
are a variety of spatial statistical approaches which may be
used for estimating threshold-exceeding probabilities, such
as indicator kriging [13], disjunctive kriging [14], generalized
linear model [15], clipped Gaussian random fields [16],
sequential indicator simulation [6], sequential Gaussian sim-
ulation [17], and Markov chain random fields [18]. However
to the best of our knowledge, earlier studies on the estimation
of threshold-exceeding probabilities were mainly based on a
single threshold. It is known that soil pH has strong impact
on the bioavailability (or toxicity) of some trace metals in
soil due to its effects on the solubility from mineral surfaces,
movement, and speciation of the trace metals both in soil
bodies and particularly in soil solutions [19, 20]. Moreover,
toxic metals may have different hazards to receptors (e.g.,
plants) in different land use types. Therefore, soil pH and
land use type are two important factors that should be
considered by policy makers besides the total amounts of
trace metals. In fact, these two factors have been taken into
account by some government agencies in making SEQSs of
trace metals in soil. For example, the State Environmental
Protection Administration of China [21] and the Consejeria
deMedio Ambiente de la Junta de Andalućıa (environmental
agency of the regional government of the South of Spain)
[22] considered soil pH and land use type information in
making their SEQSs for some trace metals. Thus, the SEQS
for a specific trace metal becomes a composite one; that is,
it is composed of multiple threshold values under different
conditions, rather than a single threshold value. In this study,
the SEQS that we used for soil Cd is composed of a series of
concentration thresholds with corresponding pH value inter-
vals and land use types. It is apparent that spatial uncertainty
is an intrinsic characteristic in the spatial distributions of
soil trace metals and pH due to limited observation points;
thus, information of both uncertainties should be valuable to
standard-exceeding probability estimation.

Sequential Gaussian simulation (SGS) is a widely used
sequential simulation algorithm for continuous spatial vari-
ables. Its major purpose is to generate a number of simulated
realizations of a target spatial variable in a study area, which
can effectively reflect the spatial uncertainty of the target
variable resulting from its spatial heterogeneity [23]. SGS has
been frequently adopted to simulate the spatial patterns of
contaminants in ground water and soils and delineate their
probabilistic risks to surrounding environments [5, 23, 24]. In
this study, SGS was used to simulate the spatial distributions
of soil Cd and pH for evaluating their spatial variability

and associated uncertainty in the study area, and both the
sets of simulated realizations and site-specific land use type
information were further used to estimate the standard-
exceeding probability map of Cd in soil.

The objective of this study is to suggest a method for
estimating the standard-exceeding probability map of soil Cd
using a composite SEQS, that is, amethodwhich incorporates
both the spatial variability and uncertainties of soil Cd
and pH and the site-specific land use type information.
The method was demonstrated using a case study from an
area in China. However, it is important to emphasize that
the general approach can be applied to evaluate standard-
exceeding probabilities of other environmental variables with
a composite SEQS. To the best of our knowledge, so far this
kind of study has not been seen in the literature.

2. Materials and Methods

2.1. Study Area and Data. A study area of approximately
150 km2 is chosen in the urban-rural transitional zone of the
Wuhan City, a metropolis in the middle reach of the Yangtze
River. The study area was mostly farmlands with villages
previously, but it was arranged as a high-tech development
park in late 1980s. Since then, some industrial companies
were gradually established within the area.

In this study, lands in the study area were divided into
three types: paddy field referring to the arable land with water
source and irrigation facilities and mainly used to grow rice,
lotus root, and other aquatic crops; dry farmland referring to
the arable land without water source and irrigation facilities
and mainly used to grow wheat, corn, sesame, and other
xeric crops; and nonfarmland referring to the nonarable
land, mainly used for industry, business, transportation, and
residence (see Figure 1).

An investigation of soils was performed in October, 2009.
150 nonrhizosphere topsoil samples (0–20 cm depth) were
collected in the study area (see Figure 1), and the total concen-
tration of Cd in soil and the pH value were measured for each
soil sample. The coordinates of the sampling locations were
georeferenced using a handheld GPS receiver (MAP60CSX,
Garmin Ltd.).The procedures for soil sample preparation and
lab analysis are as follows.

