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ABSTRACT Fermented foods have been the focus of ever greater interest as a con-
sequence of purported health benefits. Indeed, it has been suggested that con-
sumption of these foods helps to address the negative consequences of “industrial-
ization” of the human gut microbiota in Western society. However, as the
mechanisms via which the microbes in fermented foods improve health are not un-
derstood, it is necessary to develop an understanding of the composition and func-
tionality of the fermented-food microbiota to better harness desirable traits.
Here, we considerably expand the understanding of fermented-food microbiomes
by employing shotgun metagenomic sequencing to provide a comprehensive in-
sight into the microbial composition, diversity, and functional potential (including
antimicrobial resistance and carbohydrate-degrading and health-associated gene
content) of a diverse range of 58 fermented foods from artisanal producers from a
number of countries. Food type, i.e., dairy-, sugar-, or brine-type fermented foods,
was the primary driver of microbial composition, with dairy foods found to have
the lowest microbial diversity. From the combined data set, 127 high-quality
metagenome-assembled genomes (MAGs), including 10 MAGs representing puta-
tively novel species of Acetobacter, Acidisphaera, Gluconobacter, Companilactobacillus,
Leuconostoc, and Rouxiella, were generated. Potential health promoting attributes
were more common in fermented foods than nonfermented equivalents, with
water kefirs, sauerkrauts, and kvasses containing the greatest numbers of poten-
tially health-associated gene clusters. Ultimately, this study provides the most com-
prehensive insight into the microbiomes of fermented foods to date and yields
novel information regarding their relative health-promoting potential.

IMPORTANCE Fermented foods are regaining popularity worldwide due in part to a
greater appreciation of the health benefits of these foods and the associated micro-
organisms. Here, we use state-of-the-art approaches to explore the microbiomes of
58 of these foods, identifying the factors that drive the microbial composition of
these foods and potential functional benefits associated with these populations.
Food type, i.e., dairy-, sugar-, or brine-type fermented foods, was the primary driver
of microbial composition, with dairy foods found to have the lowest microbial diver-
sity and, notably, potential health promoting attributes were more common in fer-
mented foods than nonfermented equivalents. The information provided here will
provide significant opportunities for the further optimization of fermented-food pro-
duction and the harnessing of their health-promoting potential.
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Fermentation is a form of food preservation with origins that can be traced back to
the Neolithic age (1). Despite recent advances in food preservation and processing,

fermentation continues to be widely used as a means of preservation and is the focus
of renewed interest due to increased appreciation of the organoleptic, nutritive,
and— especially— health-promoting properties attributed to many fermented foods (2,
3). Indeed, various fermented foods have been shown to have enhanced attributes
relative to the corresponding raw ingredients by virtue of the microbial metabolites
produced (4–8), the removal of allergens (9), other desirable biological activities (10,
11), and/or the presence of microbes that have the potential to confer benefits
following consumption (12, 13). Furthermore, although antibiotic use, sanitation, and
food processing have greatly reduced the number of deaths due to infectious diseases,
these activities have also minimized our exposure to microbes and are thought to have
contributed to the “industrialization” of the human microbiome and associated in-
creases in chronic diseases (14, 15). It has been suggested that fermented foods offer
a means of safe microbial exposure to compensate for the absence/removal of desir-
able host microbes (15, 16). Due to these potential benefits and to an increasing
appreciation that the study of these foods provides valuable fundamental insights into
simple microbial communities (17, 18), developing an even greater understanding of
the microbiology of these foods has the potential to be of considerable value.

Advances in high-throughput sequencing technology have revolutionized the study
of microbial populations, including those present in foods. Although, to date, the vast
majority of studies relating to fermented foods have employed amplicon sequencing to
study bacterial and fungal composition (19–36), there have been some exceptional
studies in which shotgun sequencing has been used to gain a greater insight into the
taxonomy and functional potential of specific fermented foods (37–50). Despite this,
studies across a broad variety of such foods using this approach have been lacking to
date. Here, we address this issue by using shotgun metagenomic sequencing to
investigate the microbiota of a broad range of artisanal fermented foods, including
many that were previously unexplored.

RESULTS
Fermented-food microbiomes can be distinguished on the basis of substrate

type. The microbiomes of the consumable portion of 58 fermented-food samples
(347,841,507 total reads; with an average of 5,997,267 reads per sample), the majority
of which represented three main substrate types, i.e., dairy (such as kefir and cheese;
n � 11), brine (such as sauerkraut and kimchi; n � 26), and sugar (such as kombucha
and water kefir; n � 18), was investigated through shotgun metagenomic. Analysis of
these data and other associated metadata (i.e., country of origin [“country”], specific
source of product [“producer”], presence or absence of starter culture [“fermentation”],
solid or liquid foods [“state”], and [“substrate”]) (Table 1), revealed that the microbiomes
of these foods most significantly clustered on the basis of food substrate (Table 2 and
Fig. 1). Ten characteristics of the food microbiome were defined, and differences across
these characteristics were statistically examined (Table 2).

Taxonomy was the most distinguishing feature of the food substrates, as measured
by the R statistic, supported by nonmetric multidimensional scaling (NMDS) plots and
partial least-squares discriminant analysis (PLS-DA) (Fig. 1 and 2; Table 2). Substrate-
related differences were greatest at the family level but were also significant at the
species, genus, and phylum levels (Table 2). To further determine whether taxonomic
differences at species level across substrates extend to the strain level, a further analysis
of Lactococcus lactis-assigned reads, selected on the basis of being the species present
across the greatest number of food samples, revealed that strains also phylogenetically
cluster according to food substrate (Fig. 1), with samples of the same type having a
lower cophenetic distance than samples of different types (P � 0.05). There was no
clustering of L. lactis strains according to any other factor. Functional analysis revealed
that substrate had the most considerable impact on the functional profile of the foods
(Table 2 and Fig. 1). Carbohydrate pathways also most considerably differed across the

Leech et al.

November/December 2020 Volume 5 Issue 6 e00522-20 msystems.asm.org 2

https://msystems.asm.org


food groups (Table 2). Indeed, of the features examined, the bacteriocin gene profile
was the only characteristic that was not statistically different across the food substrates.

