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Abstract

Background: Drug discovery is known for the large amount of money and time it
consumes and the high risk it takes. Drug repositioning has, therefore, become a
popular approach to save time and cost by finding novel indications for approved
drugs. In order to distinguish these novel indications accurately in a great many of
latent associations between drugs and diseases, it is necessary to exploit abundant
heterogeneous information about drugs and diseases.

Results: In this article, we propose a meta-path-based computational method called
NEDD to predict novel associations between drugs and diseases using
heterogeneous information. First, we construct a heterogeneous network as an
undirected graph by integrating drug-drug similarity, disease-disease similarity, and
known drug-disease associations. NEDD uses meta paths of different lengths to
explicitly capture the indirect relationships, or high order proximity, within drugs and
diseases, by which the low dimensional representation vectors of drugs and diseases
are obtained. NEDD then uses a random forest classifier to predict novel associations
between drugs and diseases.

Conclusions: The experiments on a gold standard dataset which contains 1933
validated drug–disease associations show that NEDD produces superior prediction
results compared with the state-of-the-art approaches.

Keywords: Drug repositioning, Heterogeneous network, Network embedding, Meta
path

Background
Drug discovery is known for a large amount of money and time it consumes and the

high risk it takes [1]. The investments grow continuously in recent years, but the total

number of approved drugs remains constant [2]. Therefore, drug repositioning has be-

come a popular approach to save cost by finding novel indications for approved drugs.

Since these commercialized drugs have passed various clinical tests, it would save
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tremendous effort if we could reuse them directly. As reported, relaunching a reposi-

tioned drug can save about 80% of the cost compared with launching a reformulation

of an existing drug [3].

The goal of drug repositioning is to find potential new target diseases for an existing

drug and apply the newly identified drug to the treatment of diseases other than the drug’s

originally intended ones [4]. Historically, the discovery of finding new indications for

existing drugs is mostly the result of a better understanding of a drug [5] or serendipity

[6]. Then as the omics data accumulate, new bioinformatics methods emerge and play an

increasingly important role. The newly proposed methods generally can be categorized as

‘drug based’ or ‘disease based’ [7]. For instance, IDMap [8] is a drug-based method and it

mainly focuses on exploring the chemical structure information of drugs. Later, with the

growth of drug-related data and the initiative of open data, recent studies pay more atten-

tion to integrating heterogeneous information. For example, Gottlieb et al. proposed

PREDICT [9], a method that integrates various drug-drug similarity and disease-disease

similarity from different sources.

These computational repositioning approaches can be roughly divided into three types:

machine learning methods, text mining methods, and network-based methods [5, 10].

The aforementioned method PREDICT is an example of machine learning methods.

The authors used similarities as features and applied a logistic regression classifier to

predict novel indications for drugs. Moreover, Napolitano et al. proposed an approach

which used a combination of drug-related data to train a multi-class SVM (Support

Vector Machine) classifier to identify latent drug-disease associations [11]. Besides,

there are also researches comparing traditional machine learning methods and deep

learning methods [12, 13].

Electronic health records (EHR) of the patients and other literature contains a vast

amount of information about drugs and diseases that can be explored using the text

mining technique. For instance, Zhu et al. explored pharmacogenomics studies and

modelled FDA-approved breast cancer drugs by using Semantic Web notions which

support automated semantic inference [14]. Chen et al. integrated and annotated data

from public datasets and developed a statistical model called Semantic Link Association

Prediction (SLAP) to assess drug–target associations based on semantic links [15].

Network-based methods have been wildly used for computational drug repositioning.

Martínez V et al. proposed DrugNet [16], which is based on a heterogeneous network

prioritization approach that can utilize heterogeneous information. Luo, Y et al. devel-

oped a pipeline called DTINet [17]. It originally aims to find interactions between drugs

and targets, but can also be applied in drug repositioning. DTINet uses a matrix com-

pletion method to calculate the low dimensional feature vectors which capture the

topological properties of nodes in the network and uses these features to predict novel

associations. Luo, H et al. proposed MBiRW [18], which used the Bi-Random Walk

algorithm to predict potential novel indications of a drug. However, current network-

based methods often show a certain preference for drugs that have more known drug-

disease associations. Therefore, they are not good at finding novel indications for drugs

that are less explored or new drugs.

