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Abstract. The time complexity of existing algorithms for reconstructing a 
level-x phylogenetic network increases exponentially in x. In this paper, we 
propose a new classification of phylogenetic networks called k-reticulated 
network. A k-reticulated network can model all level-k networks and some 
level-x networks with x > k. We design algorithms for reconstructing k-
reticulated network (k = 1 or 2) with minimum number of hybrid nodes from a 
set of m binary trees, each with n leaves in O(mn2) time. The implication is that 
some level-x networks with x > k can now be reconstructed in a faster way. We 
implemented our algorithm (ARTNET) and compared it with CMPT. We show 
that ARTNET outperforms CMPT in terms of running time and accuracy. We 
also consider the case when there does not exist a 2-reticulated network for the 
input trees. We present an algorithm computing a maximum subset of the 
species set so that a new set of subtrees can be combined into a 2-reticulated 
network. 

1 Introduction 

The study of evolutionary history of a species plays a crucial role in biomedical 
research. For example, understanding the evolutionary history of a virus (e.g. SARS) 
may help us deduce the natural reservoirs of the virus, thus identifying the source of 
the virus. The details of how the virus evolves may help to uncover clues to treat or 
vaccinate the virus and understand how it evolves resistance to existing drugs. A 
traditional representation of evolutionary history is phylogenetic tree (a rooted, 
unordered tree with distinctly labeled leaves, each represents a species or a strain of 
the species). To construct a phylogenetic tree, a common practice is to select a group 
of genes, which are believed to be critical for evolution, to represent the species. 
However, selecting a different set of genes may end up with a different phylogenetic 
tree (called a gene tree). To deal with this issue, researchers may try to extract the 
subtrees which are common in all trees (known as the maximum agreement subtree 
problems, see [1-3] for examples) and ignore the other non-common parts. This may 
result in a small tree. Also, information not in the common subtree will be lost.  

It is now well-known that the differences in the gene trees are not due to errors. 
There exist evolutionary events (known reticulation events), such as hybridization, 
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horizontal gene transfer, and recombination, that may cause the genes to evolve 
differently and a phylogenetic tree is not powerful enough to model the resulting 
evolutionary history [4]. To model the evolutionary history better, phylogenetic 
network is proposed. Phylogenetic network is a generalization of phylogenetic tree 
(note that in this paper, we focus on rooted bifurcating (each node has at most 2 
descends) phylogenetic tree/network). Phylogenetic network is defined as a rooted, 
directed acyclic graph in which (1) exactly one node has indegree 0 (the root), and all 
other nodes have indegree 1 or 2; (2) all nodes with indegree 2 (hybrid nodes or 
reticulation nodes) have outdegree 1, and all other nodes have outdegree 0 or 2; and 
(3) all nodes with outdegree 0 (leaves) are distinctly labeled. For a hybrid node h in a 
phylogenetic network, every ancestor s of h such that h can be reached using two 
disjoint directed paths starting from the children of s is called a split node of h (and h 
is called a hybrid node of s). The edges attached to a hybrid node is called hybrid 
edges. Figure 1 shows an example. Typically, a split node is used to represent a 
speciation event (two different species are evolved) while a hybrid node is used to 
represent the reticulation event between the two descendants of the split node.  

 

  

Fig. 1. An example phylogenetic network   Fig. 2. A level‐4 network but is an 
2‐reticulated network for a set of 15 HIV‐1 
sequences resulting from 9 gene tr 

 
We say that a phylogenetic network N is compatible with (induces or displays) a 

set of gene trees if each tree can be obtained from N by deleting one of the hybrid 
edges of each hybrid node and contracting all nodes with outdegree and indegree 
equal 1 (see Figure 3 for an example). If there is no restriction, for any given set of 
trees, we can always have a phylogenetic network that induces the trees. However, 
reticulation events are hard to occur, so a more biological meaningful question is to 
ask for such a phylogenetic network with the minimum number of hybrid nodes. 

