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ABSTRACT

Although many patients are cured from prostate cancer (PCa) by surgery only, 
there are still patients who will experience rising prostate-specific antigen (PSA) 
levels after surgery, a condition known as biochemical recurrence (BCR). Novel protein 
prognostic markers in PCa tissue might enable finding better treatment for those 
patients experiencing BCR with a high chance of metastasis. In this study, we aimed 
to identify altered proteins in prostate cancer tissue, and to evaluate their potential 
role as prognostic markers. We used two proteomics strategies to analyse 34 prostate 
tumours (PCa) and 33 normal adjacent prostate (NAP) tissues. An independent cohort 
of 481 samples was used to evaluate the expression of three proteins: AGR2, FASN and 
LOX5 as prognostic markers of the disease. Tissue microarray immunohistochemical 
staining indicated that a low percentage of positive tumour cells for AGR2 (HR (95% 
CI) = 0.61 (0.43-0.93)), and a low percentage of positive tumour cells for LOX5 
expression (HR (95% CI) = 2.53 (1.23-5.22)) are predictors of BCR after RP. In 
contrast, FASN expression had no prognostic value for PCa.

INTRODUCTION

Prostate cancer (PCa) remains to date the most 
commonly diagnosed cancer in men in the Western world 
[1]. Although many patients are cured from this disease 
after radical prostatectomy (RP) [2], one third of patients 
will show an increment in serum PSA levels -also known 
as biochemical recurrence (BCR)-[3]. For those patients, 
more frequent follow-up and adjuvant therapies are 
often required to limit progression of the disease [3, 4]. 
There is a high need for robust molecular markers that 
can distinguish indolent cases of PCa from those that will 
recur after initial treatment [3, 4].

Small molecules, such as metabolites and lipids, 
have been associated with the progression of different 

types of cancer, including PCa [5]. In our previous study, 
using a LC-MS/MS-based targeted metabolomics method, 
we found lower concentrations of arachidonic acid (AA) 
in serum from PCa patients in the most aggressive 
stage of the disease [6]. In addition, serum levels of 
hydroxyeicosatetraenoic acid (HETE) metabolites, which 
are produced by lipoxygenase-type enzymes from AA, 
were elevated in serum of part of the patients within the 
same group of advanced PCa [6]. At tissue level, it has 
been reported that levels of AA in PCa were significantly 
lower compared to benign prostate tissues [7]. In addition, 
Yang et al. analysed PCa core biopsies and they found 
that the 15-LOX-2 metabolite 15-HETE, was higher in 
PCa than in the normal cores [8]. These findings suggest 
that the AA pathway might play an important role in 
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PCa development and progression. However, analysis of 
proteins of the AA pathway in PCa, as well as their role 
in the prognosis of PCa is still unknown. In this study, we 
used two complementary mass spectrometry approaches 
to identify differentially expressed proteins in PCa tissue 
that could be used as prognostic markers for this disease. 
Protein signatures were validated in an extended cohort 
using immunohistochemistry on archival PCa tissue 
and an available tissue microarray. The expression of 
the selected proteins was evaluated for prediction of 
biochemical recurrence after radical prostatectomy.

RESULTS

Proteomics

In this study we aimed to find protein signatures 
of PCa with potential applicability towards prognosis of 
the disease. To identify differentially expressed proteins 
in PCa, we used shotgun proteomics using the protein 
fraction from RNA-bee isolation of 34 PCa and 33 NAP 
tissues (Figure 1). Using label free quantification (LFQ), 
a total of 2865 proteins were identified, and 798 proteins 
were statistically significant (FDR<0.01). Figure 2A 
illustrates the LFQ mean ratio between PCa and NAP, 
also indicating that an elevated number of proteins were 
up-regulated in PCa. The list of identified proteins as well 
as the differentially expressed proteins in PCa is presented 
in Supplementary Table 2. Two proteins, anterior gradient 
2, AGR2, and fatty acid synthase, FASN, were highly 
up-regulated in PCa and their normalised abundances 

showed also a trend when compared with the Gleason 
score, as shown in Figure 2B-2C. These two proteins were 
considered for further analysis.

To analyse whether proteins in the Arachidonic 
acid (AA) pathway could be used as prognostic markers 
for PCa, we manually searched the list of differentially 
expressed proteins and compared this list with the list of 
79 proteins in the AA pathway as described by Sabidó 
et al. [9] (Supplementary Table 3). Interestingly, we 
identified fifteen proteins of the AA pathway in the list 
of de-regulated proteins, and particularly, prostaglandin E 
synthase 3. TEBP, showed a degree of correlation with the 
Gleason score, as is shown in Figure 2D.