Three foods tested did not correspond to one of the three main food substrates, and
their microbiomes were also distinct (Fig. 1). Two of these were derived from soy-based

TABLE 1 Fermented foods and metadataa

Sample ID Origin Producer Substrate State Fermentation

Wagashi rind FS00a Benin 1 Dairy Solid Starter
Wagashi core FS00b Benin 1 Dairy Solid Starter
Bread kvass FS01 Russia 2 Sugar Liquid Starter
Carrot kimchi FS02 UK 2 Brine Solid Spontaneous
Boza FS03 UK 2 Sugar Liquid Starter
Turnip FS05 UK 2 Brine Solid Spontaneous
Orange FS06 UK 2 Sugar Solid Spontaneous
Krauthehi (sauerkraut) FS07 Germany 2 Brine Solid Spontaneous
Tepache FS08 Mexico 2 Sugar Liquid Spontaneous
Ginger beer FS09 UK 2 Sugar Liquid Spontaneous
Tempeh FS10 UK 2 Soy Solid Starter
Cucumber FS11 UK 2 Brine Solid Spontaneous
Milk kefir FS12 UK 2 Dairy Liquid Starter
Water kefir FS13 UK 2 Sugar Liquid Starter
Tofu chili FS16 China 3 Soy Solid Spontaneous
Daikon FS17 China 3 Brine Solid Spontaneous
Pickled vegetables FS19 China 3 Brine Solid Spontaneous
Raw sauerkraut and juniper berries FS22 Ireland 4 Brine Solid Spontaneous
Brown rice amazake FS23 Japan 4 Brine Solid Spontaneous
Beetroot kvass FS24 Ireland 5 Brine Liquid Starter
Kefir and fennel soup FS25 Ireland 5 Dairy Liquid Starter
Mead FS26 Ireland 5 Sugar Liquid Spontaneous
Sauerkraut FS27 Ireland 5 Brine Solid Spontaneous
Dill dearg (sauerkraut) FS28 Ireland 6 Brine Solid Spontaneous
Kimchi FS29 Ireland 6 Brine Solid Spontaneous
Golden child (sauerkraut) FS30 Ireland 6 Brine Solid Spontaneous
Water kefir hibiscus FS31 Ireland 6 Sugar Liquid Starter
Water kefir lemon FS32 Ireland 6 Sugar Liquid Starter
Water kefir ginger FS33 Ireland 6 Sugar Liquid Starter
Kombucha vinegar FS34 Ireland 6 Sugar Liquid Starter
Ryazhenka FS35 Russia 7 Dairy Liquid Starter
Agousha FS36 Russia 7 Dairy Liquid Starter
Rostagroèkport vorožnyj FS37 Russia 7 Dairy Solid Starter
Ruž’a FS38 Russia 7 Dairy Solid Starter
Sauerkraut FS39 Ireland 8 Brine Solid Spontaneous
Kombucha FS40 Ireland 8 Sugar Liquid Starter
Apple cider vinegar FS41 Ireland 8 Sugar Liquid Starter
Raw milk kefir FS42 Ireland 9 Dairy Liquid Starter
Pasteurized milk kefir FS43 Ireland 9 Dairy Liquid Starter
Water kefir (pear, ginger, and honey) FS44 Ireland 9 Sugar Liquid Starter
Water kefir (pear, ginger, and sugar) FS45 Ireland 9 Sugar Liquid Starter
Dilly carrots FS46 Ireland 10 Brine Solid Spontaneous
Brussels sprout kimchi FS47 Ireland 10 Brine Solid Spontaneous
Kimchi FS48 Ireland 10 Brine Solid Spontaneous
Garlic kraut FS49 Ireland 10 Brine Solid Spontaneous
Dukkah kraut FS50 Ireland 10 Brine Solid Spontaneous
Ginger sliced in 2% brine FS51 Ireland 10 Brine Solid Spontaneous
Daikon radish in 2% brine FS52 Ireland 10 Brine Solid Spontaneous
Okra in 2% brine FS53 Ireland 10 Brine Solid Spontaneous
Tomatoes and mustard seeds in 2% brine FS54 Ireland 10 Brine Solid Spontaneous
Kombucha FS55 Ireland 10 Sugar Liquid Starter
Cherry water kefir FS56 Ireland 10 Sugar Liquid Starter
Beet kvass FS57 Ireland 10 Brine Liquid Starter
Coconut kefir FS58 Ireland 5 Coconut_kefir Liquid Starter
Carrot sticks FS59 Ireland 5 Brine Solid Spontaneous
Labne FS60 Ireland 5 Dairy Solid Starter
Lemon and ginger fizz FS61 Ireland 5 Sugar Liquid Starter
Scallion kimchi FS62 Ireland 5 Brine Solid Spontaneous
a“Origin” indicates country of origin, “Producer” is a numeric code for each producer who supplied foods, “Substrate” lists the main ingredient fermented, “State”
discriminates between solid and liquid foods, and “Fermentation” refers to whether a starter culture was used (starter) or not (spontaneous).
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fermentations, which are known for their alkaline fermentation environment (51), and
the third was a coconut kefir, i.e., a dairy kefir grain-based fermentation but of a
coconut carbohydrate.

Starter presence/absence, solid/liquid state, and producer contribute to differ-
ences in microbiota. Although less obvious from a clustering perspective, other
factors, such as starter presence/absence, solid/liquid state, and producer, were also
significant drivers of microbiome differences (Fig. S1, Table 2). The presence or absence
of a starter culture was associated with differences in family, species, carbohydrate,
genus, Superfocus level 3 (SF3), and the antimicrobial resistance (AMR) profile of foods
(in order of descending effect size), but to a lesser extent than substrate. Superfocus
software assigns function to a metagenome and collapses the functions into 3 levels of
specificity, with level 3 being the most specific. Solid/liquid state was significant at
three taxonomic levels and all four functional profiles (three Superfocus levels and
HUMAnN2 carbohydrate pathways), but again with a smaller effect size than substrate
and starter status (Table 2). However, it was the only factor that was associated with
significant differences across bacteriocin profiles. The specific producer of the foods
was reflected by the carbohydrate-related functions and species composition, but the
country of origin, in instances where a sufficiently large number of samples were
sourced from a specific country, did not influence any of the factors investigated
(Table 2).

Microbial diversity differs between dairy foods and other food types. Overall,
476 unique species, present at above 0.1% relative abundance, were assigned to the 58
foods, 301 different species of which were detected in brine foods, 242 in sugar foods,
and 70 in dairy foods. This corresponded to an average of 11.5, 13.5, and 6.4 different
species per sample for brine, sugar, and dairy foods, respectively. In line with these
results, alpha-diversity analyses demonstrated that the microbiomes of dairy-based
fermented foods had significantly lower alpha diversity than those of either brine or
sugar foods (Fig. 3), which did not significantly differ from one another. It was also