 

Fig. 3. Network N is compatible with T1, T2. T3 

N T1 T2 T3
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A common classification of phylogenetic network is the level-x network [11 – 12]. 
A level-x network is one in which each biconnected component (also known as blob 
[5]) of the network contains at most x hybrid nodes. A level-0 network is a 
phylogenetic tree, a level-1 network is also known as a galled tree [5] or a galled 
network [6]. There are algorithms that reconstruct a level-x network, however, the 
time complexity increases exponentially in x even if we only consider some restricted 
cases. Thus, in practice, if x > 2, the algorithm is not fast enough. On the other hand, 
the evolutionary history of quite many viruses can only be modeled by high level 
networks (with x > 2). For example, to capture all known reticulation events of HIV 
[7], we need to use a level-4 network (Figure 2 shows the network). 

In this paper, we propose to consider a new classification of networks by restricting 
the maximum number of hybrid nodes each split node may have, namely a k-
reticulated network is one in which each split node can correspond to at most k hybrid 
nodes. This new classification is also supported by evidence in real life cases. Several 
studies of recombination in bacteria have shown that recombination rates decrease as 
sequence divergence increases [8-9]. These studies imply that the number of 
recombination events of a split node will be limited as the descendants from the same 
split node will diverge more as the number of generations increases. This observation 
is also supported by a computer simulation study [10]. Therefore, networks with 
limited reticulation events for each split node while no limit on the total number of 
reticulation events in each blob seem to be more biologically relevant and can model 
the recombination events in nature more appropriately. 

 
Our Contributions. This new classification of phylogenetic networks is more 
powerful than level-x networks. By definition, every level-x network is also an x-
reticulated network. And some level-x network can be modeled by a k-reticulated 
network with k < x (see Figure 2 for an example of a level-4 network which is also a 
2-reticulated network). So, even solving the problem for k-reticulated network with k 
as small as 2, some of the meaningful high level networks can be constructed 
efficiently. We show that given a set of binary gene trees, one can reconstruct an 1-
reticulated or 2-reticulated network (if one exists) with minimum number of hybrid 
nodes compatible with all trees in O(mn2) time where m is the number of trees and n 
is the number of leaves. We also consider the problem that when a compatible 2-
reticulated network does not exist, compute a subset of species with maximum size so 
that a 2-reticulated network exists. This problem is believed to be NP-hard and we 
provide an O(2mmn3m) algorithm to solve it. We implement the 2-reticulated network 
reconstruction algorithm (ARTNET) and compare it with the program CMPT [13] 
that reports a phylogenetic network with the smallest number of hybrid nodes. We 
only consider the case when a 2-reticulated network exists for the input set of trees. 
The experiments show that ARTNET is more efficient than CMPT. When the number 
of hybrid nodes increases, the running time of ARTNET only increases slightly while 
that of CMPT increases rapidly. Regarding accuracy evaluation, ARTNET also 
outperforms CMPT. 
 
Related Work. Several methods of constructing phylogenetic networks have been 
proposed. Nakhleh et al. [6] have developed an algorithm for constructing a level-1 
phylogenetic network from two phylogenetic trees running in polynomial time. 
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However, Nakhleh et al.’s algorithm can handle two trees only. Huynh et al. [12] 
have succeeded in providing a O(|T|2n2) algorithm reconstructing a galled network 
from a set T of multiple phylogenetic trees of arbitrary degree. Huson and Klopper 
[14]  gave an O(nk) algorithm constructing restricted level-k network from a set of 
trees. A rooted phylogenetic tree can be uniquely represented by the set of triplets 
obtained by taking all combinations of three leaves in the tree [12]. It takes O(n3) 
running time to construct a galled network in the algorithm designed by Jansson, 
Nguyen and Sung [15]. Extending to level-2 network, Van Iersel et al. [11] developed 
an O(n8) time algorithm. Habib and To [16] have solved the general problem of 
constructing level-k network from a dense triplet set T in exponential running-time ܱሺ|ܶ|௞ାଵ݊ቔరೖయ ቕାଵሻ. Gambette et al. [17] have shown that we can decide in optimal 
O(n4) time whether there exists a simple unrooted level-1 network for a set of all 
quartets. 
 