We previously reported high levels of HETE 
metabolites in serum from PCa patients. In our shotgun 
proteomics dataset we only identified one lipoxygenase-
type enzyme deregulated in PCa tissue: LX15B, but 
its expression is higher in NAP and the statistical test 
is significant (p<0.05), as shown in Figure 2E. The 
deregulated proteins in PCa which are part of the AA 
pathway are presented in Figure 2A.

Gleason score, pT Stage and ERG oncogene status 
have been associated with poor prognosis of PCa. To 
evaluate whether proteins identified in PCa tissue could 
be associated with these clinical parameters, we performed 
statistically tests on patients with different Gleason scores 
(GS 6 vs. GS 7), different pT stages (pT2, pT3, pT3) and 
whether ERG is activated or not (ERG oncogene-positive 
vs. ERG oncogene-negative). We did not find statistically 
significant proteins when comparing Gleason score or 
pT stage, but we found that 15 proteins were statistically 

Figure 1: Workflow for finding proteins in PCa tissue that relate to prediction of biochemical recurrence.
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significant when comparing ERG activation. Interestingly, 
three of these proteins belonging to the AA pathway 
and were up-regulated (FDR<0.01): phospholipase 
A2, PA2GA, arachidonate 15-lipoxygenase B, LX15B, 
and prostaglandin reductase 1, PTGR1. The list of 
differentially expressed proteins when ERG is activated is 
presented in Supplementary Table 4. These results indicate 
that the AA pathway might play a role in ERG activation.

To validate the results obtained in the shotgun 
proteomics experiment, we performed parallel reaction 
monitoring measurements (PRM) on the same samples 
described above, and we included other proteins not 
identified by shotgun approach in order to evaluate their 
potential as prognostic markers for PCa. We selected 
these proteins (Table 1) because they are involved in 
the metabolism of small molecules and fatty acids 
(polyamines, eicosanoids and phospholipids), as well 
as in the so-called Warburg effect, which also involves 
metabolic enzymes of metabolites present in the TCA 
cycle [10, 11]. In total we analysed 18 proteins and each 
protein was quantified using two peptides. We included 
two peptides for PARK7, a protein recently described 
for normalisation of proteomics experiments [12], and 
as expected, peak areas between samples were not 
statistically significant (p>0.05) different.

AMACR, a known marker for PCa, and one of 
the proteins with the highest fold change and statistical 
significant different in the shotgun experiments, was 

included as positive control for the PRM measurements. 
ANOVA comparison between NAP and PCa at different 
Gleason Scores indicated a high up-regulation in PCa 
(p<0.0001) for AMACR, confirming the validity of our 
PRM set up. We could also confirm the shotgun results 
of AGR2 and FASN proteins using PRM, in both cases 
the peak area and the Gleason score correlated well. 
A summary of the statistical calculations performed 
for the 18 proteins analysed by PRM is presented in 
Supplementary Table 5.

To validate the importance of the AA pathway 
in PCa and its possible application in prognosis, we 
analysed seven AA pathway proteins by PRM. We 
included LOX5 as it is involved in the production of 
eicosanoid-like compounds, and it was not identified by 
shotgun. Statistical analysis presented in Supplementary 
Table 5 indicated that LOX5 and TEBP are highly up-
regulated in PCa tissue and they are also correlate with the 
Gleason score. On the other hand, LX15B, HYES, PGH1 
were down-regulated (ANOVA, p<0.001) and LKHA4 
and FAAH were not different when compared with the 
Gleason score.

To identify whether selected proteins involved 
in metabolic reprogramming (Warburg effect) are de-
regulated in PCa, we included transitions for another 
seven proteins in the PRM setup. Interestingly, the 
ANOVA test indicated that ACSL3, GLSK, LDHA, LDHB 
and ANM1 proteins are statistically significant (p<0.001). 