TABLE 2 ANOSIM results in order by descending R statistica

R statistic Level Variable P Padj

0.651 Family Type 0.001 0.008
0.551 Genus Type 0.001 0.013
0.514 Carbs Type 0.001 0.004
0.436 Species Type 0.001 0.050
0.345 Superfocus level 3 Type 0.001 0.004
0.289 Superfocus level 1 Type 0.001 0.005
0.280 Phylum Type 0.001 0.006
0.221 Carbs Producer 0.001 0.004
0.210 Superfocus level 2 Type 0.001 0.005
0.202 Family Fermentation 0.001 0.006
0.171 Species Fermentation 0.001 0.017
0.169 Species State 0.001 0.025
0.167 Family State 0.001 0.007
0.163 AMR Type 0.004 0.010
0.160 Species Producer 0.003 0.008
0.154 Carbs Fermentation 0.001 0.003
0.149 Genus Fermentation 0.001 0.010
0.117 Superfocus level 1 State 0.002 0.006
0.111 Superfocus level 3 Fermentation 0.002 0.006
0.106 AMR Fermentation 0.005 0.012
0.097 Genus State 0.007 0.015
0.094 Superfocus level 3 State 0.006 0.013
0.093 Superfocus level 1 Fermentation 0.002 0.006
0.080 Superfocus level 2 Fermentation 0.006 0.014
0.076 Superfocus level 2 State 0.012 0.024
0.073 Carbs State 0.019 0.035
0.070 Bacteriocin State 0.018 0.035
aOnly results that remained significant (P � 0.05) after Benjamini-Hochberg corrections (i.e., Benjamini-
Hochberg adjusted P values [Padj]) are included here (see the full table in Data Set S1, sheet 8). AMR,
antimicrobial resistance; Carbs, carbohydrates.
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evident that, as expected, the alpha diversity of spontaneously fermented foods was
significantly higher than those produced using starter cultures (Fig. 4). Across the
specific foods, a spontaneously fermented orange preserve contained the highest
number of species (n � 67), while a sample of tepache, a slightly alcoholic spontane-
ously fermented drink from Mexico, contained the lowest number of observed species
(n � 12).

Lactic acid bacteria dominate brine foods. The brine-type foods tested comprised
26 plant substrate-derived foods fermented in a saline solution. Unlike both dairy- and
sugar-type fermented foods, the majority of the brine-based foods undergo a sponta-
neous fermentation and therefore rely on fermentation by autochthonous microbes
(52). Brine foods mostly contained bacteria, with fungal assignment being 3.9% of the
phylum level relative abundance. Archaea accounted for less than 0.5%. Among
brine-type foods, Lactobacillus was the most abundant genus, comprising 46.8% of all

FIG 1 Beta diversity. (A) Nonmetric multidimensional scaling (NMDS) of Bray-Curtis distances between 58 samples, calculated for
species-level composition. Samples are colored by substrate. (B) NMDS of Bray-Curtis distances between 58 samples, calculated for the
Superfocus level 3 composition. Samples are colored by substrate. (C) NMDS of Bray-Curtis distances of carbohydrate pathways assigned
with HUMAnN2. Samples are colored by substrate. (D) Maximum-likelihood phylogenetic tree of 16 Lactococcus lactis strains from different
food samples. Strains are colored according to food substrate source. All figures show clear shifts in samples/strains by substrate.
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reads assigned at the genus level. Lactiplantibacillus plantarum was the most abundant
species (9.6% relative abundance on average), followed by L. brevis (7.9%), L. mucosae
(4.7%), L. xianfangensis (4.1%), and L. sakei (3%). Leuconostoc mesenteroides (4.7%) and
Pediococcus parvulus (4.3%) were also present in significant quantities. Across the
brine-type foods, Bifidobacteriaceae were detected at a relative abundance of 1.6%. At
the species level, 0.8% of species were assigned as Bifidobacterium longum, and 0.01%
were assigned to B. breve. No other bifidobacteria were assigned at the species level.

The seven sauerkraut samples and five kimchi samples analyzed contained many
of the genera regarded as being typical of these foods, such as Lactobacillus, Leucono-
stoc, the yeast Pichia, Rahnella, and the yeast Kazachstania (21, 24). Some more unusual
species were found at low abundance, including Perkinsus marinus (0.33%), an oyster
pathogen, which was detected in a scallion kimchi sample and possibly originated from
the shrimp paste used in the manufacture of this kimchi. Other brine-type fermented
foods were investigated using this approach for the first time. These included a
lacto-fermented cucumber, fermented green tomatoes, and beet kvass, the latter being
classified as a brine-type food since, unlike other typical kvass, this product contained
large quantities of salt and no added sugar. These foods contained many plant-
associated taxa, including large proportions of Pseudomonas, Lactobacillus, and Pedio-
coccus. Brown rice amazake was particularly notable by virtue of containing a high
relative abundance of B. longum (7.3%). A corresponding metagenome assembled
genome (MAG) was recovered and found to be a 98.8% match with a previously
sequenced B. longum E18 genome. In total, B. longum was detected across 4 of the 7
sauerkraut samples, 3 of the 5 kimchi samples, and 9 of the 13 other brine samples. The

FIG 2 PLS-DA variance of sample clustering according to fermentation process and primary substrate.
Constrained PLS-DA ordination of samples according to fermentation process illustrates that not all
samples exhibit coordination of detected species composition that is dependent on the classification of
the fermentation process. Samples deviating from the core fermentation-type clusters show unique
compositions. PLS-DA, partial least-squares discriminant analysis. Ellipses represent confidence levels of
0.9 for the respective data. Axis plots are boxplots of the plotted data, illustrating the distribution of
samples according to axis.
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microbiota of other vegetables fermented in brine (Table 1) is described in greater
depth in Data Set S1, sheet 1, in the supplemental material.

From a functional potential perspective, 18.4% of Superfocus level 1 (SF1) functions
within the brine food microbiome were predicted to relate to carbohydrate metabo-
lism. When functional pathways were investigated at a deeper level, xylose utilization
(0.6%, SF3), fermentation (1.4%, SF2), and response to osmotic stress (1%, SF2) were
among the most common functionalities (Data Set S1, sheets 2 to 4). A complete list of
the relative abundances of the Superfocus pathways, for all foods, can be found in Data
Set S1, sheets 2 to 4.

The microbiota composition of dairy foods is more homogeneous than that of
other fermented foods. Eleven dairy-type fermented foods were studied. Information
supplied by the producers established that all of these foods were produced through
the use of starter cultures to initiate fermentation, thus likely contributing to their
reduced diversity relative to other foods (21). Dairy foods contained the least
eukaryote-assigned reads, with 1.6% of the phylum-level relative abundance assigned
to fungal groups. Firmicutes (89.2%) and Proteobacteria (7.9%) dominated. L. lactis
dominated at the species level, corresponding to, on average, 44.8% of relative
abundance and was present at a relative abundance at or above 90% in three of the
dairy foods, all of which were kefir or kefir-type foods. The next most abundant species
was Streptococcus thermophilus (16%), followed by S. infantarius (5.7%), the yeast
Kluyveromyces marxianus (3.7%), Escherichia coli (3.5%), Lactococcus raffinolactis (3%),
and L. mesenteroides (2.9%). It is notable that viruses [including (pro)phage] also made
up a significant portion of the dairy food microbiota (7.8%).