Notations. Let u is a node in a tree T, T[u] = the subtree of T rooted at u, and L(T) = 
the leaf label set of T. If u is a node in network N, a subnetwork N[u] is obtained from 
N by only retaining all nodes and their incident edges which are reachable from u, and 
L(N) is the set of leaf labels of N. Given a subtree t of T, T\t is a subtree obtained by 
removing t from T. Similarly, with a subnetwork N’ of N, N\N’ is a network obtained 
by removing N’ from N. Given a tree T with the leaf set L, and ܮԢ ك  T|L’ denotes a .ܮ
subtree obtained by first deleting all nodes which are not on any directed path from 
the root to a leaf in L’ along with their incident edges, and then, for every node with 
outdegree 1 and indegree less than 2, contracting its outgoing edge.  

2 Algorithms for Reconstructing k-Reticulated Network (k = 1, 2) 

Denote P(N, Ti, L) the procedure to reconstruct a k-reticulated network N compatible 
with T1, T2, …, Tm, where k = 1 or 2. We employ the divide-and-conquer technique. 

2.1 Reconstructing 1-Reticulated Network 

Base Case: if each input tree is a single node with the same label, return a network 
which is that single node of the same label; otherwise consider the following cases: 
 
Case I: Bipartition 
{T1,…, Tm} admit a leaf-set-bipartition (L1, L2) if for every tree Ti with root ri and its 
children ri1 and ri2, L(Ti[ri1]) = L1 and L(Ti[ri2]) = L2, then find P(N1, Ti[ri1], L1) and 
P(N2, Ti[ri2], L2). If N1 and N2 exist, network N is obtained by creating a new node r 
becoming the parent of the roots of N1 and N2. (Fig. 4) 
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Fig. 4. The tree set admit a leaf set bipartition 

 
Case II: Tripartition 
{T1,…,Tm} admit a leaf-set-tripartition (L1, Lh, L2) if for every tree Ti with root ri and 
its children ri1 and ri2, there exists a node hi ≠ ri such that L(Ti[hi]) = Lh; and if hi ≠ ri1 
and hi ≠ ri2 for every i = 1…m; {Ti’ = Ti\Ti[hi]} admit a leaf-set-bipartition (L1, L2). 
Otherwise, L1 = L(Ti’) and L2 = ∅. 

If hi ≠ ri1 and hi ≠ ri2 for i = 1…m, the problem can be divided into 3 subproblems: 
P(N1, Ti’[ri1], L1); P(N2, Ti’[ri2], L2); and P(Nh, Ti[hi], Lh). Network N can be combined 
from N1, N2 and Nh by first creating a new node r to be the parent of the roots of N1 
and N2. Find node u1 in N1 and u2 in N2 such that for i = 1…m, either u1 or u2 
corresponds to hi’s sibling si. Let v1 and v2 be the parent of u1 and u2 respectively, 
create nodes p1 and p2 on edges (v1, u1) and (v2, u2) respectively. A new hybrid node h 
is created, and let h be a child of p1 and p2, and h be the parent of Nh’s root (Fig. 5).  

 

Fig. 5. Combining N1, N2 and Nh to get network N 

Given network N compatible with tree T, a node u in N is said to correspond to  
a node s in T if T can be converted from N by a series of cuts in which any  
edge contraction related to node u will create a new node that is labeled u, then u 
becomes s. 
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If there is a tree Ti in which hi is a child of the root ri, the network constructed in 
this case is skew (i.e., there is a split node such that the path from the split node to its 
hybrid node is 1). The problem can be divided into 2 sub-problems: P(N’, Ti’, L1}; 
and P(Nh, Ti[hi], Lh). If N’ and Nh can be constructed, N can be obtained by first 
creating a node r and making r become the parent of the root of N’. Find a node u in 
N’ such that for every tree Ti in which hi is not a child of the root ri, u corresponds to 
si in Ti’, which is the sibling of hi before removing Ti[hi]. Let v be the parent of u, and 
a new node p on edge (v, u), create a hybrid node h that is the child of p and r, and h 
is the parent of the root of Nh (Fig. 6). 

 

Fig. 6. Combining N1 and Nh to get a skew network N 

2.2 Reconstructing 2-Reticulated Network 

To solve this problem, we also consider the base case, Case I and Case II as in the 
above. In addition, we need to consider Case III – Quadripartition as follows. 
 