In this work, we propose NEDD, a network embedding based method for predicting

novel interactions between drugs and diseases using heterogeneous information. NEDD

tries to solve the above problems by adopting the concept of inductive learning and
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meta path. The results of experiments show that NEDD outperforms other methods in

drug repositioning.

Methods
In this section, we will introduce our method NEDD. Generally, the whole procedure of

NEDD consists of three steps. First, based on the heterogeneous information related to

drugs and diseases, an undirected graph with weighted edges is constructed. Second, we

train a meta-path-based representation learning model to learn the embedding vectors of

each entity. Last, using the vectors learned, we train a classifier to identify potential associ-

ations between drugs and diseases.

Construction of the drug-disease network

We construct the network as an undirected graph that consists of two node types (drug

node ndr and disease node ndi) and three edge types (drug-disease edge rdr-di, drug-drug

edge rdr-dr, and disease-disease edge rdi-di). An edge of rdr-di represents the association

between a drug and a disease. An edge of rdr-dr represents the connection between two

drugs which have a high similarity and an edge of rdi-di denotes the connection between

two diseases which have a high similarity.

After calculating all the similarities among drugs and that among diseases, we filter the

edges with a certain threshold. In particular, the threshold of drug similarity is 0.8 and the

threshold of disease similarity is 0.7. The thresholds are determined by experiments. Each

similarity edge below its threshold is removed unless it has the greatest weight (similarity)

among other homogeneous edges for a drug or a disease and removing this edge may

cause one node to be isolated. The insight of filtering is that drug pairs with low similarity

have an insignificant probability in indicating common diseases while drug pairs with high

similarity have a strong probability to indicate common diseases [18], and the same is also

true for disease pairs. This step is illustrated in Fig. 1.

Though here we only make use of three types of relationships within drugs and diseases,

other types of information, like disease-target interactions and so on, can be used to expand

the graph.

Network embedding

Most existing network representation learning methods can be summarized into two

steps: proximity matrix construction and dimension reduction [19]. NEDD uses

Fig. 1 Network Construction. A demo graph constructed by integrating drug similarity network and disease
similarity network. Dotted lines, like Edgebc, represent removed edges whose weights under thresholds. Though
weights of EdgeAC is under the threshold, this edge is not removed because firstly all similarity edges of Nodec are
below the threshold and secondly it is the edge with the most weight among them. And it is the same with EdgeCD
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random walk to perform the first step. One of the strengths of random walk is that it is

efficient in both time and space. In the next step, NEDD adopts a neural-network-

based method, HIN2vec [20], to learn network embedding vectors.

The key concept of the first step is the meta path. Given a drug-disease network G(V,

E), the node type set TV and the edge type set TE, a meta path can be defined as a trip-

let (nh, nt, m), where nh, nt∈TV are the head node type and the end node type, and m is

a sequence of edge types r1→ r2→…→ rl (r1, r2, …, rl ∈TE) which indicates a compos-

ite relation between the two node types. For example, a meta path (ndi, ndi,

rdr-di→rdr-di) indicates the relationship that two diseases share the same treatment,

while a meta path (ndr, ndr, rdr-di→rdi-di→rdr-di) describes the relationship of two drugs

that could treat two similar diseases.

NEDD first uses a random walk algorithm to generate long possible paths in the

graph. In this process, node numbers and node types are recorded. Then, these paths

are cut into shorter paths with lengths from 1 to W. These shorter paths represent the

network proximity between two nodes of the 1st to the Wth order. In our experiments,

W is set to 6. Besides, negative sampling [21] is used to generate negative data entries.