FIG 3 Alpha diversity by substrate. (A) Number of species (abundance �0.1%) per sample. Analysis of variance (ANOVA) was used since the data had a normal
distribution. (B) Shannon index of samples. Kruskal-Wallis was used since the data were nonparametric. (C) Simpson’s diversity index of samples. Kruskal-Wallis
was used since the data were nonparametric. For all three panels, pairwise tests were carried out between dairy, brine, and sugar (t test for parametric and
Wilcoxon pairwise test for nonparametric). Coconut kefir and soy had insufficient sample sizes for pairwise comparisons.
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Kefir composition, including that of agousha, a Russian beverage akin to kefir, was
consistent with previous studies (25, 53, 54), although some taxa not previously
associated with kefir, such as Bifidobacterium mongoliense, were detected. Two samples
of kefir were fermented with the same kefir grain but differed in that one was made
with pasteurized milk (FS43), while the other was made with unpasteurized milk (FS42)
(Table 1). While there were a number of species found in only one of these two samples,
only one, Pseudomonas helleri, found in pasteurized milk, was present at above 1%
abundance (3%). Profiling of a samples of wagashi, a cheese from Benin, for the first
time revealed that the core and the rind had a similar taxonomic composition, and
included S. infantarius, K. marxianus, and a worrying abundance of Escherichia coli.
Ryazhenka, a fermented baked milk product from Russia, was enriched with S. thermo-
philus (33.2%). Other species, such as S. macedonius (2.8%), were also present, but the

FIG 4 Differences by fermentation. (A) AMR profile of spontaneous fermented foods and starter culture foods. The AMR classes are normalized by counts per
million per sample (CPM). (B) Alpha-diversity boxplots examined across fermentation type (spontaneous or starter). A t test was used for number of species since
the data were parametric; a Wilcoxon test was used for the Shannon diversity index and Simpson’s index since the data were nonparametric.
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most striking feature of this food was the 54% assignment to viruses. Kraken (55) was
used to investigate the viral component in more detail. A total of 97% of these reads
were assigned to the order Caudovirales and, in turn, 99.9% of these Caudovirales were
assigned as Streptococcus phage, with Streptococcus phage DT1 (57%) being the most
abundant. Ruž’a, a Russian cheese, had a large relative abundance of L. lactis (50.1%),
followed by L. mesenteroides (25%) and L. raffinolactis (15.9%). Another Russian sample,
rostagroèkport vorožnyj, a quark-like fermented snack, was high in S. thermophilus
(50.5%). Irish labne consisted mainly of S. thermophilus (86%) but also contained
Lacticaseibacillus paracasei (3.2%) and L. casei (2.3%).

At a functional level, carbohydrate metabolism (16.7%) was the most abundant SF1
pathway in fermented dairy. SF2 results highlighted the presence of genes with
homology to those encoding resistance to antibiotics and the production of toxic
compounds (2.8% of the reads). Several of the most abundant SF3 pathways in dairy
foods had phage related functions, including the most abundant function, i.e., phage
head and packaging (3.2%).

Sugar foods are dominated by Acetobacteraceae. Eighteen sugar-type fermented
foods were assessed, including fermented fruit, kombucha, and water kefir. Some of
these foods, such as kombucha, kvass, and water kefir, contained large quantities of
added table sugar, whereas the substrates used for the production of fermented
orange or mead, honey, and water, had naturally high levels of sugar. Furthermore,
although these foods were all assigned to the “sugar foods” category (Table 1), they
encompassed a wide variety of raw ingredients and fermentation methods, including
examples of both spontaneous and starter-type fermentations.

Sugar based fermentations contained the highest abundance of reads assigned to
fungi, with 19.7% of phylum level reads assigned to Ascomycota. Similar to the other
foods, Proteobacteria (48.9%) and Firmicutes (28.2%) dominated. Sugar foods contained
many species previously associated with alcohol-generating fermentations, such as the
yeasts Saccharomyces eubayanus (2.7%), Brettanomyces bruxellensis (5.2%), Hansenias-
pora valbyensis (9.3%), and the bacterial species Oenococcus oeni (5%). Many of the
other species were well-known kombucha-associated species such as Gluconobacter
oxydans (5%), Acetobacter cerevisiae (2.5%), and Komagataeibacter rhaeticus (2%). At the
species level, H. valbyensis was the most abundant (9.3% average abundance). How-
ever, this reflects very high abundance in specific instances, e.g., the relative abundance
in mead was 93.7%, whereas this species was not detected in 10 of the other 18
sugar-type fermented foods. Lactobacillus was the most abundant genus (25.8%), but
its abundance was lower than that found for dairy and brine foods. Within this genus,
L. mali (7.6%) and L. plantarum (5.3%) were the most common species. Acetobacter was
the next most abundant genus (10.9%), and its distribution, along with other members
of the Acetobacteraceae, made it the most abundant family (33.3%).

Among specific sugar food types, seven samples of water kefir were analyzed, and
typical water kefir-associated taxa, including Kluyvera, Gluconobacter, Brettanomyces,
Acetobacter, and Lactobacillus (27), were found. In addition, Ethanoligenens harbinense,
a species previously found in the wastewater that results from molasses production
(56), was present in three of the water kefir samples. Two kombucha samples and a
kombucha vinegar sample were examined. Typical kombucha microorganisms were
identified (22, 23, 26). However, while the genera were similar, the abundance and type
of species differed, e.g., Komagataeibacter and Acetobacter, were present in both
kombucha samples, but one sample contained 13.7% K. xylinus and 5.2% A. okinaw-
ensis, while the other sample had 34.2% K. rhaeticus and 4.1% A. senegalensis (see Data
Set S1, sheet 1). The microbiota of tepache, a slightly alcoholic Mexican fermented
beverage, was investigated through the use of shotgun sequencing for the first time.
Tepache contained the lowest number of species of all foods, consisting mainly of L.
plantarum (85%), Levilactobacillus brevis (4.6%), and Acetobacter syzygii (3.6%). Mead,
produced using autochthonous microbes present in honey, contained four different
species of the yeast Hanseniaspora, including the aforementioned H. valbyensis. Han-
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seniaspora has not been described in mead previously, with Saccharomyces generally
being the most common genus (57), and is widely used for industrial-scale mead
production (58). The mead sample was also notable by virtue of generating by far the
highest relative abundance of reads assigned to eukaryotes (�96%). In addition to
Hanseniaspora, Zygosaccharomyces rouxii, Torulaspora delbrueckii, Saccharomyces cerevi-
siae, and a rare yeast, Saitoella complicate, were the other fungal species identified. The
microbiomes of boza, orange preserve, apple cider vinegar, ginger beer, lemon and
ginger fizz, bread kvass, and beet kvass are also presented in Data Set S1, sheet 1.

The most abundant SF1 function found in sugar foods was carbohydrate metabo-
lism (14.5%). Resistance to antibiotics and toxic compounds (3.8%) and osmotic stress
(1%) were the most common SF2 functions, while analysis of SF3 pathways highlighted
the frequency of several pathways involved in the synthesis of amino acids, such as
both methionine (0.79%) and purine (0.68%) biosynthesis.