Figure 2: (A) Scatter plot of the normalized abundance mean ratio between PCa (n=34) and NAP (n=33) using the shotgun approach. 
Proteins belonging to the AA pathway arepresented in red (upregulated) and blue (down-regulated). (B-E) Boxplots of normalized 
abundances at different Gleason scores for proteins AGR2, FASN, TEBP and LX15B.
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Table 1: List of transitions used in the Parallel Reaction Monitoring (PRM) experiments

Gene Name Protein name and 
accession Peptide m/z z

RT RT HCD 
Collision 
Energy 

(%)
start (min) stop (min)

LOX5 Arachidonate 
5-lipoxygenase DDGLLVWEAIR 643.8406 2 46.13 48.13 27

P09917  
(LOX5_HUMAN) GVVTIEQIVDTLPDR 827.9542 2 45.5 47.5 27

GLS Glutaminase GSTHPQPGVSPPAAPAAPGPK 641.0024 3 10.69 12.69 27

O94925  
(GLSK_HUMAN) YAIAVNDLGTEYVHR 574.2933 3 25.63 27.63 27

ALOX15B Arachidonate 
15-lipoxygenase B ELLIVPGQVVDR 669.393 2 31.3 33.3 27

O15296  
(LX15B_HUMAN) STGIGIEGFSELIQR 803.9254 2 41.27 43.27 27

LTA4H Leukotriene A-4 
hydrolase LTYTAEVSVPK 604.3321 2 18.73 20.73 27

P09960  
(LKHA4_HUMAN) ELVALMSAIR 551.8181 2 33.83 35.83 27

PTGES3 Prostaglandin E 
synthase 3 LTFSC[+57.0]LGGSDNFK 723.3401 2 28.05 30.05 27

Q15185  
(TEBP_HUMAN) LNWLSVDFNNWK 768.3857 2 47.25 49.25 27

EPHX2 Bifunctional epoxide 
hydrolase 2 FLLDTLK 425.2577 2 27.61 29.61 27

P34913  
(HYES_HUMAN) AVASLNTPFIPANPNMSPLESIK 804.4262 3 43.54 45.54 27

FAAH Fatty-acid amide 
hydrolase 1 LQNPDLDSEALLALPLPQLVQK 805.788 3 52.9 54.9 27

O00519  
(FAAH1_HUMAN) ELAPEAVLFTYVGK 768.919 2 44.96 46.96 27

ACSL3 Long-chain-fatty-
acid–CoA ligase 3 LQAGEYVSLGK 582.8166 2 18.53 20.53 27

O95573  
(ACSL3_HUMAN) VLSEAAISASLEK 659.3666 2 24.13 26.13 27

SRM Spermidine synthase LTLHVGDGFEFMK 498.5868 3 32.79 34.79 27

19623  
(SPEE_HUMAN) ESYYQLMK 531.2522 2 19.26 21.26 27

PRMT1 Protein arginine 
N-methyltransferase 1 ATLYVTAIEDR 626.3326 2 23.36 25.36 27

Q99873  
(ANM1_HUMAN) EVDIYTVK 483.7608 2 15.55 17.55 27

LDHA
L-lactate 

dehydrogenase A 
chain

LVIITAGAR 457.2951 2 16.05 18.05 27

P00338  
(LDHA_HUMAN) FIIPNVVK 465.2946 2 27.24 29.24 27

PTGS1 Prostaglandin G/H 
synthase 1 ILPSVPK 377.2471 2 11.8 13.8 27

(Continued )
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Two proteins involved in polyamine metabolism, SMS 
and SRM, were not different between NAP and PCa, even 
though this pathway is known to be heavily deregulated 
in PCa [10].

Immunohistochemistry

Based on the results of the mass spectrometry 
experiments we selected four proteins for 
immunohistochemical (IHC) validation: AGR2, FASN, 
LOX5 and LX15B. These proteins were selected based on 
their correlation with the Gleason score and the availability 
of antibodies. In addition, these antibodies ought to work 
reliably using formalin-fixed paraffin-embedded (FFPE) 
tissue. IHC staining of the selected proteins on PCa FFPE 
tissue sections is shown in Figure 3.

AGR2 showed heterogeneous expression in normal 
luminal epithelium and PCa. AGR2 staining was strikingly 
positive in cancer and negative in normal (Figure 3A). 

Expression of cytoplasmic FASN was negative to weak 
and rarely moderate in normal prostate luminal epithelium. 
Expression in PCa was stronger (1+/2+) than in adjacent 
normal tissue (0/1+) with locally strong expression (3+) in 
Gleason grade 7 and 9 areas (Figure 3B).

Expression of LX15B was generally moderate to 
strong (2+/3+) and occurred in both cytoplasm and nucleus 
of both benign luminal cells and PCa. Normal basal 
epithelium and atrophic prostate epithelium generally 
showed lower expression (0/1+). Stromal expression was 
negative (0) to weak (1+) (Figure 3C).

