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ABSTRACT: We report the photoelectrochemical (PEC) per-
formance of a densely grown single crystalline hematite (α-Fe2O3)
nanosheet photoanode for water splitting. Unlike expensive ITO/
FTO substrates, the sheets were grown on a piece of pure Fe
through controlled thermal oxidation, which is a facile low cost and
one-step synthesis route. The sheets grow with a widest surface
parallel to basal plane (0001). Iron oxide formed on Fe consisting
of layer structure α-Fe2O3−Fe3O4−Fe is elucidated from GIXRD
and correlated to spectral features observed in Raman and UV−vis
spectroscopy. The top α-Fe2O3 nanosheet layer serves as a
photoanode, whereas the conducting Fe3O4 layer serves to
transport photogenerated electrons to the counter electrode through its back contact. Time-resolved photoluminescence (TRPL)
measurements revealed significantly prolonged carrier lifetime compared to that of bulk. Compared to the thin film of α-Fe2O3
grown on the FTO substrate, ∼3 times higher photocurrent density (0.33 mA cm−2 at 1.23 VRHE) was achieved in the nanosheet
sample under solar simulated AM 1.5 G illumination. The sample shows a bandgap of 2.1 eV and n-type conductivity with carrier
density 9.59 × 1017 cm−3. Electrochemical impedance spectroscopy (EIS) measurements reveal enhanced charge transport
properties. The results suggest that nanosheets synthesized by the simple method yield far better PEC performance than the thin
film on the FTO substrate. The anodic shifts of flat band potential, delayed electron−hole recombination, and growth direction
parallel to the highly conducting basal plane (0001) being some of the contributing factors to the higher photocurrent observed in
the NS photoanode are discussed. Characterizations carried out before and after the PEC reaction show excellent stability of the
nanosheets in an alkaline electrochemical environment.

1. INTRODUCTION
Generation of hydrogen energy by means of water splitting
through photoelectrochemical (PEC) reaction is sustainable
and environmentally benign.1 Splitting of water in a PEC cell
was first reported in 1972 by Honda and Fujishima using TiO2
as the photoanode under UV light.2 An escalating research
followed the finding, and the chemical vapor-deposited iron
oxide film as a photoanode material for electrolysis of water
was first investigated in 1976.3 Since then, significant efforts
have been made toward fabricating materials with good
stability and PEC performance. Besides water splitting,
hematite is also used for several other applications such as
catalysis,4,5 energy storage,6 dye degradation,7 oxygen reduc-
tion reaction,4 gas sensing,8,9 and so on. Hematite (α-Fe2O3) is
widely studied as a photoanode for water oxidation owing to its
low cost, nontoxicity, stability against photocorrosion and
chemical corrosion, suitable band gap of 2.1 eV for visible light
absorption, and positive valence band edge position vis-a-vis
water oxidation potential.10 The predicted efficiency of nearly
17% of hematite has been attracting researchers for decades.11

This is more than the benchmark solar to hydrogen (STH)

conversion efficiency of 10% required for practical applica-
tions.12 However, maximum efficiency achieved could not
meet the benchmark STH efficiency.13 The PEC activity of the
hematite photoanode is limited by several factors such as poor
electrical conductivity (∼10−14 Ω−1 cm−1),14 short excited
state carrier lifetime (∼10−12 s),15 short hole diffusion length
(2−4 nm),16 and poor minority charge carrier (hole) mobility
(0.031 cm2 V−1 s−1).17

Numerous strategies were employed to improve exper-
imental STH efficiency of the α-Fe2O3 photoanode, such as
nanostructuring, doping,10 surface passivation layer,18 cocata-
lyst,19 composites,20 and heterostructure.21 These include high
aspect ratio nanostructures,22 which improves charge separa-
tion and suppresses electron−hole recombination.23 Efficient
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electron transport is observed in α-Fe2O3 nanotubes, owing to
their channelized flow in one direction leading to substantial
improvement in charge transfer kinetics24,25 and subdued
charge recombination. The increased absorption coeffi-
cient26,27 and reduced carrier scattering rate achieved by
means of nanostructuring enhance the PEC performance of the
material.27 To realize higher PEC performance, it is desired for
photogenerated charge carriers to participate in the water
oxidation process with minimum recombination loss. Time-
resolved photoluminescence (TRPL) correlates to charge
carrier dynamics and provides average electron−hole pair
recombination time.28,29