The fermented-food resistome differs according to food and fermentation
type. Large variability in both the counts per million of antimicrobial genes (CPM) and
of antimicrobial resistance (AMR) class were apparent across the different foods, with
AMR profiles significantly differing across substrate and in line with the presence/
absence of a starter (Fig. 4A, Fig. 5D, and Table 2). Dairy had an average of 3,686 CPM
per sample, brine had 426 CPM, and sugar had 261 CPM. However, the core and the
rind of wagashi inflated the dairy results and, if these are excluded, the average CPM
for dairy foods dropped considerably to 1,947.

With respect to specific AMR classes, multidrug resistance was the most commonly
assigned gene category across all three food substrates, corresponding to 2,422, 293,
and 133 CPM per sample on average for dairy-, brine-, and sugar-type foods, respec-
tively. Beta-lactam resistance genes were the next most common class in dairy (718
CPM) and sugar (101 CPM) foods, while tetracycline resistance genes were the second
most numerous category of AMR genes in brine (45 CPM). It was also noted that a
5-fold-higher abundance of AMR genes occurred in starter culture fermentations
relative to spontaneous fermentations. Multidrug resistance genes again dominated,
corresponding to 1,326 CPM for starter cultures and 236 CPM for spontaneous fermen-
tations. Beta-lactam resistance genes were the next highest in foods containing starter
cultures (428 CPM), whereas tetracycline resistance genes were next highest in spon-
taneously fermented foods (48 CPM). The high CPM for both dairy and starter contain-
ing foods are consistent with the fact that dairy foods were those for which starters
were most extensively used. When gene distribution was investigated from the per-
spective of specific food substrates, the wagashi cheese rind was found to have the
highest CPM, i.e., 17,381, with tempeh being next highest at 5,657 CPM. AMR genes
counts in kombucha and water kefirs were generally low, and no known AMR genes
were identified in 9 of the 58 foods, i.e., 1 kombucha, 2 water kefirs, 3 kimchi, 1 pickled
carrot, 1 pickled vegetable, and 1 apple cider vinegar. Of the nine fermented foods for
which no AMR genes were assigned, four were sugar-type (including two water kefirs)
and five were brine-type (including three kimchis). It is notable that very few AMR
genes were assigned in the two other kimchis studied (�42 CPM), while across the five
other water kefir samples, three contained very few AMR genes (�6 CPM) but two had
relatively high counts (�1,000 CPM). Across the two samples of kombucha, one did not
contain assigned AMR genes, while the other contained 1.6 CPM.

To provide context, the frequency with which AMR genes are detected in fermented
foods was compared to that across human stool samples and unfermented milk
samples (Fig. 5D). Milk samples (n � 16) were from various stages of processing to
produce skim milk powder, including unpasteurized milk silos and dry milk powders.
Although a subset of three milk (unpasteurized) samples had relatively high AMR CPM,
milk samples generally had lower AMR CPM than did fermented-food or human gut
samples (P � 0.01). In contrast, human gut samples (29 random stool samples from the
Human Gut Microbiome Project [59]) had significantly more AMR CPM than fermented
foods and milk (P � 0.01). However, eight fermented foods had particularly high CPM
of AMR genes. These eight foods were the two wagashi cheese samples, tempeh,
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fermented ginger, three milk kefirs, and labne. Of these eight foods, six were dairy, and
seven were starter-generated foods. For a further 12 foods, the AMR CPM were similar
to those for human samples, whereas 38 foods had AMR CPM that were lower than
those for human samples.

FIG 5 Descriptive plots. (A) Heatmap showing the square root of the relative abundance of the top 25 species across all foods. Metadata categories are shown
along the top x axis. Both rows and columns are clustered according to similarity. (B) Heatmap showing the relative abundance of the bacteriocin profile binned
according to food substrate. (C) Heatmap showing the square root of the relative abundance of the Superfocus level 1 pathways. (D) Antimicrobial resistance (AMR)
genes in CPM per food (pink), per milk sample (blue), and per human sample (green). Thirteen of the sixteen milk samples and nine fermented-food samples are not
shown since no AMR genes were detected in these samples. Metadata for the food substrate are indicated by the boxes on the left of the CPM bars.

Fermented-Food Metagenomics

November/December 2020 Volume 5 Issue 6 e00522-20 msystems.asm.org 11

https://msystems.asm.org


The presence of putative health promoting genes differs markedly across
fermented foods but exceeds that of nonfermented foods. Bacteriocins are ribo-
somally synthesized antimicrobial peptides, many producers of which have been
sourced from fermented foods. The bacteriocin-producing potential across the 58
fermented-food samples was investigated, with 55 putative bacteriocin-encoding gene
clusters being assigned across 54 of the foods (no gene clusters identified in 4 samples
(Data Set S1, sheet 5). Zoocin A- and enterolysin A-like gene clusters were highly
abundant across all three fermented-food substrates. Clusters corresponding to an-
other bacteriolysin subclass, the helveticin J-like proteins, were more frequently de-
tected in dairy and sugar-type foods than in brine-type foods (Fig. 3B). Carocin D- and
colicin A-like clusters had a high abundance in brine and sugar, but not dairy, foods. As
noted above, there was a significant difference in the distribution of bacteriocins
between solid and liquid food types (Table 2), with liquid foods having a higher relative
abundance of helveticin J, propioncin F-like and pediocin clusters, and solid foods
having more carnocin CP52-like and microsin 24-like clusters. Examining the pediocin
sequences in more detail revealed homology with pedA and pedB.

Given that bacteriocin production is regarded as a probiotic trait, these findings
prompted an investigation of other potentially health-associated gene clusters (PHAGCs)
within these fermented-food microbiomes. PHAGCs were divided into three broad
categories. Gene clusters binned as “survival” are genes that were shown to be
important for surviving the low pH of the stomach or the bile salts of the small intestine
(60). Gene clusters binned as “colonization” are genes that were shown to be vital for
colonizing the gut microbiome. These included genes responsible for surface proteins
and exopolysaccharide production. “Modulation” gene clusters were all of the other
potentially health promoting gene clusters that did not fit the previous two bins. These
genes were shown to affect the host phenotype in other ways, such as stimulating the
host immune system in the case of D-phenyl-lactic acid (13) or the production of
�-aminobutyric acid (GABA) (61, 62). The majority of these PHAGCs genes are based on
studies reviewed in reference 60). Shotgun metagenomic data from nonfermented
foods, i.e., unpasteurized whole milk, pasteurized skimmed milk, and milk powder, was
used for comparative purposes. In general, the fermented foods contained considerably
more PHAGCs than the nonfermented substrates. Among the fermented foods, a larger
number of PHAGCs were found in brine- and sugar-type foods than in dairy foods, with
several water kefirs, sauerkrauts, beet kvasses, and one kombucha being the foods with
highest levels of PHAGCs (Fig. 6). With respect to the individual PHAGC subcategories,
all fermented foods contained more colonization-type PHAGCs than the nonfermented
controls. In the case of the modulation and survival clusters, the number of PHAGCs in
some fermented foods, such as scallion kimchi, labne, agousha, and mead, were no
greater than those in the nonfermented foods.