Then, NEDD adopts HIN2vec [20] to learn network embedding vectors. HIN2vec is a

representation learning method. It assigns a low dimensional embedding vector for

each entity in the graph, including drug nodes and disease nodes, and each meta path.

It trains a neural network classifier with one hidden layer to identify if two nodes have

a certain relationship and take weights of the hidden layer as embedding vectors like

word2vec [21]. The prediction which node vi and node vj have an association that

matches a particular meta path R is given as below:

P Rjvi; v j
� � ¼ sigmoid

X
evi⊙ev j⊙ f 01 eRð Þ

� �

where evi ; ev j ; eR∈R
D is the embedding vector of the nodes vi, vj, and the meta path R,

f01 is a regularization function that regularizes values in eR within 0 and 1, and ⊙ is the

element-wise product. HIN2vec uses cross-entropy loss to measure the prediction error

and uses stochastic gradient descent to update embedding vectors.

A visualization using T-SNE [22] of meta path embedding vectors is shown in Fig. 2.

Using embedding vectors to predict novel associations

In this step, we use a random forest classifier to make final predictions. We apply the

element-wise product to aggregate a drug node embedding vector and a disease node em-

bedding vector together as the input of the random forest classifier. The output of the

random forest classifier is the predicted probability that a drug and a disease have

associations:

P durgi treats disease j
� � ¼ random forest classifier edrugi⊙edisease j

� �

We use scikit-learn [23] to implement the random forest classifier. While optimizing

the parameters of the random forest, we evaluated the forest on the same training set

and validation set. Because random forests are less likely to overfit, we started with a

large classifier and gradually cut down the scale. In the end, we set the max depth of

trees to 25, the number of estimators to 300, the minimum number of samples to split

to 2, and use the Gini coefficient as the criterion.

Zhou et al. BMC Bioinformatics 2020, 21(Suppl 13):387 Page 4 of 12



Results
In this section, we evaluate the performance of NEDD on the gold standard dataset.

First, we introduce the evaluation metrics. Then, by performing these measurements,

we compare NEDD with five other methods: MBiRW [18], DTINet [17], HGBI [24],

NBI [25], and JUST [26].

Dataset

In the dataset, drug-disease associations are collected from multiple data sources. This

gold standard dataset which has been used in reference [9] includes 593 drugs from

DrugBank [27], 313 diseases from the Online Mendelian Inheritance in Man (OMIM)

[28] and 1933 validated drug–disease associations.

The drug similarity data is calculated by the Chemical Development Kit (CDK) [29]

based on SMILES [30] chemical structures and the disease similarity data is obtained

from MimMiner [31] which is based on disease phenotype similarity using text mining

analysis of their medical descriptions information in the OMIM database.

Evaluation metrics

In order to evaluate the ability of NEDD in finding new possible target diseases of a

specific drug, we conduct 10-fold cross-validation and perform the top-ranked candi-

date disease analysis.

In 10-fold cross-validation, all 1933 known drug-disease associations in gold standard

datasets are randomly divided into 10 partitions with each roughly equal in size. Then,

1 of 10 partitions in turn serves as the test set, while the remaining as the training set.

After the whole process, each possible association is given a score representing the con-

fidence of the association. Then these associations are sorted in descending order ac-

cording to their score. Next, for each ranking threshold, true positive rate (TPR), which

measures the proportion of known associations that are correctly identified, and false

positive rate (FPR), which measures the proportion of unverified associations that are

predicted as real associations, are calculated based on the ranking results. By changing

Fig. 2 Visualization of meta path embedding vectors. Visualization of meta path embedding vectors using
T-SNE [22]. The visualization result is very intuitive. Since the graph we created is an undirected one, the
embeddings of paths are naturally symmetric. The lower-left group is meta paths which start from drug
nodes and the upper-right group represent meta paths which start from disease nodes. Each point
represents a meta path vector and different color represents different order of the relationships. For
instance, point C on the left is a meta path of “Drug-Drug-Disease”, which represents the second order
relationship that a drug might cure a disease that a similar drug can treat
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settings of the threshold, we can get various pairs of TPR and FPR. Based on these

pairs, the receiver operating characteristic curve (ROC curve) can be drawn with FPR

as the x-axis and TPR as the y-axis. The area under ROC (AUC) is then calculated to

measure the performance.