Fabrication of hematite nanostructures can be employed
using various techniques such as spray pyrolysis,30 atmospheric
pressure chemical vapor deposition (APCVD),31 sol−gel,32,33

hydrothermal,34,35 anodization,36,37 and so on. Furthermore,
the processes like hydrothermal synthesis,34,35 anodization,36,37

electrodeposition,38 and combustion39 are efficient techniques
to obtain nanosheet-like morphology for the hematite
photoanode. The thermal oxidation route used in the present
study is a single step, facile, and cost-effective method to
synthesize hematite nanostructures,40−42 does not require
rigorous chemical processing, and does not leave behind traces
of chemical impurities. Moreover, the resulting nanostructures
are single crystalline in nature, which can improve transport of
the photogenerated charge carrier and enhance the diffusion
length.43

Generally, nanostructured iron oxide films are grown on an
ITO/FTO substrate for PEC water oxidation, but these are
expensive. In contrast, such nanostructures can be grown on a
low-cost Fe foil or stainless-steel substrate. PEC studies,
however, are barely available on hematite nanostructures
grown by the thermal oxidation route and are lacking on 2D
structures like nanosheets. In the present investigation,
nanosheets have been grown on a piece of pure Fe, and the
photocurrent obtained (0.33 mA cm−2) at an applied voltage
of 1.23 VRHE is found to be significantly higher than hematite
photoanodes fabricated by a similar method.41,42,44 The
reaction kinetics has significant dependence on atomic
arrangement on the catalyst surface. α-Fe2O3 crystallizes in a
corundum structure with a hexagonal lattice having a basal
plane (0001). A variety of crystal faces of α-Fe2O3 have been
studied for their catalytic activity.45,46 Wu et al. in a theoretical
study showed that among (110), (104), and (012) surfaces,
the latter offers most favorable oxygen evolution reaction
(OER) behavior for water oxidation.47 The same was observed
experimentally by Li et al., where hematite crystallites with the
(012) surface were found to have higher OH coverage, which
play a positive role in PEC water oxidation reaction.48 The
(0001) surface in hematite is a naturally occurring and
thermodynamically stable surface.49,50 Moreover, the electrical
conductivity in the (0001) plane is four times higher than that
along [001] direction.51,52 Both these features of the (0001)
surface are advantageous to water splitting.51 It is worth noting
that the α-Fe2O3 NSs presented in this work possess the widest
surface of (0001). Moreover, the growth is facile with dense
coverage under controlled synthesis conditions.

2. EXPERIMENTAL SECTION
Pure Fe pieces (99.97%, Alfa Aesar) were ultrasonicated in
acetone, ethanol, and distilled water, respectively, for 10 min
each and dried by purging nitrogen. The pieces were placed in
an alumina boat and inserted in a quartz tube furnace. The

temperature was raised at the rate of 19 °C/min up to 400 °C
and held constant for 1 h. After attaining 120 °C during
ramping, a moist atmosphere was maintained using a mist
generator to enhance the oxidation rate. The sample was left
for natural cooling after the heating.

The pulsed laser deposition (PLD) method was used to
deposit the thin film of hematite on the FTO substrate to
compare its PEC performance with the nanosheet (NS)
sample. The target for deposition was prepared by solid state
reaction using high purity powder of α-Fe2O3 (99.995%,
CERAO). The substrate was cleaned before deposition by
ultrasonication, following three steps subsequently in acetone,
ethanol, and deionized water, each for 10 min. Thin film
deposition was carried out for 50 min using a PLD system
equipped with a KrF excimer laser (λ = 248 nm), laser
repetition rate of 10 Hz, in the presence of 25 mTorr oxygen
partial pressure.

Structural characterization was performed by X-ray
diffraction (XRD) using an advanced Bruker D8 diffractometer
having a Cu Kα (1.54 Å) X-ray source. The data were recorded
at an interval of 0.02° in Bragg−Brentano geometry in the 2θ
range of 20−70°. Grazing incidence XRD (GIXRD) was
recorded using a high-resolution X-ray diffractometer D8
Bruker equipped with a Cu Kα source. The diffraction pattern
was recorded at grazing angles (ω) 0.5, 1, 2, and 5°. Field-
emission scanning electron microscopy (FESEM) images were
recorded to study the morphology and composition of the
samples using JEOL, JSM-7610 Plus instrument equipped with
an energy dispersive X-ray (EDX) analyzer. Transmission
electron microscopy (TEM) images and selective area electron
diffraction (SAED) patterns were recorded using a 200 kV
TECNAI G2 20 microscope equipped with a LaB6 filament and
CCD camera. High resolution TEM (HRTEM) images were
recorded on FEI model TALOS F200S. X-ray photoelectron
spectroscopy (XPS) spectra were recorded on a Surface Nano
Analysis GmbH ESCA system, using an Al Kα (1486.6 eV) X-
ray source. UV−vis spectra were recorded in diffuse reflection
geometry (PerkinElmer, Lambda 950 spectrophotometer) in
the spectral range of 200−858 nm. Raman spectra were
recorded using a Jobin Yvon Horiba LABRAM HR-800
spectrometer equipped with a CCD detector. Two different
laser excitation wavelengths 473 and 633 nm were used to
record the spectra. Time-resolved photoluminescence meas-
urements were carried out using a HORIBA Delta Flex time-
correlated single photon count (TCSPC) spectrometer, using
288 nm diode as the light source (HORIBA), and HORIBA
PPD-850 detector.