LOX5 staining was found to be predominantly 
expressed in the nuclei and cytoplasm of benign basal 
epithelial cells and atrophic luminal epithelial cells (1+ 
to 3+). Normal luminal epithelial cells were generally 
negative (0) or weakly positive (1+). PCa showed 
enhanced expressions as compared to benign luminal cells 
varying from weak to strong, but no clear association with 
the Gleason score was observed (Figure 3D).

Gene Name Protein name and 
accession Peptide m/z z

RT RT HCD 
Collision 
Energy 

(%)
start (min) stop (min)

P23219  
(PGH1_HUMAN) VPDASQDDGPAVERPSTEL 661.6482 3 20.46 22.46 27

LILIGETIK 500.3261 2 27.45 29.45 27

FASN Fatty acid synthase LLEQGLR 414.7505 2 10.38 12.38 27

P49327  
(FAS_HUMAN) FPQLDSTSFANSR 735.3546 2 26.48 28.48 27

AGR2 Anterior gradient 
protein 2 homolog LPQTLSR 407.7427 2 7.16 9.16 27

O95994  
(AGR2_HUMAN) HLSPDGQYVPR 423.5509 3 9.3 11.3 27

PARK7 Protein/nucleic acid 
deglycase DJ VTVAGLAGK 408.2529 2 10.47 12.47 27

Q99497  
(PARK7_HUMAN) DGLILTSR 437.7533 2 17.36 19.36 27

AMACR Alpha-methylacyl-
CoA racemase LQLGPEILQR 583.8482 2 28.39 30.39 27

Q9UHK6  
(AMACR_HUMAN) LAGHDINYLALSGVLSK 590.9965 3 34.56 36.56 27

SMS Spermine synthase HSTLDFMLGAK 610.3106 2 23.39 25.39 27

P52788  
(SPSY_HUMAN) YWPTADGR 483.2274 2 13.74 15.74 27

LDHB
L-lactate 

dehydrogenase B 
chain

IVVVTAGVR 457.2951 2 13.1 15.1 27

P07195  
(LDHB_HUMAN) MVVESAYEVIK 634.3338 2 24.62 26.62 27
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Table 2B: Intensity of positive tumour cells, Negative = weak or no staining, Positive = strong staining intensity

 Negative Positive Total p-value

PSA at diagnosis     

  ≤10 ng/ml 9 (2.2%) 343 (84.9%) 352 (87.1%) 0.203

 >10 ng/ml 3 (0.8%) 49 (12.1%) 52 (12.9%)  

Total 12 (3.0%) 392 (97.0%) 404  

Gleason score     

 <7 2 (0.5%) 212 (52.3%) 214 (52.8%) 0.032

 7 8 (2.0%) 155 (38.3%) 163 (40.3%)  

 >7 2 (0.5%) 26 (6.4%) 28 (6.9%)  

Total 12 (3.0%) 393 (97.0%) 405  

pT-stage     

 pT2 9 (2.3%) 271 (66.9%) 280 (69.2%) 0.465

 pT3/4 3 (0.7%) 122 (30.1%) 125 (30.8%)  

Total 12 (3.0%) 393 (97.0%) 405  

Table 2A: Clinico-pathologic correlations in the PCa-TMA and AGR2 (percentage of positive tumour cells) 

 Negative Positive Total p-value

PSA at diagnosis     

  ≤10 ng/ml 88 (21.8%) 264 (65.3%) 352 (87.1%) 0.141

 >10 ng/ml 18 (4.4%) 34 (8.5%) 52 (12.9%)  

Total 106 (26.2%) 298 (73.8%) 404  

Gleason score     

 <7 44 (10.9%) 170 (42.0%) 214 (52.9%) 0.017

 7 51 (12.6%) 112 (27.6%) 163 (40.2%)  

 >7 11 (2.7%) 17 (4.2%) 28 (6.9%)  

Total 106 (26.2%) 299 (73.8%) 405  

pT-stage     

 pT2 68 (16.8%) 212 (52.3%) 280 (69.1%) 0.121

 pT3/4 38 (9.4%) 87 (21.4%) 125 (30.9%)  

Total 106 (26.2%) 299 (73.8%) 405  

Positive = 100% positive cells, Negative = less than 100% positive tumour cells.

Tissue microarray

To determine whether expression of AGR2, FASN, 
and LOX5 might correlate with clinical parameters we 
analysed these proteins in 481 samples from RP patients. 
Cytoplasmic expression of AGR2 occurred in 84% 
(404/481) of the patients, with 52% of cores showing 
strong intensity (3+). 74% (299/404) of the cores exhibited 
staining in 100% of tumour cells. Strong FASN staining 
occurred in 86% (399/461) of patients. We did not find 
any expression of LOX5 in 54% of the cores, and both the 

cytoplasmic and the nuclear intensities were weak (1+) 
in most cases. The percentage of positive tumour cells 
stained for LOX5 was lower than 10% in the 224 positive 
cores.