Besides, as top ranked predicting results may be important in practice, we also test

our method in terms of top ranked results. We count the number of true drug-disease

associations proved by other sources, e.g. other datasets or literatures to evaluate

NEDD and other methods.

Comparison with other methods

NEDD is compared with five state-of-the-art methods: MBiRW [18], DTINet [17], HGBI

[24], NBI [25], and JUST [26]. These five methods are all computational methods which are

based on network and can utilize the heterogeneous network of drugs and diseases. NBI is a

method based on a two-state diffusion model in a bipartite graph. HGBI is a method based

on the guilt-by-association principle and an intuitive interpretation of information flow on a

heterogeneous graph. MBiRW and DTINet have been introduced in the above. MBiRW is

based on random walk and DTINet is based on matrix completion. Moreover, similar to

NEDD, DTINet also adopts the concept of inductive learning. HGBI and NBI are also ori-

ginally developed for drug-target association prediction but they have also been used in

drug-disease association prediction [32]. JUST improves the random walk sampling method

on the heterogeneous network which avoids using meta paths and use Skip-Gram model

[21] to learn network embedding vectors. In the study, the parameter α is set to 0.3, and l, r

to 2 for MBiRW according to the default parameter setting in [18]. The parameter α of

HGBI is set to 0.4 as suggested in [24]. We change the lengths of vectors to 100 in DTINet,

and we use the default settings for other parameters. Besides, we use additional information

to train DTINet model because the method mainly focuses on integrating various informa-

tion. The additional information includes drug-drug interactions and drug-protein interac-

tions collected from DrugBank [27], associations between drugs and side-effects from SIDE

R [33], and disease-gene associations from CTD [34]. For JUST, we set α to 0.4, m to 2 as

suggested in the original paper [26]. The length of the embedding vectors is set to 128 and

the window size of the Skip-Gram model is set to 10.

Through repeating the 10-fold cross-validation experiment specified in the above 1

hundred times with different random seeds, we calculate average AUC to estimate the

performance of each method. In the 10-fold cross-validation test, the experiment re-

sults show that NEDD outperforms the other methods. NEDD achieves the AUC value

of 0.923, while MBiRW, DTINet, HGBI, NBI, and JUST obtain inferior results of 0.912,

0.869, 0.820, 0.584 and 0.828, respectively. The results are illustrated in Fig. 3.

Case study

After confirming the ability of NEDD to predict potential drug-disease associations

based on 10-fold cross-validation, we further conduct a case study to search evidences

in other sources. In this step, all known associations in the gold standard dataset are

used as the training set, and then the possible associations are ranked according to

NEDD’s prediction. Next, top-ranked predictions for each drug are verified based on

CTD [34]. The top-N results of NEDD are summarized in Fig. 4. In this step, it shows
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that 204 novel indications in the top 5 predictions are verified by CTD; 438 novel indi-

cations are verified in the top 10 and 849 novel indications are verified in the top 20.

Fifteen drug-disease associations with the highest prediction scores of all are listed in

Table 1. None of these associations are verified by CTD. So, we conduct a further study to

find supporting evidences by literature searching. The result shows that 7 out of 15 pre-

dictions are verified by literature. In predictions ranked 1 and 6, drugs are related to cor-

responding diseases, but may target another subtype of the diseases. Predictions ranked 2,

3, 5, 7, 11, and 12 have not been adequately investigated. Some details are provided below.