PEC measurements were performed on an Autolab
PGSTAT-204 electrochemical workstation using a three-
electrode electrochemical cell equipped with a quartz window
for light incidence. The NS sample was used as the working
electrode, Ag/AgCl saturated with 3 M KCl as the reference
electrode, and Pt wire as the counter electrode. The electrolyte
used was aqueous 1 M NaOH solution with pH 13.3 measured
with a pH meter (pH 700, Eutech instruments). The solution
was bubbled with N2 flow for 30 min before measurement to
remove any air present in the electrolyte. All surfaces except
the front surface of the sample were masked by applying
nonconductive Hysol epoxy and allowed to dry in air before
immersing into the electrolyte. The working area of the sample
was 1.3 cm2, and the photocurrent obtained was normalized
with this area. The working electrode potential used with
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reference to Ag/AgCl was converted to reversible hydrogen
electrode (RHE) potential using eq 1

= + × +E E 0.059 pH 0.197RHE Ag/AgCl (1)

A high brightness Xe lamp (Holmarc-optomechatronics,
HSN Code 9027) was used as the source of incident light on
the sample. The power density was 100 mW cm−2 measured
with a flux meter. Light was illuminated from the front side of
the sample surface. Linear sweep voltammetry (LSV) measure-
ment was performed in the potential window from −0.3 to 0.7
V vs Ag/AgCl at a scan rate of 25 mV s−1 under dark and
chopped light illumination. Mott−Schottky measurement was
carried out in light illumination conditions in a potential
window from 0.02 to 1.38 V vs RHE with an increment of
0.034 V and frequency set to 1000 Hz, to evaluate the donor
density and flat band potential. EIS measurement was
performed in a three electrode electrochemical cell in the
frequency range of 0.01 Hz to 100 kHz using a modulation
signal of 20 mV in the potential window 0.9−1.7 VRHE.
The identification of gaseous products formed as a result of

the PEC reaction was performed using a Shimadzu GC-2014
system. The chromatograph was equipped with a shin carbon-
ST packed column with a thermal conductivity detector
(TCD) using argon as the carrier gas. Parameters were set for
the program to detect H2, and O2 (detector temperature, 200
°C; oven temperature program, 90 °C (hold time: 1 min), and
90−200 °C (rate: 15 °C per minute) as reported by Kumar et
al.53

3. RESULTS AND DISCUSSION
3.1. Structural Characterization. Rietveld refinement of

the XRD pattern was carried out using the FULLPROF Suite.
The diffraction pattern with the calculated profile is shown in
Figure 1.
The Rietveld refinement parameters before and after the

PEC reaction are listed in Table S1 (Supporting Information).
The refinement reveals peaks corresponding predominantly to
Fe3O4 (magnetite M). The peaks corresponding to α-Fe2O3
(hematite H) are visible but have low intensity. The H(110)
and M(311) peaks at ∼35° and H(214) and M(440) peaks at
∼62° overlap since reflections of the two phases lie at similar
2θ angles. However, the peak at 35° shows tailing toward
higher 2θ, due to the contribution from the H(110) peak, and
is shown by peak fitting in the inset Figure 1a,b. It is noted that
though the signals of the Fe3O4 phase are intense over the α-
Fe2O3 phase, the most intense peak of α-Fe2O3 is clearly seen
at 33°, which corresponds to the Bragg position of the (104)

peak (JCPDS 74-002). The peak at ∼45° corresponds to the
(110) peak of metallic Fe, which is assigned to the signal from
the Fe substrate. In order to determine the sequence of the
oxide layer formed on the substrate, the GIXRD measurements
were performed, which are shown in Figure 2.