Metagenomic assembly reveals 10 putative new species. Metagenome assem-
bled genomes (MAGs) were assembled from the reads and quality checked. A total of
443 MAGs were assembled in total, with 127 genomes above 80% completeness and
having less than 10% contamination (Fig. 7A). Traitar (63) was used to predict the
growth phenotypes of the 127 MAGs. The outputs were concatenated into a single
output for each food substrate (Fig. 7B) and provided intuitive results, such as a high
correlation between lactose utilization and dairy foods and high glucose oxidation
potential in sugar food microbiomes. Consilience between the Traitar and taxonomic
output is supported by the abundance of L. lactis in dairy and brine samples. FastANI
(64) was used to assign taxonomy and to assess novelty and established that 10 of
these MAGs had an �95% identity to known NCBI prokaryote genomes. Seven of these
potentially novel MAGs are acetic acid bacteria, two are lactic acid bacteria, and one
belongs to the family Yersiniaceae (Table 3). The highest identity match for three of the
novel MAGs was Acidisphaera rubrifaciens. All three of these MAGs came from water
kefir. The four remaining acetic acid bacteria were best matched with Acetobacter aceti
(MAG from water kefir), Gluconobacter cerinus (MAG from bread kvass), and Acetobacter
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malorum (MAGs from rostagroèkport vorožnyj and apple cider vinegar). The two novel
LABs were best matched with Leuconostoc gelidium (sauerkraut MAG) and Compani-
lactobacillus kimchiensis (boza MAG). The final novel MAG, from the water kefir micro-
biome, most closely resembled Rouxiella chamberiensis.

DISCUSSION

The practice of fermenting foods can be traced back over many millennia (65).
Recently, shifts in consumer preference have resulted in a renewed interest in fer-
mented foods, with the associated global market estimated to reach $40 billion USD by
2024 (66). The development of a better understanding of the microbial composition
and functional potential of these foods provides an insight into features that are
common among, and different between, fermented foods and ascertain potential roles
of individual species, including novel species and strains. Importantly, the taxonomic
resolution of shotgun metagenomics allows strain level identification of the micro-
biome but also facilitates an assessment of functional profile, bacteriocin and AMR gene
distribution, determination of PHAGCs, the assembly of MAGs, and the determination
of predicted phenotypes. It is important to note that samples were not replicated in
order to facilitate the inclusion of a larger overall number of fermented foods. Although
this limits the conclusions that can be made for specific foods, a number of notable
observations were made across broader fermented-food types. Furthermore, since over
5,000 varieties of fermented foods exist around the world, often with multiple varieties
of each of these foods, it was not possible to represent all fermented foods. For this
reason, this study has focused on a subset of artisanal fermented foods that are easy to

FIG 6 Heatmap showing the presence of potentially health-associated gene clusters (PHAGCs) across all 58 foods and 16 unfermented milk samples. Gene
clusters are binned as potentially inferring an ability of the metagenome to colonize the gastrointestinal tract, survive transit to the gut, and modulate the host
phenotype. Each row is normalized across all samples, thus only comparing foods to one another.

Fermented-Food Metagenomics

November/December 2020 Volume 5 Issue 6 e00522-20 msystems.asm.org 13

https://msystems.asm.org


produce at home, and thus generalizations relating to specific substrates are limited to
the samples examined here.

Fermentation substrate is the strongest driver of the composition and functional
potential of the microbiomes of fermented foods. The type of nutrients available to the
microbes determined the diversity within each food to the greatest extent. The biggest
effect of substrate was found between the families present in each food substrate,
with Lactobacillaceae (linear discriminant analysis [LDA] � 5.68) most persistent in brine

FIG 7 Metagenome assembled genomes. (A) Phylogenetic tree of the 127 high-quality MAGs, with outer rings showing the metadata for the food. The green
arrows indicate which MAGs are potentially novel species. (B) Predicted phenotypes of the 127 MAGs concatenated into their respective substrate. Both rows
and columns are clustered according to similarity.

TABLE 3 Putatively novel MAGs with FastANI identity scores to the closest genome in the
NCBI database

Food Sample Closest NCBI match % Identity

Bread kvass FS01 Gluconobacter cerinus 93.4228
Raw milk kefir FS41 Acetobacter malorum 86.3852
Sauerkraut FS39 Acetobacter malorum 85.9458
Boza FS03 Companilactobacillus kimchiensis 82.2453
Water kefir lemon FS32 Rouxiella chamberiensis 81.3335
Golden child (sauerkraut) FS30 Leuconostoc gelidum subsp. gasicomitatum 81.0244
Cherry water kefir FS56 Acetobacter aceti ATCC 23746 78.5186
Water kefir hibiscus FS31 Acidisphaera rubrifaciens HS-AP3 78.4976
Water kefir ginger FS33 Acidisphaera rubrifaciens HS-AP3 78.475
Water kefir lemon FS32 Acidisphaera rubrifaciens HS-AP3 78.0727
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foods, Streptococcaceae (LDA � 5.92) in dairy foods, and Acetobacteraceae (LDA � 5.5)
in sugar-based foods (Fig. S2 to S8). The different substrates impose functional require-
ments on the microbes, such as a necessity for osmotic stress tolerance in both brine-
and sugar-type foods. While the study focused on substrates that are used commonly
for small-scale fermented-food production, including those made most easily in the
home, it will be interesting in the future to extend the analysis to other important
fermentation substrates such as meat, fish, and grains. The analyses here reflect the
composition of the foods typically consumed and not the starter cultures used to
produce these foods or the intermediary microbiomes that eventually produce the end
product.

Other factors, such as the presence or absence of a starter culture, also contributed
to differences in that starter culture-derived foods had the lowest alpha diversity, likely
a result of adding a community of specialist microbes to the food that have been
selected to outcompete the autochthonous microbes. The similar microbiome profiles
of two kefir samples made from the same starter, but using raw or pasteurized milk,
respectively, highlight this point. The differences in diversity between solid and liquid
foods is likely due to the selective pressures of mobility, nutrient availability (in a
homogenous liquid compared to a less homogenous solid food), and moisture content
in solid foods compared to liquid foods. Unsurprisingly given the diversity of fermented
foods, the country of origin did not significantly influence any of the characteristics
examined. Outside of composition and top-level functionalities, other traits did vary in
line with other categories, in that the bacteriocin gene cluster profile differed signifi-
cantly across solid and liquid foods, and AMR-encoding genes differed across food
substrate and between spontaneous and starter-type fermentations. It is unclear why
bacteriocin gene clusters differed across solid and liquid foods, but perhaps the
matrices of solid foods require different ecological tools for competitive advantage
than liquid substrates.