Case III: Quadripartition 
The tree set {T1, T2, …, Tm} is said to admit a leaf-set-quadripartition (L1, Lh1, Lh2 
L2) if for every tree Ti with root ri and its children ri1 and ri2, there exists a node hi2 ∉ 
{ri, ri1, ri2} such that L(Ti[hi2]) = Lh2; and {Ti’ = Ti\Ti[hi2], i = 1, 2, …, m} admit a leaf-
set-tripartition (L1, Lh1, L2). If there exist a 2-reticulated network N’ compatible with 
{T1’,…, Tm}; and a 2-reticulated network Nh2 compatible with {Ti[hi2], i = 1, …, m}. 

If N’ is a non-skew network, N’ is created by combining three 2-reticulated 
networks N1, N2 and Nh1 (as case II). Find two nodes a and b in two distinct networks 
out of three networks N1, N2 and Nh1 such that either a or b corresponds to node si in 
Ti’, which is the sibling of hi2 in Ti, for i = 1, 2,…, m. Attaching Nh2 to N’ is done 
similarly to case II by creating a new hybrid node h2 (Fig. 7).  
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Fig. 7. Combining non-skew network N’ and Nh2 to get a 2-reticulated network N 

If N’ is a skew-network, N’ is created by combining two 2-reticulated networks N1 
and Nh1. Find nodes a and b in N1 and Nh1 respectively such that for i = 1…m, either a 
or b corresponds to node si in Ti’, which is the sibling of hi2 in Ti. Attaching Nh2 to N’ 
by creating a new hybrid node h2. (Fig.8)  

 

Fig. 8. Combining skew network N’ and Nh2 to get a 2-reticulated network N 

2.3 Algorithm Correctness 

Lemma 1. Given a network N compatible with tree T and a node v in N, if all nodes in 
a subnetwork N[v] cannot be reached from any other nodes outside N[v] without 
passing through node v, then there exists a node u in T such that its subtree T[u] and 
N[v] have exactly the same leaf label set, and N[v] is compatible with T[u].  
 
Theorem 1. The algorithm described in section 3.1 and 3.2 can construct a 2-
reticulated network compatible N with a given set of trees if and only if N exists. 
 
Proof. Assume there is a 2-articulated compatible network N for {T1, T2,…, Tm}. 
Consider the root r of N: 

Case 1: r is the only node in N. The theorem is obviously correct. 
Case 2: r does not correspond to any hybrid node 
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Let r1 and r2 be two children of r, and L1 and L2 be the leaf set of N[r1] and N[r2] 
respectively. As r does not correspond to any hybrid node, any node outside N[r1] 
(resp. N[r2]) has to pass through r1 before reaching any node inside N[r1] (resp. N[r2] 
). From Lemma 1, there are nodes u1 and u2 in every tree Ti such that L(T[u1]) = L1, 
and L(T[u2]) = L2, and N[r1] and N[r2] are compatible with T[u1] and T[u2] 
respectively. We have L1∩L2 = ∅ and L1∪L2 = L, so in N and every tree Ti, their root 
is the only common ancestor of any node in L1 and any node in L2. This means the 
input tree set admit a leaf set bipartition, corresponding to case I in the algorithm. 
 
Case 3: r corresponds to one hybrid node h 
All nodes in N[h] cannot be reached by any other node not in N[h] without passing 
through node h, otherwise, there must exist another hybrid node of root r in N[h], 
contradicting to the fact that r corresponds to exact one hybrid node. By Lemma 1, 
there exists a node hi in every tree Ti such that N[h] is compatible with Ti[hi], and 
L(N[h]) = L(Ti[hi]); hence, N\N[h] is compatible with Ti\Ti[hi]. As the root of N\N[h] 
does not correspond to any hybrid node, the argument can be turn back to Case 2. 
This implies that the tree set admit a leaf set tripartition, corresponding to case 2 of 
the algorithm. 
 
Case 4: r corresponds to two hybrid nodes h1 and h2 
Let p1 and q1 be the parents of h1, and p2 and q2 be the parents of h2, then either h1 lies 
on one of the merge paths from the root r to h2, or none of the merge paths from r to 
h2 (resp. h1) go through h1 (resp. h2) (figure 7). 

In both cases, all nodes in the subnetwork N[h2] cannot be reached by any other 
node outside N[h2] without passing through node  h2; otherwise, r would correspond 
to another hybrid node in N[h2]. 