The patterns were recorded from 28 to 38° at different
angles of incidence, 0.5, 1, 2, and 5° (Figure 2a). The peak at
35° is fitted for obtaining peak areas under M(311) and
H(110) peaks, and the peak area fraction with a grazing angle
is plotted in Figure 2b. The area fraction of the H(110) peak is
found to decline with the grazing angle, and the drop is rapid
from 0.5 to 1°, indicating the presence of a thin hematite layer
on magnetite (Figure 2b). The oxide phase FeO is formed
when Fe is oxidized above 570 °C.40,54,55 The synthesis
temperature in the present case is 400 °C; hence, no peaks
corresponding to the FeO phase were observed in the XRD
measurements, and formation of FeO is ruled out. The oxide
layer sequence as determined from XRD and GIXRD
measurements therefore is α-Fe2O3−Fe3O4−Fe. Also, the
observed oxidization in the sequence Fe to Fe3O4 and Fe3O4
to α-Fe2O3 is consistent with the Ellingham diagram56 shown
in Figure S5 (Supporting Information). Importantly, compar-
ison of the XRD patterns recorded before (Figure 1a) and after
PEC (Figure 1b) measurement shows that the intensities of
the two phases remain unchanged. This confirms that the iron

Figure 1. XRD pattern recorded on the NS sample (a) before and (b) after the PEC experiment showing hematite (α-Fe2O3) and magnetite
(Fe3O4) peaks denoted by H and M, respectively. The Fe(110) peak arising from the substrate is marked as “*”. The inset shows curve fitting of the
peak at 35.5° having overlapping contribution from H and M layers.

Figure 2. (a) GIXRD pattern recorded on the NS sample at different
grazing incidence angles. (b) Peak area obtained from fitting is plotted
as ratio H/M against grazing angle. Magnetite and Hematite peaks are
denoted as M and H, respectively, in (a,b).
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oxide layer formed on Fe is stable in an alkaline electro-
chemical environment. The XRD pattern of the PLD thin film
sample (Figure S1 in Supporting Information) shows peaks
corresponding to α-Fe2O3 and peaks indicated by “*” are from
the FTO substrate.

3.2. UV−Vis and Raman Spectroscopy. Estimation of
bandgap is crucial as it decides the light absorption
characteristic important for the PEC performance of the
material. Absorption spectra of the NS sample were studied
using UV−vis spectroscopy in diffused reflectance (DR)
geometry and compared with that of bulk α-Fe2O3 powder
as depicted in Figure 3a.

The DR spectra were converted to Kubelka−Munk (K−M)
absorption spectra. Both bulk α-Fe2O3 powder and the NS
sample clearly show absorption edge at 2.1 eV (585 nm),
which matches with the band gap of hematite.57 In the NS
sample, below 2.1 eV, the absorption is quite high compared to
powder and is attributed to absorption due to the underlying
Fe3O4 layer having a bandgap of ∼0.2 eV.58 The penetration
depth of light is inversely proportional to the absorption
coefficient (dp = 1/α). This infers that the absorption above
2.1 eV arises mainly from the top α-Fe2O3 layer of the NS
sample. Below the bandgap, absorbance is low, and light
penetrates the top α-Fe2O3 and enters the Fe3O4 layer. This
results in increased absorption of light below 2.1 eV arising
from the Fe3O4 layer in the NS sample.
The UV−vis spectrum was recorded in transmission

geometry on the thin film of α-Fe2O3 prepared by the PLD
method (Figure 3b). The absorbance is marked at two
different wavelengths, λ1 (473 nm) and λ2 (633 nm), at which
the Raman spectra are recorded. The absorbance is 0.28 at 473
nm and 0.05 at 633 nm, which is five times lower. Therefore, at
the 633 nm, the light penetrates about five times deeper than at
473 nm, and its consequence on Raman spectra recorded at
these two wavelengths is discussed below.
Raman spectroscopy measurements were carried out before

and after PEC measurements for comparison, as shown in
Figure 4.
There are seven Raman active modes in α-Fe2O3 (2A1g +

5Eg) that are observed in the spectra recorded on the bulk and
NS samples. The A1g modes appear at 227 and 500 cm−1, and
Eg modes at 247, 293, 298, 413, and 615 cm−1, which match
well with those reported for hematite.60 The seven Raman
modes present below 620 cm−1 are zone center phonons with
even symmetry. A1g modes involve movement of Fe−O bonds
in the zz polarization plane, which are sensitive for properties