At each sampling point, 4–6 subsamples were randomly
taken and then mixed to obtain a composite soil sample.
All samples were air-dried at room temperature (20–22∘C),
crushed after stones and other debris were removed, and then
sieved to 2mm. A portion of each soil sample (about 50 g)
was then ground in an agate grinder to the particle size of
<0.149mm (i.e., passing through a sieve of 1/100mmmeshes).
The prepared soil samples were then stored in polyethylene
bottles for later analysis. Soil samples were analyzed for
measuring the total concentration of Cd and pH value. 0.5 g
of each prepared soil sample was digested in a mixture
of nitric acid (HNO

3
) and perchloric acid (HClO

4
) [25];

then the total concentration of Cd in the digested solution
was measured using the inductively coupled plasma mass
spectrometry (X7 ICP-MS, TMO,USA).The pHvalues of soil
samples were measured in suspensions (soil: water = 1 : 2.5)
with pH glass electrodes [26]. Quality assurance and quality
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Figure 1: Soil sample locations and land use type distribution.

control (QA/QC) for Cd in soil samples were estimated
by determining the metal contents in blank and duplicate
samples and standard reference materials.

2.2. Sequential Gaussian Simulation. The most comprehen-
sive approach that can incorporate the variability of a soil
attribute in space and also includes a measure of uncertainty
is sequential simulation.This is a kind of geostatistical Monte
Carlomethodswhereby, instead of producing onemap of best
local estimates, the emphasis is on producing several feasible
maps, of which each reasonablymatches the sample statistics,
variogram model, and conditioning (sample) data [5, 27].
Sequential Gaussian simulation is the most frequently used
sequential simulation algorithm for simulating continuous
variables. It assumes a Gaussian randomfield; thus, the Gaus-
sian conditional cumulative distribution function (ccdf) of
the studied variable is completely characterized by the mean
value and covariance [28]. In SGS, simulation is conducted
upon the Gaussian transformation of sample data if they
obviously deviate from the Gaussian distribution. Detailed
introduction on this method can be found in Goovaerts [5].

2.3. Standard-Exceeding Probability Assessment. In this study,
the spatial distributions of soil Cd concentrations and pH
values were simulated separately using SGS, and for each
of them five hundred simulated realizations were generated.
Thus, the uncertainty associated with each of Cd and pH
estimates could be quantified using their respective simulated
realizations. Then the standard-exceeding probability of soil
Cd with the consideration of soil pH and land use type may
be calculated. At a specific location x, the standard-exceeding
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Figure 2: Cross-correlogram between Cd concentration and pH in
soil.

probability of soil Cd can be estimated using the following
equation with joint probabilities:

𝑃 {[Z (x) > zc (x)] | 𝑛}

=

𝑆

∑

𝑖=1

𝑃 [𝛼
𝑖
(x) < 𝑧SGSpH (x) ≤ 𝛼𝑖+1 (x) , 𝑧

SGS
Cd (x) > 𝛽𝑖 (x)] ,

(1)

where Z(x) is the concentration of soil Cd at location x; zc(x)
refers to the composite SEQS for Cd with the conditions of
pH and land use type at location x; 𝑛 refers to the sample
information for pH and soil Cd; 𝑧SGSpH (x) and 𝑧

SGS
Cd (x) are the

simulated pH and Cd by SGS, respectively; 𝑆 is the number
of the segments of pH value range corresponding to different
Cd thresholds for the SEQS (in this study 𝑆 = 4); 𝛼

𝑖
(x) and

𝛼
𝑖+1
(x) are the low value and high value, respectively, for the
𝑖th value interval of pH in the SEQS; 𝛽

𝑖
(x) is the Cd threshold

corresponding to the pH interval of [𝛼
𝑖
(x), 𝛼
𝑖+1
(x)].

Because the land use type is already known for a specific
location (i.e., the land usemap is available), it does not appear
in (1). While Cd availability in soil is related to the value of
soil pH, which entails the inclusion of soil pH in the SEQS of
Cd, the total concentration of Cd in soil is mainly determined
by other environmental factors (e.g., soil parental materials
and pollution sources) rather than by soil pH. In addition, the
cross correlogram between total Cd concentration and pH in
soil (Figure 2) indicates that the assumption of independence
between them is reliable. Thus, joint probability equation (1)
can be simplified as

𝑃 [Z (x) > zc (x) | 𝑛]

=

𝑆

∑

𝑖=1

{𝑃 [𝛼
𝑖
(x) < 𝑧SGSpH (x) ≤ 𝛼𝑖+1 (x)]

× 𝑃 [𝑧
SGS
Cd (x) > 𝛽𝑖 (x)]} ,

(2)
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Table 1: The soil environmental quality standard II of China for Cd in soil (mg kg−1).