Levetiracetam can treat epilepsy but one of its side-effects is ataxia [35]. So, it may not be

helpful in treating ataxia with myoclonic epilepsy and presenile dementia. Ifosfamide is pre-

dicted to treat reticulum cell sarcomaand it has been used in treating soft tissue sarcoma

[43]. Enalapril is an orally-active antihypertensive agent that can suppress the renin-

angiotensin-aldosterone system to lower blood pressure. NEDD predicts Enalapril can treat

renal failure, which has been tested in [36]. Teniposide is used for the treatment of refrac-

tory acute lymphoblastic leukaemia. The prediction result suggests that it may be applied in

the treatment of mismatch repair cancer syndrome (MMRCS) as well. Dihydrotachysterol is

predicted to treat vitamin D-dependent rickets, type 2a, which has been studied in [37].

NEDD suggests using Ibandronate in the treatment of inclusion body myopathy with early-

onset Paget disease with or without frontotemporal dementia 1 and the treatment of Paget

Fig. 3 Results of ten-fold cross-validation. AUC and ROC curve of ten-fold cross-validation

Fig. 4 Result of top n test. Number of verified novel drug–disease associations found by NEDD. On the left
is the sum of verified associations which rank in the top n results for each drug. On the right is the number
of verified associations found in the top n results of all
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disease of bone 2, early-onset. And Ibandronate has long been used in treating Paget disease

[38]. Pamidronic acid is used to prevent bone loss and to strengthen the bone in Paget

disease [39], which verified the prediction of our method. Calcitriol, an active metabolite of

vitamin D is predicted to treat renal hypophosphatemia with intracerebral calcifications. In

real life, it is used in the treatment of hypophosphatemia [40]. Despite concerns that the use

of calcitriol may contribute to vascular calcification, there is no clear evidence [44]. Torase-

mide is a high-ceiling loop diuretic [45]. It is predicted to treat nephrotic syndrome, type 4;

this prediction is verified in [41]. For Gliclazide, the prediction to treat maturity-onset

diabetes of the young of type 3 has been tested in clinical trials [42].

Parameter sensitivity

In this section, we investigate the parameter sensitivity. We change the thresholds for

drug similarities and disease similarities and the window size to see how these parameters

affect the result. We conduct 10-fold cross-validation five times for each parameter setting

and evaluate the performance using AUC values. In each experiment, we only change one

corresponding parameter and set the others as default—i.e. 0.7 for disease similarity

threshold, 0.8 for drug similarity threshold, and 6 for window size.

The results are illustrated in Fig. 5. From Fig. 5, we can recognize a similar pattern.

The performance rises initially when the values of the corresponding parameters rise.

Table 1 Associations with the highest prediction scores

Rank Drug Disease References

ID
(DrugBank)

Name ID
(OMIM)

Name

1 DB01202 Levetiracetam 208,700 ATAXIA WITH MYOCLONIC EPILEPSY
AND PRESENILE DEMENTIA

[35]

2 DB01181 Ifosfamide 267,730 RETICULUM CELL SARCOMA –

3 DB00937 Diethylpropion 303,110 CHOROIDEREMIA, DEAFNESS, AND MENTAL
RETARDATION

–

4 DB00584 Enalapril 161,900 RENAL FAILURE, PROGRESSIVE, WITH HYPERTEN
SION; RFH1

[36]

5 DB00444 Teniposide 276,300 MISMATCH REPAIR CANCER SYNDROME; MMRCS –

6 DB01070 Dihydrotachysterol 277,440 VITAMIN D-DEPENDENT RICKETS, TYPE
2A; VDDR2A

[37]

7 DB00176 Fluvoxamine 131,300 CAMURATI-ENGELMANN DISEASE; CAEND –

8 DB00710 Ibandronate 167,320 INCLUSION BODY MYOPATHY WITH EARLY-ONSET
PAGET DISEASE WITH OR WITHOUT
FRONTOTEMPORAL DEMENTIA 1; IBMPFD1

[38]