From Lemma 1, there exists a node hi2 in every tree Ti such that N[h2] is 
compatible with Ti[hi2], and L(N[h2]) = L(Ti[hi2]). Plus, N\N(h2) is a compatible 2-
articulated network of Ti\Ti[hi2]. As the root of N\N(h2) corresponds to exact 1 hybrid 
node h1, the argument can turn back to Case 3 above. This implies the tree set admit a 
leaf set quadripartition, corresponding to Case 3 of the algorithm.                    

2.4 Time Complexity 

Lemma 2. Determining whether {T1, T2, …, Tm} admit a leaf set bipartition or 
tripartition or quadripartition and partitioning every tree can be done in O(mn). 
 
Proof. Denote LCA(X)  the lowest common ancestor of all nodes in set X. 
For every tree Ti, i = 1, 2, …, m, denote ri the root of Ti, and ri1 and ri2 are two 
children of ri. Define a subset L* ⊂ L: 

L* = ∅ if the tree set admit the leaf set bipartition. 
L* = Lh if the tree set admit a leaf set tripartition (L1, Lh, L2). 
L* = Lh1 ∪ Lh2 if the tree set admit a leaf set quadripartition (L1, Lh1, Lh2, L2).  

Determine L*: Let Lc = L(T1[r11]); Ld = L(T1[r12]). It takes O(mn) to divide Lc into two 
disjoint subsets Lc1 and Lc2, and Ld into two disjoint subsets Ld1 and Ld2 (Fig. 9). Pick 
one leaf node v in Lc, then 
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For every leaf node u ∈ Lc: If LCA(v, u) is not the root of every tree Ti; u is put in 
Lc1; else, u is put in Lc2. 

For every leaf node w ∈ Ld: If LCA(v, w) is the root of every tree Ti; w is put in Ld1; 
else w is put in Ld2. 

 

Fig. 9. Partition the leaf set 

Claim 1: The tree set admits a leaf set bipartition iff Lc2 = Ld2 = ∅; otherwise check 
tripartition property.  
 
Claim 2: The tree set admits a leaf set tripartition iff either L* = Lc2 ∪ Ld2 or L* = Lc1 ∪ Ld1, and there exists a node hi in every tree Ti such that L(Ti[hi]) = L*, and Ti\Ti[hi] 
admit a leaf set bipartition if hi is not a child of ri for every i = 1…m, taking O(mn) 
time; otherwise, check quadripartition property. 
 
Claim 3: If the tree set admits a leaf set quadripartition (L1, Lh1, Lh2, L2), one of two 
sets Lc1∪Ld1 or Lc2∪Ld2 can be either (1) Lh1, or (2) Lh2, or (3) Lh1∪Lh2. 
Pick any tree, say T1, to find the p1 = LCA(Lc1∪Ld1) and p2 = LCA(Lc2 ∪ Ld2). 

1. One of two nodes p1 or p2 is the root r1 and the other is not. Assume p1 = r1, and p2 
is a proper descendant of r1, then Lc2 ∪ Ld2 = Lh1 or Lc2 ∪ Ld2 = Lh2. 

2. If both p1 and p2 are r1, find j = 1 or 2 such that LCA(Lcj) and LCA(Ldj) are the 
children of the root r1. If j does not exist, return “null”; otherwise, assume j = 1, 
then Lh1∪Lh2 = Lc2∪Ld2. 

It takes O(n) time to determine L’ which is either Lh1, or Lh2 or Lh1 ∪ Lh2.  

• If L’ is Lh1 or Lh2 → L* = L’ 
Check if there is a node hi in every tree Ti such that L(Ti[hi]) = L’ in O(mn). If yes, 
check if {Ti\Ti[hi], i = 1,…, m} admit a leaf set tripartition (L1, Lh, L2). If yes, Lh2 = 
L’ and Lh = Lh1; else return “null”. 
If there is a tree Tj in which there does not exist any node w such that L(Tj[w]) = L’ 
(Fig.10). If hj is LCA(L’), then L’ = Lh1 ∪ Lh2, which is examined as case 2 below. 
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Fig. 10. With a leaf set Lh1, find a node w in Tj such that L(Tj[w]) = Lh1 ∪ Lh2 