0 ≤ pH < 5.5 5.5 ≤ pH < 6.5 6.5 ≤ pH < 7.5 7.5 ≤ pH ≤ 14
Paddy field 0.25 0.30 0.50 1.00
Dry farmland 0.25 0.30 0.45 0.80
Nonfarmland 10.00 10.00 10.00 10.00

Table 2: Summary statistics of Cd concentration and pH in topsoil samples.

Minimum Maximum Median Mean S.D. CV (%)
Cd (mg kg−1) 0.26 1.94 0.68 0.74 0.32 43.22
pH 4.29 9.08 6.88 6.71 0.98 44.63

with

𝑃 [𝛼
𝑖
(x) < 𝑧SGSpH (x) ≤ 𝛼𝑖+1 (x)]

=

𝑁 [𝛼
𝑖
(x) < 𝑧SGSpH (x) ≤ 𝛼𝑖+1 (x)]

𝐿

,

𝑃 [𝑧
SGS
Cd (x) > 𝛽𝑖 (x)] =

𝑁 [𝑧
SGS
Cd (x) > 𝛽𝑖 (x)]
𝐿

,

(3)

where 𝐿 is the number of realizations generated by SGS
for pH or Cd (in this study 𝐿 = 500), and 𝑁 is the
number of realizations whose values at location x fall into the
corresponding pH interval or Cd threshold.

The composite SEQS for soil Cd used in this study is
listed in Table 1. The data of this composite standard for Cd
in soil comes from the Soil Environmental Quality Standard
II issued by the State Environmental Protection Adminis-
tration of China [21]. The composite standard for soil Cd is
considered for pH value intervals, and for each pH interval
there are Cd threshold values corresponding to different land
use types. For this study, we considered three land use types:
paddy field, dry farmland, and nonfarmland. If the total
concentration of Cd in soil exceeds the composite SEQS for
soil Cd (i.e., exceeds the Cd threshold corresponding to the
local soil pH and land use type) at a location, that means that
the soil has been regarded as polluted at the location.

In this study, geostatistical simulation and standard-
exceeding probability assessment were performed on a reg-
ular square grid of 60m × 60m.

3. Results and Discussions

3.1. Sample Data Analysis. A descriptive statistical summary
of sample data for the concentrations of soil Cd and pH is
listed in Table 2. The coefficient of variation (CV) implies
low variability when it has a value of less than 10% and
extensive variability when it is more than 90% [29]. The CVs
for soil Cd and pH are 43.22% and 44.63%, respectively. This
indicates that soil Cd and pH have moderate variability in
the study area. The variations of Cd and pH may result from
some extrinsic factors (such as industrial emissions) that are
influential on soil Cd and pH. Soil samples tend to be acidic,
with a mean pH value of 6.71. The mean concentration of

Cd in soil samples exceeds the SEQS for paddy field and dry
farmland when soil pH is less than 7.5 (see Table 1).

3.2. Spatial Distributions of Soil Cadmium and pH. Exper-
imental variograms of Cd and pH were estimated omnidi-
rectly because of the lack of apparent anisotropy in sam-
ple data. Experimental variograms with fitted models and
parameters for the normal score transformed data of soil
Cd and pH are presented in Figure 3. The experimental
variograms for normal score transformed Cd and pH data
were fitted by a spherical model and a Gaussian model,
respectively. The 𝐶

0
/(𝐶
0
+ 𝐶) ratios of both fitted variogram

models are between 25% and 75%, which exhibits moderate
spatial autocorrelations. This situation may be attributed to
both intrinsic factors such as soil properties and extrinsic
factors such as human activities.

The E-type estimate and a randomly selected realization
generated by SGS for each of soil Cd and pH are shown in
Figure 4. The E-type estimate map for each soil attribute was
averaged from five hundred simulated realizations generated
by SGS. While every simulated realization may represent
a realistic spatial distribution of the corresponding soil
attribute without the smoothing effect, the corresponding E-
type estimatemap does have the smooth effect and represents
an optimal estimation. The Cd maps show that Cd has
relatively high values in some small subareas in the central
and north parts of the whole study area, which coincide with
the locations of industry companies in the High-Tech Devel-
opment Park of the city. The pH maps show that high values
are concentratedly distributed in the north-west region,
overlapping with the nonfarmland area. The fact that low pH
values are mainly located in paddy fields and dry farmlands
means that pH is strongly affected by agricultural practices.