9 DB00710 Ibandronate 602,080 PAGET DISEASE OF BONE 2, EARLY-ONSET; PDB2 [38]

10 DB00282 Pamidronic acid 602,080 PAGET DISEASE OF BONE 2, EARLY-ONSET; PDB2 [39]

11 DB01551 Dihydrocodeine 147,530 INSENSITIVITY TO PAIN WITH HYPERPLASTIC
MYELINOPATHY

–

12 DB00500 Tolmetin 147,530 INSENSITIVITY TO PAIN WITH HYPERPLASTIC
MYELINOPATHY

–

13 DB00136 Calcitriol 241,519 HYPOPHOSPHATEMIA, RENAL, WITH INTRACER
EBRAL CALCIFICATIONS

[40]

14 DB00214 Torasemide 256,370 NEPHROTIC SYNDROME, TYPE 4; NPHS4 [41]

15 DB01120 Gliclazide 600,496 MATURITY-ONSET DIABETES OF THE YOUNG,
TYPE 3; MODY3

[42]
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However, after a certain point, NEDD becomes insensitive towards that parameter. For

window size, this is because most of the useful information is already encoded in the

embedding vectors. For thresholds of similarity scores, this is because most of the noise

has already been ruled out at the beginning when we raise the thresholds.

Model robustness

In this section, we investigate model robustness over different similarity measures.

We evaluate NEDD’s performance using three different disease similarity measures,

i.e. MimMiner [31] which is in the golden test dataset and utilizes disease phenotype

information, NetSim [46] which employs the protein interaction network, and RADAR

[47] which we used to get similarity scores based on pathways. Since we use the disease

similarity scores provided by the authors and they used other types of ID for disease

and some IDs do not have any mapping information, the experiments are done on a

subset of the original dataset, which consists of 196 diseases, 593 drugs, and 1052 drug-

disease associations.

We also evaluate NEDD’s performance using three different drug similarity measures

which utilize the information from the chemical structure, the corresponding side

effects of each drug and the drug-related genes respectively. The three different types

of drug similarity are calculated according to [9].

We repeat 10-fold cross-validation 10 times on each type of similarity scores. The

results are illustrated in Fig. 6, in which NEDD produces similar AUC over different

disease similarity measures.

Fig. 5 Result of parameter sensitivity test. AUC of ten-fold cross-validation on different parameter settings

Fig. 6 Result of model robustness test. a AUC of ten-fold cross-validation tests over different drug similarity
measures; b AUC of ten-fold cross-validation tests over different disease similarity measures on a subset of
the original dataset
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Discussion
We think that the superior performance of NEDD in finding indications for new drugs

stems from two aspects: inductive learning and meta path. Inductive learning methods

can be applied to entities not seen at train time. Compared with MBiRW, HGBI and

NBI, DTINet and NEDD, which used inductive methods, yields relatively higher AUC

score in the test. And with the concept of meta path, NEDD is able to explicitly capture

high order proximities. This is especially important in tasks like drug repositioning

where many latent links between drugs and diseases are unknown. If the associations

between two nodes are missing, their first-order proximity is zero, so it is essential to

exploit high order information.

Besides, NEDD can be easily adopted in larger datasets with more types of biological

entities such as target, gene, side-effect, etc.

However, the limitations of NEDD should also be acknowledged. First, in order to

use various information like drug-target interactions, the maximum length of the meta

path should be increased, which might significantly increase the computational cost.

Second, because the trained embeddings are not specifically fine-tuned for association

prediction between drugs and diseases, the difficulty in training the vectors is increased

when adding more information to the network.

Conclusion
In this work, we present NEDD, a new computational approach for drug repositioning.

NEDD uses a meta-path-based representation method to inductively learn node em-

bedding vectors of drugs and diseases on a given graph. The graph is constructed by in-

tegrating heterogeneous biological information related to drugs and diseases. After

learning the network embedding vectors, a random forest classifier is trained to predict

the probabilities of drugs and diseases being associated.

NEDD shows competitive results in the 10-fold cross-validation test. The case study

of NEDD gives fair results that remain to be further explored. In summary, the results

prove that NEDD is practical in drug repositioning tasks toward existing drugs.
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