• If L’ = Lh1 ∪ Lh2. 
Let Tk be a tree in which there is no node satisfying L’ = L(Tk[w]). If there are exact 
two nodes hk1 and hk2 in Tk such that L(Tk[hk1]) ∪ L(Tk[hk2]) = L’, then either 
L(Tk[hk1]) or L(Tk[hk2]) is Lh2; otherwise, return “null”. Finding hk1 and hk2 takes 
O(n). It then takes O(mn) to determine which one, L(Tk[hk1]) or L(Tk[hk2]), is Lh2, 
and partition every tree Ti into Ti’ and Ti[hi2], for i = 1, 2, …, m. 

 
In total, checking whether the input trees admit a leaf set bipartition or tripartition or 
quadripartition, and partition every tree into proper subtrees takes O(mn).            
 
Lemma 3. Given a network N compatible with m trees {T1, T2, …, Tm} with the same 
leaf label set L of size n, and a node si in Ti, for i = 1, 2, …, m, then finding  whether 
there is a node u in N corresponding to s1, s2, …, sm can be done in O(n). 
 
Proof. For i = 1, …, m, let ui be a node in N having the lowest height in N such that 
L(Ti[si]) ⊆ L(N[ui]). 
 
Claim: Node u exits iff ui is u or a descendant of u such that all nodes on the path 
from u to ui are either hybrid node of a skew split node or non-hybrid nodes whose 
siblings are hybrid nodes. It takes O(mn) to find the set {u1, u2, …, um} from N (note 
that ux can be uy), and O(n) time to check (i) all nodes {u1, u2, …, um} lie on the same 
directed path; and (ii) The siblings of ui, i = 1, 2, …, m, are all hybrid nodes. If two 
conditions are satisfied, the node u will be the starting node x of the path created by 
{u1, u2,…, um} or x’s sibling if x’s sibling is the hybrid node of a skew split node ; 
otherwise, return “null”.                        
 
Theorem 2. Constructing a k-reticulated network (k = 1 or 2) from a set of m binary 
trees with the same leaf label set L of size n can be done in O(mn2). 
 
Proof. From Lemma 2 and Lemma 3, dividing and conquering take O(mn) time 
complexity. There are O(n) nodes in a tree with n leaf nodes. Hence the time 
complexity of our algorithm is O(mn2). 
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3 Maximum 2-Reticulated Network Compatibility Problem 

Given a set of binary trees {T1, T2, … Tm}, compute the maximum leaf set L* such that 
there exists a 2-reticulated network N compatible with {T1|L*, T2|L*, …, Tm|L*}.  

Using brute-force approach by considering all possible subsets of the leaf set, the 
problem can be done in O(2nmn2). However, when m ≪ n, the following algorithm 
produces better time complexity. 
 
MCN(Ti) denotes the Maximum compatible 2-reticulated network for T1, T2, …, Tm. 
MCLS(Ti) denotes the MCN(Ti)’s Leaf Set 

Let v be a node in a tree T, child1(v) and child2(v) denote two children of node v. 
Let sib_hyb(l, h) be an array of pointers in which sib_hyb(l, h)[i] is pointing to a 

node wi in tree Ti; where l is a positive integer number, and h receives a value of 1 or 
2. The following rules are applied in the process of removing nodes and edges when 
computing MCLS(Ti): 

• If wi is one of the end node of the edge that is contracted, sib_hyb(l, h)[i] will point 
to a new node created after doing contraction. 

• If a whole subtree rooted at wi is deleted from Ti, sib_hyb(l, h)[i] points to the 
sibling of wi. 

• If a whole subtree rooted at pi, which is an ancestor of wi, is deleted, sib_hyb(l, 
h)[i] points to the sibling of pi. 