along the z axis. The Eg modes are attributed to Fe−O bond
vibrations along xz and yz polarization planes.59,60 The Raman
spectra recorded before and after PEC are almost identical,
showing that the composition remains unaffected by the PEC
reaction. Spectra were recorded at two different laser
wavelengths 473 nm (Figure 4a) and 633 nm (Figure 4b) in
order to observe the effect of the layered oxide structure on
Raman spectra. We recall from the UV−vis results that in the
NS sample, light penetrates much deeper at 633 nm than at
473 nm. The spectrum recorded with 633 nm shows an intense
peak at 668 cm−1, which is not visible in that recorded with
473 nm. The peak at 668 cm−1 belongs to A1g mode of
magnetite61,62 and is attributed to Fe3O4 formed below the top
layer of hematite. Besides the intense peak at 668 cm−1, two
broad peaks of Fe3O4 (T2g) centered at 459 and 542 are
observed, as shown in the inset of Figure 4b. It may be added
that the Raman spectra recorded on the bulk α-Fe2O3 pallet
using the two wavelengths are very similar (Figure S2 in
Supporting Information) unlike those in the NSs sample.

3.3. Morphological Studies. FESEM images recorded on
the NS sample are shown in Figure 5. Dense and uniform
growth of NSs can be seen in images (Figure 5a,b) recorded at
a higher magnification.

The sheets are 100−700 nm across, with an average length
of 300 nm evaluated from histogram (Figure S3a in Supporting
Information). Elemental composition mapped using energy-
dispersive X-ray spectroscopy (EDX) shows peaks pertaining
to Fe and O, which confirms formation of iron oxide in the
sample (Figure S3b in Supporting Information). The image
recorded at the location having sparse coverage (Figure 5c)
shows NS having lateral dimensions 100−700 nm, indicating
that the growth rate varies at different locations across the
sample. The sheets emanate from α-Fe2O3 grains that are
oriented favorably to facilitate vertical growth of the NSs.63 It
was observed consistently in our synthesis that injection of
water vapor promotes formation of NSs to yield dense
coverage, whereas in its absence, the growth was sparse (Figure
S8 in Supporting Information). The same was observed by

Figure 3. (a) UV−vis diffuse reflectance spectra of the NS sample and
bulk α-Fe2O3 powder converted to Kubelka−Munk (K−M)
absorbance. The vertical dotted line shows the absorption edge at
2.1 eV in both the samples. (b) Absorption spectrum of the α-Fe2O3
thin film sample showing absorbance marked at two different
wavelengths λ1 and λ2 at which the Raman spectra were recorded.

Figure 4. Raman spectra recorded on the NS sample using two
different laser wavelengths: (a) 473 and (b) 633 nm. Raman modes of
α-Fe2O3 (H) are visible in both (a,b). The inset shows the shaded
region recorded for longer duration to obtain less intense modes of
Fe3O4 (M).
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several researchers and was attributed to a higher oxidation
rate assisted by insertion of protons from dissociated water
vapor in the growing oxide layer.40,54 A cross-sectional image
(Figure 5d) shows three morphologically distinct layers, which
are ascribed as α-Fe2O3 NSs grown on a layer of α-Fe2O3
grains, followed by a thick Fe3O4 layer that grows on Fe. A
porous Fe3O4 layer is reported to augment electron trans-
port.64 It can be seen from Figure S3c in Supporting
Information that the underlying Fe3O4 layer in the NS sample
has a porous structure, which can facilitate transport of
photogenerated electrons in the α-Fe2O3 NSs to Fe metal at its
back contact. The image (Figure S3d in Supporting
Information) recorded after the PEC experiment shows the
NSs to be intact on the sample surface with no change in their
morphology.
TEM measurements were performed to study structural

aspects in further detail. The sample surface was gently scraped
using a sharp blade, and the NSs were collected on a Cu grid
used for TEM investigation. Figure 6a shows a few NSs having
lateral dimensions of ∼100 nm. The HRTEM image in the
inset of Figure 6a shows lattice fringes spaced at 0.256 nm,

which corresponds to (110) planes of α-Fe2O3
65 (also shown

in Figure S6 of Supporting Information).
The selected area electron diffraction (SAED) pattern

(Figure 6b) shows diffraction spots that reveal the single
crystalline nature of the NSs. The pattern was indexed to
diffraction planes of α-Fe2O3 with the zone axis parallel to c-
axis of the NS. The d-spacing calculated from diffraction spots
of (300) and (110) reflections 1.45 and 2.52 Å, respectively,
matches well with the d-spacing obtained from the XRD
pattern. It was verified that the angle between these two spots
from the zone axis is 30°, which corresponds to the angle
between the (110) and (300) planes. The other indexed
diffraction spots arising from set of planes parallel to c-axis,
namely, (110), (21̅0), (12̅0), (1̅1̅0), (2̅10), and (1̅20) that lie
on vertices of a hexagon shown by dotted line in the Figure 6b
and are at an angle of 120° between the adjacent planes.