An association between the Gleason score (GS) and 
the percentage of positive tumour cells and intensity of 
AGR2 was found (p=0.017, and p=0.032, respectively, as 
described in Table 2A-2B). AGR2 expression occurred 
more often in patients with lower GS (42% in patients 
with GS <7 when analysing percentage of tumour 
cells, and 52.3% when cytoplasm was analysed). FASN 
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expression was higher in GS <7 and GS=7 (49.0% 
and 34.6% respectively) than in GS>7 (5.4%), but no 
correlation existed between FASN and PSA, GS or pT 
stage (Supplementary Table 6).

A correlation between pT stage and cytoplasm intensity 
of LOX5 was found (p=0.044, in Supplementary Table 7A). 
No other correlation was found when analysing cytoplasmic 
intensity, nuclear intensity, or percentage of positive tumour 
cells for LOX5 (Supplementary Table 7B-7C).

We constructed Kaplan Meier (KM) curves to 
identify the role of AGR and LOX5 in predicting BCR 
after surgery. We analysed if the percentage of positive 
cells of AGR2 100% (positive) or lower than 100% 
(any negative) was predictive for BCR. We found that 
a percentage lower than 100% of positive tumour cells 
(<100%) in AGR2 was predictive for BCR (HR (95% CI) 
= 0.61 (0.43-0.93)); p=0.02), as described in Table 2 and 
Figure 4.

Figure 3: Immunohistochemical staining in PCa tissue for (A) Anterior Gradient 2 (AGR2) in Gleason score 6 and Gleason score 9, 
(B) Fatty Acid Synthase (FASN) in Gleason 7 and Gleason 9, (C) 15-lipoxygenase-2 (LX15B) in Gleason score 8 and Gleason 9 and (D) 
5-lipoxygenase (LOX5) Gleason 6 and Gleason 8.

Figure 4: Kaplan-Meier curves assessing the probability of PCa biochemical recurrence after radical prostatectomy 
by AGR2 and LOX5. Blue lines represent: AGR2: Percentage of tumour cells <100% LOX5: No staining. Red lines represent: AGR2: 
100% of positive tumour cells, LOX5: >0% staining of positive tumour cells.
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For LOX5, we analysed whether the percentage 
of positive cells was negative (LOX5 0%), or it had any 
expression (LOX5 > 0%). Expression for LOX5 was 
characterised by only a small percentage of positive 
tumour cells, being at maximum 10%. KM curves indicate 
that low percentage of LOX5 positive tumour cells is a 
predictor of BCR in comparison with negative staining 
(0%), in a univariate analysis (HR (95% CI) = 2.53 (1.23-
5.22)); p=0.002), as presented in Table 2 and Figure 4.

DISCUSSION

The Gleason score is an effective indicator of 
aggressiveness of PCa and therefore an important 
parameter to determine prognosis. However, more 
knowledge of which patients will relapse after radical 
prostatectomy and/or which patients will respond better to 
a specific treatment is still needed.

AGR2 is a predictor of biochemical recurrence after 
performing TMA immunostaining in the Evaluation set 
(Figure 4), confirming previous reports for this protein 
as biomarker for PCa [13–15]. Bu et al., demonstrated 
that AGR2 is overexpressed in PCa, particularly in low-
grade tumours and also in tumour precursor lesions PIN. 
In addition, high levels of AGR2 transcript were found 
in urine sediments from PCa patients [16]. Two distinct 
splice variants of AGR2 in urine exosomes have been 
identified as effective markers distinguishing NAP and 
PCa [17]. AGR2 has been reported to be induced by 
androgens in PCa [18], and its tumorigenic function is 
associated with cell growth, survival and metastasis, as 
recently reviewed [19].

Fatty acid synthase (FASN) is known to be a key 
enzyme in the production of long chain fatty acids from 
Acetyl-CoA and Malonyl-CoA [20]. Overexpression of 
this protein in PCa tissue has been reported in cell lines 
[21], tissue microarrays [22], tissue biopsy cores [23] 
and exosomes [24]. FASN-normalised intensity was 
high in PCa in our proteomics dataset and its expression 
was independently evaluated by immunohistochemistry 
and a TMA. Although its expression does not predict 
biochemical recurrence, inhibition of FASN has been 
proposed as a therapeutic target because of its increased 
expression and its relation to both cell cycle arrest and 
apoptosis [25]. Our results reinforce the theory that FASN 
could be an important target to manipulate the fatty acid 
and lipid metabolism in cancer and therefore control 
cancer cell behaviour [26–28].