Analysis revealed that the microbiomes of starter culture-type fermentations contain
more assigned AMR-associated genes. However, this difference could represent the
more extensive characterization of starter culture microbes and their associated ge-
nomes and AMR profiles, leading to better assignment of AMR genes from starter
cultures strains than those involved in spontaneous fermentations. In comparison with
human gut metagenomes, the majority of the fermented foods had a lower AMR CPM.
Of the eight foods with higher AMR CPM, only three stood out as having considerably
higher CPM; two were subsamples of the same food, i.e., wagashi cheese. In contrast,
kimchi and kombucha samples were notable by virtue of either lacking detectable AMR
genes or having very low CPM. Kimchi shared many taxa with other brine-type foods,
so the differences observed may reflect strain-level differences. Comparisons with the
unfermented milk samples showed that fermented foods have less AMR CPM than raw
milk but more than pasteurized milk and its biproducts. Metagenomic sequencing of a
larger collection of these fermented foods, coupled with antibiotic resistance assess-
ments of isolated strains, will be necessary to determine how representative these
results are.

Bacteriocin production is regarded as a probiotic trait. These peptides and, in the
case of bacteriolysins, proteins are thought to be produced by bacteria to gain a
competitive advantage over other taxa, typically those occupying the same environ-
mental niche. Bacteriocin production can contribute to the quality and safety of foods
through the removal of spoilage and pathogenic bacteria, but bacteriocin production
in situ in the gut can also enable the producing bacteria to become established,
compete against undesirable taxa, and contribute to host-microbe dialogue (67, 68).
The bacteriocin profile did not differ according to food substrate, with zoocin A- and
enterolysin A-like genes being most abundant across all food substrates. However, the
bacteriocin-associated genes present in solid and liquid foods differed significantly
from one another in that liquid foods were enriched with pediocin-like genes. After a
further analysis of the pediocin sequences, homology with pedA and pedB, required for
the production of pediocin AcH/PA-1, was apparent. These bacteriocins are best known
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for their strong antilisterial effects (69). Pediocin AcH/PA-1 has also been shown to be
active against enterococci and staphylococci (70), and the presence of these genes
potentially adds to the safety of these foods and their potential to be health promoting.
Solid foods had a higher abundance of carnocin CP52-like bacteriocins, which are
known for activity against Listeria and Enterococcus, again potentially adding to the
safety of these foods (71).

Across a broader range of PHAGCs, it was apparent that these gene clusters were
more common in fermented than in nonfermented foods. Sugar and brine foods were
found to contain the highest levels of PHAGCs. Microbes in sugar-type foods generally
must persist in low-pH environments, with some kombucha fermentations dropping to
as low as pH 3 (72). In contrast, although also somewhat acidic, a milk kefir fermenta-
tion is regarded as complete when the pH reaches 4.5 (73), while the pH of most
cheeses is between pH 5.1 and 5.9. Many of the sugar foods also contained
colonization-associated PHAGCs. It was also noted that brine-type foods had the
highest abundance of Lactobacillaceae, specific representatives of which have been
exploited for their probiotic activity. A combination of these various factors likely
contributes to the higher abundance of PHAGCs in both of these foods relative to dairy
foods. However, even within the respective food substrate groups, the PHAGCs present
varied considerably, with foods such as water kefirs, sauerkrauts, pickled veg, ginger,
kvass, and kombucha being enriched in PHAGCs. These foods all contained colonization
and survival PHAGCs at a higher frequency, e.g., glycotransferases for colonization in
kombucha and pickled veg, and bile salt metabolism genes in water kefir and fer-
mented sliced ginger. D-Lactate dehydrogenase pathways were consistently identified
in these foods but were absent from other such as scallion kimchi, carrot sticks, and
agousha. This observation is notable as D-lactate dehydrogenase is the enzyme respon-
sible for producing D-phenyl-lactic acid (D-PLA), a metabolite known to modulate the
host immune system (13). Glutamate decarboxylase, which converts glutamate into
�-aminobutyric acid (GABA), was present in some (kombucha, kvass, coconut kefir, and
some water kefir samples), but not all, PHAGC-enriched foods. GABA is a well-known
modulator of mood (74), while this enzymatic reaction also consumes protons and thus
contributes to acid resistance (75). Although in vivo studies are required to directly
examine the health benefits of specific fermented foods, these insights can undoubt-
edly help to identify foods and strains that are more likely to be health promoting,
facilitate the production of fermented foods optimized for health promotion, and direct
the experimental design of human intervention studies.

Finally, this study discovered 127 high quality MAGs, of which 10 are putative novel
species. Three putative new Acetobacter species from water kefir, milk kefir, and
sauerkraut, a Gluconobacter from bread kvass, a Leuconostoc from sauerkraut, and a
Companilactobacillus from boza were assembled from the shotgun data. While these
species are apparently novel, the corresponding genera are found in fermented foods
at a high frequency. However, two MAGs representing genera that have not been found
in fermented foods before were assembled, i.e., a Rouxiella species and three Acidis-
phaera species, all from water kefir samples. Rouxiella chamberiensis and Acidisphaera
rubrifaciens are the only previously known members of their respective genera. Roux-
iella chamberiensis was isolated from parenteral nutrition bags and has been shown to
ferment D-glucose but not sucrose (76) and Acidisphaera rubrifaciens has been found in
acidic hot springs and mine drainage systems and, like many of the other sugar taxa,
is acidophilic (77). The assembly of these and other MAGs in the future will contribute
toward the building of fermented food, and other food, microbe databases, equivalent
to those available for the more complex human gut microbiome (78), to enable the
more accurate and rapid identification of food microbes. Such databases will be key in
the application of metagenomics-based approaches on a widespread basis by the food
industry.

Overall, this study combines many novel insights into fermented-food microbiomes.
First, the taxonomic composition of the 58 foods has been described, including many
foods that have not been described using next generation sequencing (NGS) previ-
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ously. Second, the functional profile of these foods has been characterized and, like the
taxonomic profile, highlights the differences between starting material and microbial
composition. Importantly, given the current interest in fermented foods as a healthy
food choice and the role diet plays in modulating the gut microbiome, the health-
promoting potential of the microbes in these various foods has been explored. Finally,
genomes, including potentially novel taxa, were assembled from these foods and will
contribute to the better assignment of reads from fermented food, and indeed broader
food chain microbiome studies, in the future.

MATERIALS AND METHODS
A total of 58 samples of fermented foods were collected from various artisanal producers (Table 1).

Foods were sampled when they were ready for consumption. In all cases, the edible portion of the
fermentation was sampled. For example, for foods such as milk kefir or kombucha, the starter grain or
SCOBY (symbiotic colony of bacteria and yeast), respectively, were not sampled, but rather sampling
focused on the liquid portion of these products that is consumed. Portions (5 g) of foods were placed
in a stomacher bag. Then, 50 ml of sterile Maximum Recovery Diluent (MRD) was added to the bag. The
contents were homogenized in a stomacher (BagMixer 400; Interscience) for 20 min. After this step, both
solid and liquid foods were extracted using the same method. Next, 50 ml of the homogenized solution
was centrifuged at 10,000 rpm, at room temperature, for 10 min. The supernatant was discarded. The
pellet was resuspended in 550 �l of SL buffer in a 2-ml tube (SL buffer from the GeneAll kit described
below). Then, 33 �l of proteinase K was added to the tube, followed by incubation at 55°C for 30 min.
The solution was then transferred to a bead-beating tube and placed in a Qiagen TissueLyser II for 10 min
at 20/s. The GeneAll Exgene extraction protocol in step 4 was then followed until the final elution step;
30 �l of elution buffer (EB) was used here instead of the 50 �l suggested in the protocol.