3.4. X-ray Photoelectron Spectroscopy. The semi-
conductor−electrolyte interface is the site of electrochemical
reaction, which infers that the PEC performance is susceptible
to changes in the surface properties. Modified surface
chemistry due to the sample surface exposed to the
electrochemical environment deviates from the PEC perform-
ance. The chemical changes taking place on sample surface
before and after PEC reaction can be monitored using XPS.
The core-level Fe 2p spectra shows spin−orbit doublet Fe
2p1/2 and Fe 2p3/2 at 723.9 and 710.4 eV, respectively (Figure
7a).

The feature at ∼8 eV on the higher B.E. side of the Fe 2p1/2
and Fe 2p3/2 peaks is the Fe3+ satellite, which is characteristic
of the Fe3+ state in α-Fe2O3. The Fe 2p spectrum is consistent
with that reported on the α-Fe2O3 (0001) surface

65 and that of
α-Fe2O3 nanosheets and nanorods.66,67 The peak positions of
the Fe 2p1/2 and Fe 2p3/2 peaks are found to remain unchanged
after PEC reaction, as indicated by dotted lines in the figure.
The core level O 1s spectra recorded before (Figure 7b) and
after (Figure 7c) doing PEC measurements are fitted with
three components. Before PEC, the components peak at 529.2,
531.5, and 532.3 eV can be assigned to lattice oxygen in α-
Fe2O3, hydroxyl group (Fe−OH) on sample surface, and
adsorbed water vapor, respectively.68 The positions of the
component peaks after PEC are centered at 529.2, 531.1, and
532.6 eV, respectively. The Fe−O component at 529.2 eV
remains intact after PEC, which shows the stability of the
lattice oxygen. These XPS results confirm that the α-Fe2O3
surface remains chemically stable in the alkaline electro-
chemical environment.

3.5. Time-Resolved Photoluminescence. The lifetime
of photogenerated charge carriers plays a major role in
deciding the efficiency of the photoanode material and can be
inferred from photoluminescence decay time characteristics.
Time-resolved photoluminescence (TRPL) spectra were
recorded with the excitation wavelength of 288 nm and
emission wavelength of 465 nm for bulk (Figure 8a) and
nanosheets (Figure 8b) samples for comparison. We noted
from UV−vis spectra that penetration depth of light at lower
wavelength (288 nm) is short in α-Fe2O3; hence, sole
contribution to the PL intensity is attributed to the top layer
which is made up of α-Fe2O3 NSs in the sample. The measured
decay time is related to the charge carrier lifetime, that is, time
taken by electron−hole pairs to decay by radiative recombi-
nation to 1/e of the initial intensity at time t0. The TRPL data
were fitted using the biexponential decay function to obtain the
intensity-weighted average decay lifetime ⟨τ⟩.69 The fitting

Figure 5. FESEM images of the α-Fe2O3 NS sample; (a) low
magnification image showing dense and uniform coverage, (b) image
showing sheet-like morphology, (c) magnified image showing NSs of
varying lateral dimensions from 100 nm marked as “a” and several
hundred nm marked as “b”, and (d) cross-section image showing
distinct morphology α-Fe2O3 NSs, layer of α-Fe2O3 grains, and the
Fe3O4 layer in sequence.

Figure 6. TEM images of α-Fe2O3 NSs; (a) transmission image
showing NSs having lateral dimensions of ∼100 nm. HRTEM image
in the inset shows lattice fringes at spacing of 0.256 nm which
correspond to (110) planes of the NS (b) SAED pattern with indexed
diffraction spots. The zone axis is parallel to the c-axis of the NS. The
spots forming vertices of hexagon resulting from hexagonal lattice of
α-Fe2O3 are shown by a dotted line, except the (300) and (3̅00)
spots.
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yields two decay components, which are attributed to multiple
recombination routes in the material, and the values obtained
are listed (Table S2 in Supporting Information). The average
decay lifetime ⟨τ⟩ is found to be 6.1 and 8.9 ns for bulk and NS
sample, respectively. The observed decay time values are
consistent with the short carrier lifetime known for α-Fe2O3.

29

Nevertheless, the 45.9% greater decay time in the NS sample
compared to bulk shows delayed recombination. The
prolonged lifetime results in increased diffusion length, thereby
enhancing the number of holes making their way to NS surface
before they recombine and participate in oxidation of water at
the interface. Greater lifetime in NSs can be one of the reasons
that enhance photocurrent in the NS sample.