The AA pathway is a key inflammatory pathway 
involved in cellular signalling as well as prostate 
carcinogenesis [29]. Arachidonic acid is stored in cell 
membranes as a phospholipid, it is released by the action 
of phospholipase A2-type enzymes, and then metabolised 
by the action of cyclooxygenases (COX), lipoxygenases 
(LOX) and P450 cytochromes to produce biologically 
active eicosanoids [8].

We found that the abundance of lipoxygenase 
15 type 2 (LX15B), an enzyme encoded by the gene 
ALOX15B, was lower in PCa than in NAP. Evaluation 
by immunohistochemistry showed a moderate increased 
abundance in both cytoplasm and nucleus of normal 
luminal cells and PCa when compared to normal basal 
epithelium. These results do not support our hypothesis 
that the previously reported high serum concentration of 
HETE metabolites could be explained by an up-regulation 
of this lipoxygenase-type enzyme [6]. Interestingly, low 
expression of LOX5 in PCa tissue is slightly higher in 
PCa compared to NAP, and this expression can be used 
to evaluate BCR after surgery (Figure 4). In addition, 
we noticed that expression of upstream enzymes, such 
as the phospholipases (PA2PA), is higher in PCa when 
there is an activation of ERG-oncogene (Supplementary 
Table 4). These results highlight the importance of the AA 
pathway in PCa, and, particularly, when ERG is activated. 
However, functional studies need to be performed in order 
to analyse the link between ERG activation and the de-
regulation of enzymes in the AA pathway, as well as the 
HETE metabolites or other eicosanoid-type fatty acids in 
the development of PCa.

Association of different enzymes of this family with 
PCa has recently been described in literature. Patel et al. 
[30], studied the expression of cytosolic phospholipase 
A2 in PCa cells and they reported that increased levels 
of this enzyme were observed in androgen-insensitive 
PCa cell lines and they suggested that this enzyme plays 
a role in cancer cell proliferation and apoptosis. PAFAH 
(PLA2G7) enzyme was identified by Vainio et al. in a set 
of 9783 human tissue samples and it was proposed as a 
potential drug target specially in ERG positive PCa [31]. 
Validation studies performed by the same group indicated 
a correlation between staining intensity for PAFAH and 
Gleason Score in 50 % of the cases, thus suggesting that 
both enzymes can be seen as biomarkers for PCa, and 
the PAFAH inhibition by statins as a therapeutic tool for 
managing the disease [29].

We found that the protein TEBP (PTGES3), was 
up-regulated in PCa tissue, TEBP protein is involved in 
eicosanoid signalling as it produces the Prostaglandin 
E2, involved in inflammation processes. In addition, it is 
reported to be an enhancer of androgen receptor activity. It 
is involved in AR binding to chromatin, which is a critical 
step in AR signalling and PCa development [32, 33]. 
Further validation is still required, using both quantitative 
mass spectrometry and immunohistochemistry, to 
confirm a potential role of this protein in PCa diagnosis 
and prognosis. In addition, further analysis in-vitro, 
could address the role of the metabolite prostaglandin 
E, produced by TEBP along the AA pathway in PCa 
development and progression.

Cancer cells demand energy for proliferation and 
therefore there might be a metabolic reprograming in the 
cancer progression process (Warburg effect). By using 
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both shotgun and PRM experiments, we noticed that some 
metabolic enzymes are de-regulated in PCa (Supplementary 
Table 5). It is of interest that the expression of lactate 
dehydrogenase-A protein (LDHA) was significantly 
(p<0.0001) lower in PCa than in NAP, and it is also de-
regulated when ERG is activated (Supplementary Table 
4). This result might be associated to previous reports for 
this protein indicating a key role in PCa oncogenesis [34]. 
LDHA executes the final step of aerobic glycolysis and has 
been reported to be involved in tumour progression [35]. It 
was recently demonstrated that LDHA overexpression is 
highly linked to local relapse of PCa [36].