Sequencing. Library preparation was carried out according to the Nextera XT protocol (Illumina) (79).
DNA was quantified by using a Qubit high-sensitivity dsDNA assay. The final library quality was assessed
by using Agilent high-sensitivity DNA chromatin immunoprecipitation, and quantification was done by
qPCR using a KAPA library quantification kit (Illumina; Roche). Sequencing was carried out on the
NextSeq500 using a 300-cycle High Output v2 kit.

Bioinformatics. A total of 347,841,507 reads were obtained from the Nextseq sequencing run in the
form of Bcl files, which were converted to fastq format using bcl2fastq software. Quality trimming was
performed using the trimBWAstyle.usingBAM.pl script. Using Picard (https://github.com/broadinstitute/
picard), fastq was converted to Sam format. Picard was also used to remove duplicates. The sequences
were then quality checked and trimmed using the trimBWAstyle.usingBam.pl script from the Bioinfor-
matics Core at UC Davis Genome Center (https://github.com/genome/genome/blob/master/lib/perl/
Genome/Site/TGI/Hmp/HmpSraProcess/trimBWAstyle.usingBam.pl). Host reads accounted for �8% of
the reads. They were not removed since reference genomes were not available for all food substrates.
All metagenomes were dealt with consistently, and the low abundance of nonmicrobial reads was low.
Forward and reverse reads were then combined into a single fasta file for each sample using the fq2fa
command from IDBA-UD (80).

Ten profiles of each microbiome were described. These included four taxonomic levels (species,
genus, family, and phylum), four functional profiles (Superfocus 1, Superfocus 2, Superfocus 3, and
Carbohydrate functions, which are a subset of HUMAnN2 output), the bacteriocin gene profile, and the
antimicrobial resistance gene profile.

Kaiju v1.5.0 (81) was used to assign taxonomy to the reads, using the NCBI BLAST nonredundant
protein database, including fungi and microbial eukaryotes, discarding taxa with a relative abundance of
�0.1%. This setting was chosen since other studies have shown a high false-positive discovery rate below
this threshold (82). All percentages reported at all taxonomic levels are percentages of the assigned reads
only. Species-level assignment was updated for lactic acid bacteria, as previously described (83).
Superfocus (84) was used to assign functionality to the reads. Superfocus assigns reads to homologues
gene families to determine functionality. It collapses these gene families to higher levels of organization
for a more generic function. Superfocus level 1 is the highest level of organization, followed by levels 2
and 3, with 3 having the most specific function. Data Set S1, sheet 1, shows the complete list of microbes
and their relative abundance for each food. The phylogenetic tree of L. lactis was created in GraPhlAn
(85), using the StrainPhlAn (86) output, which used Metaphlan2 (87) taxonomic assignment.

Statistical analyses were carried out in R-3.2.2 (88) using vegan (89). Analysis of similarities (ANOSIM)
was carried out between each metadata category containing six or more samples (Data Set S1, sheet 6).
The Benjamini-Hochberg false discovery rate was applied to the ANOSIM results. The linear discriminant
analysis (LDA) effect size (LEfSe) (90) method was used to determine whether any taxa or pathways were
differentially abundant between groups (see Text S1 in the supplemental material).

Antimicrobial resistance. Antimicrobial resistome analysis was performed by aligning paired-end
metagenomes reads against the MEGAres database (v1.0.1) (91). To reduce type I errors, this database
was first manually curated to remove any genes corresponding to antimicrobial resistance arising from
point mutations. The alignment was performed using the –very-sensitive-local preset of Bowtie2 (v2.3.4).
The Resistome Analyser tool (https://github.com/cdeanj/resistomeanalyzer) was used to format the
output, and the results were normalized for sequencing depth across samples as counts per million reads
(CPM).
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Bacteriocin assignment. Bacteriocin assignment was performed with the BLAST analysis of the
bacteriocin genome mining tool (BAGEL) of the predicted genes with the Prodigal tool against the
BAGEL4 bacteriocin databases (92).

Carbohydrate pathways. The carbohydrate function was assigned to reads with the HUMAnN2
pipeline (93), which assigned the function based on the ChocoPhlan databases and genes based on
UniRef (94). To further simplify the exploration of the abundance data of the gene family were grouped
into the functional category Gene Ontology (GO), specifically carbohydrate-related functions, performing
a more in-depth analysis.

Metagenomic assembled genomes. Metagenome assembly was carried out using IDBA-UD. Meta-
BAT 2 (95) was used for genome binning, with default settings. CheckM (96) was implemented to check
the quality of metagenome assembled genomes (MAGs). Low-quality MAGs, i.e., �80% completeness
and/or �10% contamination, were removed from downstream analysis. Kaiju (81) and PhyloPhlAn (97)
were used to assign taxonomy to the MAGs. The average nucleotide identity (ANI) of MAGs to reference
genomes, which were downloaded from RefSeq (98), was calculated using FastANI (64). Putatively novel
MAGs were assigned as potentially new species using the ANI threshold described previously (78). The
phenotypes of MAGs were predicted using Traitar (63). MAGs were annotated using Prokka (99).

PLS-DA analyses. Partial least-squares discriminant analysis (PLS-DA) plots were generated using the
KODAMA R package (v1.5) (100). Default parameters of the KODAMA software were used on species from
the taxonomic profile with the semisupervised constraining of data ordination according to the fermen-
tation process of samples. The final visualization of data was performed in R (v3.5.1) using ggplot2
(v3.1.1) (101).

PHAGC screening. Shotgun sequences for 16 nonfermented dairy samples were downloaded from
ENA (study accession number PRJEB31110) with a median of 18,041 reads per sample, after removing Bos
taurus reads. The 16 dairy samples were as follows: raw tanker milk, n � 2; skimmed milk powder, n �
6; pasteurized skimmed milk, n � 4; and raw silo whole milk, n � 4. The fermented- and nonfermented-
food sequences were then assigned UniRef clusters (90) using the HUMAnN2 software (93). Using the
UniRef clusters obtained from HUMAnN2 output, the presence or absence of clusters shown to influence
the potential health-promoting properties of bacteria was determined (13, 60, 102). The list of search
terms can be found in Data Set S1, sheet 7. The total numbers of PHAGCs present in each food were
binned into one of the following three categories: survival, modulation, and colonization. A heatmap was
created using Pheatmap (103). The rows of the heatmap were scaled, so that the values are comparative
between the foods and not an absolute count of the numbers of gene clusters found in each food.

Data availability. All raw reads can be accessed from the ENA under project accession number
PRJEB35321.
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