3.6. PEC Measurements. Linear sweep voltammetry was
performed to evaluate the response of the photoanode under
dark and light with continuous and chopped illumination. The
measurements were performed on the α-Fe2O3 NS sample as
well as α-Fe2O3 thin film for comparison, as shown in Figure 9.
In the thin film sample, under chopped illumination, the

photocurrent density was 0.10 mA/cm2 at 1.23 VRHE, whereas
the NS sample shows photocurrent densities of 0.33 and 0.26
mA/cm2 under continuous and chopped illumination,
respectively, with an applied bias of 1.23 VRHE. It is important
to note that the value is 3 times higher in the NS in
comparison to the thin film. The reaction products formed
during the PEC reaction were analyzed using gas chromatog-
raphy. The gases evolved in the cell consisted of H2 and O2, as
shown in Supporting Information (Figure S7). A detailed

survey of photocurrent density measured on nanostructures of
pristine α-Fe2O3 is presented in Table 1.

It can be seen from Table 1 that the synthesis methods
employed are rather complex in the literature, where a higher
photocurrent of 0.24−0.28 mA/cm2 is reported.20,72 In the
reports on nanostructures obtained by thermal oxidation of the
Fe substrate, the photocurrent density is 0.1−0.2 mA/cm2 at
1.23 VRHE.

79 Among these, the photocurrent density is 0.19
mA/cm2 on Fe foil,44 0.04 mA/cm2 on low carbon steel,41 and
0.18 mA/cm2 at 1.23 VRHE in thin film grown on the FTO
substrate.42 It is important to note that the photocurrent
density of 0.33 mA cm−2 at 1.23 VRHE is high among the
above-mentioned literature reports where synthesis is simple,
cost-effective, and on low-cost substrate.

Upon light illumination, electron−hole pairs are generated
in the NSs. Owing to the small thickness of the NSs (a few tens
of nanometers), the distance for holes to arrive at the NS
surface is small. The small sheet thickness and longer lifetime
of photogenerated holes facilitate a larger fraction of holes to
be effectively utilized for water oxidation at the NS surface.
The NSs possess a large surface area of several μm across and
provide a large number of reaction sites. We recall from the
SAED pattern in TEM measurements that the widest surface of

Figure 7. XPS spectra of the NS sample before and after PEC measurements. (a) Fe 2p spectra showing spin−orbit doublet and Fe3+ satellite
characteristic to α-Fe2O3 (b) O 1s spectra recorded before (c) after PEC. Peak labels 1, 2, and 3 indicate Fe−O, Fe−OH, and chemisorbed Fe−
OH, respectively.

Figure 8. Time-resolved photoluminescence spectra recorded on (a)
bulk pallet of α-Fe2O3 and (b) α-Fe2O3 NS sample at an excitation
wavelength (λex) of 288 nm and emission wavelength (λem) measured
at 465 nm.

Figure 9. LSV plot of the α-Fe2O3 NS and thin film samples shown
for comparison. The photocurrent density at 1.23 VRHE in the two
samples is indicated by a dotted line.
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the NS is (0001), which is basal plane of α-Fe2O3. The (0001)
surface is naturally occurring and thermodynamically most
stable for photo-oxidation of water.49,50 The (0001) plane of α-
Fe2O3 has larger packing density of Fe3+ and O2− ions which
participate in the reaction.80 The proportion of the (0001)
plane in nanosheet is almost 100%; on the other hand, that in
nanorod is about 23%.80 Also, the electronic conduction in the
basal plane (0001) is 4 orders of magnitude higher than that in
the perpendicular planes.81,82 Superior conductivity in the
(0001) plane can facilitate the transport of photogenerated
charge carriers. Dense growth of the NSs offers a large area of
the (0001) surface for water oxidation. Photogenerated holes
can hop between the (0001) planes to reach the electrolyte
interface and participate in water oxidation reaction to yield
efficient PEC performance.81,83,84 A downside is that the
overall electrical conductivity of α-Fe2O3 is low, of the order of
10−11 S cm−1.85 On the other hand, the conductivity of Fe3O4
is high, about 250 S cm−1.86,87 Higher electrical conductivity of
the underlying Fe3O4 layer in the NS sample can facilitate
efficient transport of photogenerated electrons from the top α-
Fe2O3 NS layer to the back contact, which is Fe metal,
whereby they reach the platinum counter electrode. These
factors can collectively enhance the oxidation of water on the
NS surface and are attributed to observed higher photocurrent
in the present study.
In order to investigate the effect of nanostructuring on