In conclusion, the experiments in this study 
allowed the identification of proteins and pathways 
associated to PCa. We identified a relationship between 
proteins in the AA pathway and PCa, and we have shown 
that expression of LOX5 and AGR2 in tissue predict 
biochemical recurrence after radical prostatectomy. 
Further validation studies on independent cohorts using 
different antibodies are needed to analyse the role of TEBP 
in PCa progression, as well as their clinical applicability. 
In addition, functional analyses are still required to fully 
understand their role in cancer cell proliferation, apoptosis 
and senescence.

MATERIALS AND METHODS

Clinical specimens

Discovery set

The protein fractions from tissue RNA isolation 
of 67 samples (33 NAP tissues and 34 PCa tissues) were 
analysed (MEC-2004-261); PCa samples were previously 
published (GSE41408) [37], as well as additional 
cancerous and control samples, accessible via GEO 
accession number GSE59745 [38]. Clinico-pathologic 
characteristics of the samples used for proteomics 
profiling are presented in Supplementary Table 1.

Tissue Microarray (TMA)- evaluation set

A Tissue Microarray (TMA) was constructed 
including 481 patients diagnosed with PCa from the 
European Randomized Study of Screening for PCa 
(ERSPC) [39–41]. All patients had undergone RP in 
Erasmus MC between 1987 and 2010, without previous 
radiation or hormonal therapy. Clinical follow-up was 
recorded after each control visit at our outpatient clinic, 
and data were transmitted to a central study database. 
Post-operative biochemical recurrence (BCR) was 
defined as an increment of 0.2 ng/mL in serum PSA 
after two consecutive measurements, with at least three 
months between measurements. Clinico-pathologic 
characteristics and follow-up for patients treated by RP 
are also summarized in Supplementary Table 1.

Sample preparation

Proteomics

The protein interface from tissue RNA isolation 
with RNA-Bee of 67 PCa tissue samples (33 NAP 
adjacent tissues and 34 PCa) were kept at -80 °C. For 
protein digestion, samples were thawed and 50 μL were 
transferred to a new microcentrifuge tube and precipitated 
with cold acetone. After spinning down for 10 minutes, 
the supernatant was removed and the pellet was washed 
twice with cold acetone. Supernatant was removed and 
50 μL 0.1% RapiGest (Waters Corporation, Milford, MA) 
50 mM NH4HCO3 were added to the protein pellet. The 
protein pellet was dissolved by external sonication for 5 
min at 70% amplitude at a maximum temperature of 25 
°C (Digital Sonifier model 450, Branson, Danbury, CT). 
The proteins were reduced with 10 mM dithiothreitol 
(DTT) at 60 °C for 30 min. After the mixture was cooled 
down to room temperature, it was alkylated in the dark 
with 50 mM iodoacetamide at ambient temperature for 
30 min, and digested overnight with 8 μL trypsin 0.1 μg/
mL (Promega, Madison, WI). To inactivate trypsin and to 
degrade the RapiGest, 6 μL of 5% TFA was added and 
samples were incubated for 30 minutes at 37 °C. Samples 
were centrifuged at maximum speed for 60 minutes at 4 
°C and the supernatant was transferred to a new Eppendorf 
tube. A fraction of 5 μL was  then diluted 40 times and 
subsequently transferred to LC vials for LC-MS analysis.

Chromatography separation and mass 
spectrometric analysis

Samples were measured using a nano-LC system 
(Ultimate 3000, Thermo Fisher Scientific, Amsterdam, 
the Netherlands) coupled online to Q Exactive plus 
mass spectrometer (Thermo Fisher Scientific, Bremen, 
Germany). Chromatographic and mass spectrometry 
conditions used are described previously [42, 43]. Briefly, 
2 μL were injected into the nano-LC after preconcentrating 
and washing of the sample on a C18 trap column (1 
mm×300 μm internal diameter) Thermo Fisher Scientific). 
Peptides were eluted after loading the sample on to a 
C18 column (PepMap C18, 75 μm ID × 500 mm, 2 μm 
particle and 100 Å pore size, Thermo Fisher Scientific) 
using a linear 90 min gradient (4-25% acetonitrile/H2O; 
0.1% formic acid) at a flow rate of 250 nL/min. The 
separation of the peptides was monitored by a UV detector 
(absorption at 214 nm). Data was collected in data-
dependent acquisition mode (DDA). Full scan MS spectra 
(m/z 400-1600) in profile mode were acquired in the 
Orbitrap with a resolution of 70,000 after accumulation of 
an AGC target of 1 x 106 using a maximum fill time of 100 
ms. The top 12 peptide signals (charge-state 2+ and higher) 
were isolated (1.6 Da window) and fragmented by HCD 
(Higher-energy collision, normalized collision energy 
28.0) and measured in the Orbitrap with a AGC target of 
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50,000, a maximum fill time of 60 ms and a resolution of 
17,500. Dynamic exclusion was activated; after the first 
time a precursor was selected for fragmentation it was 
excluded for a period of 30 seconds using a relative mass 
window of 10 ppm. Lock mass correction was activated to 
improve mass accuracy of the survey scan.