 
Theorem 3. Given m trees T1, …, Tm rooted at r1,…, rm respectively. ݈ଵand ݈ଶ are 
global variables initialized = 0; Base case: there is a tree that is a single node, ܵܮܥܯሺ ௜ܶ , ݅ ൌ  1, … , ݉ሻ ൌ ځ ሺܮ ௜ܶሻ௠௜ୀଵ ሺܵܮܥܯ . ௜ܶሻ is the set having the maximum size of the following terms: 

1. maxሼܵܮܥܯሺ ௜ܶ௔ሾ݄݈ܿ݅݀ଵሺݎ௜௔ሻሿ, ௜ܶ௕ሻ, ሺܵܮܥܯ ௜ܶ௔ሾ݄݈ܿ݅݀ଶሺݎ௜௔ሻሿ, ௜ܶ௕ሻ; with i1≥1 and i2≥1 ሼ ௜ܶ௔, ܽ ൌ 1 … ݅ଵሽ ∪ ሼ ௜ܶ௕, ܾ ൌ 1 … ݅ଵሽ ൌ ሼ ଵܶ, … , ௠ܶሽ ܽ݊݀ ሼ ௜ܶ௔, ܽ ൌ 1 … ݅ଵሽ ∩ሼ ௜ܶ௕, ܾ ൌ 1 … ݅ଵሽ ൌ ∅}; 
૚ሺࡿࡸ࡯ࡹ .2 ௜ܶሻ  = max{ ൫ܵܮܥܯ  ௜ܶൣ݄݈ܿ݅݀௖೔ሺݎ௜ሻ൧൯ + ൫ܵܮܥܯ  ௜ܶൣ݄݈ܿ݅݀ௗ೔ሺݎ௜ሻ൧൯ ; where ሺܿ௜, ݀௜ሻ ∈ ሼሺ1, 2ሻ, ሺ2, 1ሻሽ, for i = 1, …, m}; 
૛ሺࡿࡸ࡯ࡹ .3 ௜ܶሻ ൌ max  ሼ1ܵܮܥܯሺ ௜ܶ\ ௜ܶሾݒ௜ሿሻ ൅ ሺܵܮܥܯ ௜ܶሾݒ௜ሿሻ ; where ݒ௜ is some node 

in ௜ܶ , The sibling of ݒ௜ is pointed by sib_hyb(++l1, 1)[i], for i = 1…m}; 
4. max ሼ2ܵܮܥܯሺ ௜ܶ\ ௜ܶሾݓ௜ሿሻ ൅ ሺܵܮܥܯ ௜ܶሾݓ௜ሿሻ, where ݓଵ is a node in ௜ܶ . The sibling 

of wi is pointed by sib_hyb(++l2, 2)[i], for i = 1…m}; 

Before computing ௜ሻݐሺܵܮܥܯ  , if there is a tree ݐ௣  whose root is pointed by any ܾݕ݄_ܾ݅ݏሺ݈ଵ, 1ሻሾ݌ሿ (resp. ܾݕ݄_ܾ݅ݏሺ݈ଶ, 2ሻሾ݅ሿሻ  with a specific value ݈ଵ (resp. ݈ଶ), then 
for every other tree ݐ௝  containing a node ݏ௝  that is pointed by ܾݕ݄_ܾ݅ݏሺ݈ଵ, 1ሻሾ݆ሿ 
(resp. ܾݕ݄_ܾ݅ݏሺ݈ଶ, 2ሻሾ݆ሿ), replace ݐ௝ ൌ  .௜ሻݐሺܵܮܥܯ ௝൧ in computingݏ௝ൣݐ
 
Time Complexity: By applying dynamic programming, and backtracking on the 
recursive equations, the problem can be computed in O(2m mn3m).       
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4 Experiments 

We evaluate and compare the performance of our method, namely ARTNET, with the 
program CMPT [13] which constructs a network with the smallest number in 
reticulation from a set of binary trees. NETGET [10] is used to generate random 
networks. For every 2-reticulated network simulated, we produce a certain number of 
induced binary trees which are the input of both programs ARTNET and CMPT. We 
use n (number of leaf node) = 40. Figure 11 shows that we run faster than CMPT. 
Following [11], we use split-based false negative (FN) and false positive (FP) rates to 
measure the error rates of the methods. Figure 12 shows that ARTNET produces 
fewer false positives than CMPT. On the other hand, CMPT and ARTNET have 
similar performance in false negative rates.  

 

Fig. 11. Time comparison between ARTNET and CMPT 

 

Fig. 12. Comparing the false positive rate between ARTNET and CMPT 
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