electrochemical properties, Mott−Schottky (M-S) measure-
ments were performed in 1 M aqueous NaOH solution. The
flat band potential and carrier density was estimated using
Mott−Schottky (M−S) eq 288,89
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Here, C is specific capacitance (F/cm2), q is elementary charge
(1.6 × 10−19C), A is the semiconductor−electrolyte contact
area (cm2), ε = 80 is relative permittivity of hematite
photoanode,90 ε0 is vacuum permittivity (8.854 × 10−12 F
m−1), ND is donor density (cm−3), V is applied potential
(volts), VFB is flat band potential, KB is the Boltzmann constant
[1.38 × 10−23 J K−1], and T is the absolute temperature (K).
According to eq 2, the flat band potential (VFB) can be

obtained from the x-intercept of the linear region of the Mott−
Schottky curve, and the donor density (ND) from slope of
linear part of the curve, using eq 389
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Both NS and thin film samples show a positive slope (Figure
10a), which indicates n-type conductivity of the samples.91,92

The calculated flat band potential values are 0.65 and 0.47
VRHE, and the donor densities are 9.59 × 1017 and 1.85 × 1018
cm−3, for NS and thin film samples, respectively. These values
are consistent with the reports on hematite photoano-
des.77,93,94

In general, for a photoanode material to have better PEC
performance, it is advantageous to have the VFB shifting
anodically with higher donor density to achieve greater OER
activity. The parameters VFB and ND are related to surface
states and charge transport characteristics, respectively.89,95 It
is found that the calculated donor densities are within the same
order of magnitude (∼1018 cm−3) in both the samples. The flat

band potential exhibits a noticeable increase of 38.3% in the
NS sample compared to that of the thin film. This can be one
of the contributing factors for observed three-fold increase in
the photocurrent density in the NS sample.

Electrochemical impedance spectroscopy (EIS) analysis was
performed in order to get further insights into a possible
mechanism for the observed enhancement in photocurrent
density of the NS sample in comparison to the thin film. It is
clear (Figure S4 in Supporting Information) that the semicircle
for the NS sample is smaller than that of thin film, displaying
enhancement in charge carrier separation and transport. The
EIS data of the NS sample were fitted by an equivalent circuit
model using EIS spectrum analyzer software. The circuit was
best fitted to a 2-RQ circuit model (Figure 10b), which
consists of one resistor and two RQ circuits in series, each
having a resistor and constant phase element in parallel, similar
to that used in refs 30 and 43. The two RQ circuits presented
in the model can be ascribed mainly to the two interfaces, NS-
electrolyte and bulk hematite, developing the impedance
elements.96,97 The observed larger charge transfer resistance
(Rct) and double layer capacitance (Qdl) can lead to a sluggish
water oxidation reaction that takes place at the photoanode-
electrolyte interface. The space charge resistance and
capacitance (Rsc and Qsc) arise from events occurring at the
bulk semiconductor. The values for the equivalent circuit
fitting parameters are listed (Table S3 in Supporting
Information). The EIS result shows improved charge carrier
dynamics and the charge transport. It is further noted that the
interfacial processers are affected by the crystallographic
orientation of the electrode and have implications on the
charge carrier dynamics and subsequent water oxidation
reaction.98−101 In the presence of aqueous electrolyte, the
(0001) surface of hematite gets hydroxylated. The H bonding
interactions between the interfacial water molecules and
hematite lead to hydrophilic character of the surface. These
connected hydroxyl groups are proton-active, which participate
actively to enhance OER activity of the reaction.98,102,103

4. CONCLUSIONS
To conclude, dense arrays of single crystalline α-Fe2O3
nanosheets were grown by simple heating of Fe in moist
atmosphere for 1 h, and it shows a three times higher
photocurrent than that of a thin film deposited on the
expensive FTO substrate. The NSs have the widest surface
along the basal plane (0001) of α-Fe2O3, which is
thermodynamically stable, having high electrical conductivity
reported elsewhere. Densely grown NSs with a (0001) surface

Figure 10. (a) Mott−Schottky plot showing n-type conductivity for
both NSs and bulk α-Fe2O3; the intercept on x-axis indicates the value
of flat band potential VFB. (b) Nyquist plot for the NS sample fitted
with the equivalent circuit model.
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provide a large number of sites for PEC reaction. A higher
lifetime of photogenerated charge carriers, anodically shifted
flat-band potential, and lower charge transfer resistance are
factors that enhance the photocurrent. The greater PEC
performance of the NS photoanode is attributed to all these
factors adding up favorably. The NS morphology and chemical
composition are found to remain unchanged after PEC. These
results endorse the suitability of the hematite NS photoanode
for PEC water splitting application. In this study, higher PEC
performance has been achieved by a simple, single-step, and
low-cost synthesis.103
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