3.3. Standard-Exceeding Probability Mapping. The probabil-
ity map for soil Cd exceeding the composite environmental
quality standard (Table 1) is presented in Figure 5. It can be
seen that soil Cd basically does not exceed the standard in
nonfarmland areas (see Figure 1 for land use types), where the
exceeding probabilities are all less than 0.01.Themajor reason
should be that the SEQS values of soil Cd set for the non-
farmland land use type are high (see Table 1). All farmlands
(here farmlands include paddy fields and dry farmlands)
have moderate to high pollution risks of Cd, but high risks
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Figure 3: Experimental variograms of the normal score transformed data for soil Cd (a) and pH (b), with fitted models and parameters.

(i.e., high standard-exceeding probabilities) mainly occur
in those farmlands, particularly dry farmlands, along the
interleaving zones of farmlands and nonfarmlands, where
soil pH values are relatively low and industry companies are
also distributed.

3.4. Cd Risk Area Delineation Based on Standard-Exceeding
Probabilities. Remediation measures to Cd in soil should be
first applied to those places with higher occurrence probabil-
ities of exceeding the SEQS. Figure 6 provides two priority
remedy scenarios delineated from the standard-exceeding
probability map based on two critical probability values 0.90
and 0.95, respectively.The suggested remedy area decreases as
the selected critical probability value increases. It can be seen
that most dry farmlands (except for the piece in the southeast
corner) and some paddy fields (close to the south boundary)
are at high risk and should be first remedied.Measures such as
increasing soil pH value or transforming the farmlands into
nonfarmlands may be taken to decrease the risk.

3.5. Discussions. As simulated realizations do not have the
smoothing effect, a number of realizations may be used to
explore various possible spatial patterns of the spatial variable
under study (here soil Cd concentration or pH) and thus
provide a visual and quantitative measure of the spatial
uncertainty of the target variable. Because the standard-
exceeding probability of soil Cd at a specific location was
evaluated based on the land use type at the location and
the simulated realizations of soil Cd concentration and pH,
the spatial variability and uncertainty information of soil
Cd and pH were propagated to the corresponding standard-
exceeding probability. Such a standard-exceeding probability
map can show where the soil is at high risk of real Cd
pollution and consequently where remediation measures on
Cd should be first applied.

Comparing with those studies in standard-exceeding
probability estimation purely based on a single threshold
value of a pollutant, the estimation in this study should be

more realistic because soil pH and land use types do strongly
affect the bioavailability of soil trace metals, and land use
types also impact the exposure ways of tracemetals to human
being. Soil pH and land use type are often taken into account
by environmental protection agencies in setting SEQSs which
usually have the force of law. In addition, the method
suggested here may also be used for estimating the standard-
exceeding probability maps of other pollutants with similar
restrictive conditions. However, if the considered soil proper-
ties are different or more soil properties are considered in the
composite SEQS, the independence assumption among the
simulated soil properties may need to be rechecked and the
calculation of the joint probabilities might be complicated.

4. Conclusions

A method for estimating the standard-exceeding probability
map of soil Cd based on a composite SEQS for Cd in
soil (recently issued by China) was presented. The spatial
variability and uncertainty of soil pH and site-specific land
use type were incorporated through simulated realizations
by SGS. The suggested method accounts for multiple Cd
concentration thresholds corresponding to different soil pH
value intervals and land use types. Because the composite
SEQS for Cd in soil considered the effects of soil pH values
and land use types, which are, respectively, related with
the bioavailability (or toxicity) of Cd in soil and its human
health risk through food production, the estimated standard-
exceeding probability map of soil Cd using such a method
can better reflect the real risk distribution of soil Cd pollu-
tion. High risk areas under two different critical probability
values were further delineated for remedy consideration.The
proposed method may be useful for evaluating the pollution
risk of Cd in soil using a composite SEQS.

The study shows that soil Cd rarely exceeds the stan-
dard in nonfarmlands in the study area, and high risks of
Cd pollution mainly occur in farmlands, particularly dry
farmlands, along the interleaving zones of farmlands and
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Figure 4: The E-type estimates and the 150th realizations generated by SGS for soil Cd (a) and (b) and pH (c) and (d), respectively.
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Figure 6: Risk areas based on the probability map of Cd exceeding the composite soil environmental quality standard II of China for Cd in
soil given the critical probability values 0.90 (a) and 0.95 (b).
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nonfarmlands, where soil pH values are relatively low and
industry companies are also distributed. This means that
while industry may strongly impact the total concentration
of Cd in soil, land use type and soil pH can be more decisive
to the pollution risk of Cd in soil due to the fact that the
composite SEQS considered the effects of soil pH and land
use types on soil Cd bioavailability and hazard.
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