Technical replicates of each sample were randomly 
analysed within the measurement period and no significant 
changes in the number of identified proteins were 
observed in time for both the replicates and quality control 
measurements

Orbitrap-MS/MS data processing and analysis

Label free Quantitation was performed using 
MaxQuant software (version 1.5.5.1) [44]. Data was 
searched against the UniProt-Swiss-Prot 2014-4 database 
using the Andromeda [45] search engine incorporated 
in MaxQuant. Cysteine carbamidomethylation was set 
as fixed modification and methionine oxidation and 
N-terminal acetylation were set as variable modifications. 
Peptide and protein identifications were set at a maximum 
False Discovery rate of 1%. We used the option “match 
between runs” option to allow matching identifications 
across measurements and the minimum number of 
peptides per proteins required for quantitation was set to 2.

Parallel reaction monitoring (PRM)

PRM was performed on a nano-LC Fusion Orbitrap 
system. We used similar settings to the above-mentioned 
DDA measurements on the nano-LC, with the difference of 
an elution gradient of 60 min. A targeted MS/MS method 
was developed for 37 peptides, as presented in Table 1. 
A quadrupole isolation window of 1 m/z units, an AGC 
target of 2e5 ions, a maximum fill time of 502 ms and an 
orbitrap resolving power of 240,000 at 200 m/z were used. 
A fixed HCD normalized collision energy for all peptides 
of 27 was used, retention times were determined for all 
peptides, using multiple injections of a tissue sample in 
which a signal for all 27 peptides was present. Based on 
the determined retention times a scheduled method was 
established using a 3 minutes retention time window for 
each peptide.

Immunohistochemistry

Tissue slides (5 μm) were mounted on aminoacetyl-
silane coated glass slides (Statfrost, Berlin, Germany), 
deparaffinised in xylene and dehydrated in ethanol. 
Endogenous peroxidase was blocked by 1% hydrogen 
peroxide in methanol for 20 min. Samples were pretreated 
by microwave (700 W) in TRIS-EDTA pH 9.0 or in citrate 
buffer pH 6.0 for 15 min. The slides were incubated 
overnight at 4 °C with the following primary antibodies 
targeting anterior gradient protein 2 (AGR2; 1:100; 
HPA007912, Sigma); fatty acid synthase (FASN; 1:400; 

ab22759, Abcam, Cambridge, MA, USA); arachidonate 
15-lipoxygenase type B (LX15B 1:2000, ab23691, Abcam, 
Cambridge, MA, USA), and arachidonate 5-lipoxygenase 
(LOX5; 1:200 ab169755, Abcam, Cambridge, MA, USA) 
[41]. Chromogenic visualization was performed with the 
EnVision DAKO Kit (Dako, Glostrup, Denmark). After 
counterstaining with haematoxylin, slides were thoroughly 
washed, dehydrated, cleared in xylene and mounted in 
malinol (Chroma-Geselschaft, Körgen, Germany).

In the tissue microarray, immunohistochemical 
staining for AGR2, 5-LOX and FASN was visually 
examined as described previously [46]. Staining intensity 
was scored as negative (0; no staining), weak (1+; only 
visible at high magnification), moderate (2+; visible 
at low magnification), and strong (3+; striking at low 
magnification). If there was heterogeneous expression, 
the strongest intensity was used for further analyses. 
For AGR2, the percentage of positive tumour cells was 
counted and used for further analyses. For optimization 
and validation of all immunohistochemical procedures 
we used appropriate internal and external controls, 
and omitted first antibodies to exclude non-specific 
binding [47].

Statistics

Protein annotation and statistical testing for 
differences (two-sided Student’s T-test, permutation-
based FDR 0.05) in the proteomics shotgun experiments 
was performed in Perseus [48]. Protein normalised 
intensities were log2 transformed before testing. 
The PRM data were analysed using Skyline version 
3.5.0.9320 MacCoss Lab Software, Seattle, WA; https://
skyline.gs.washington.edu/labkey/project/home/software/
Skyline/begin.view), fragment ions for each targeted 
mass were extracted and peak areas were integrated. 
Data matrix from PRM experimenst was processed in 
GraphPad Prism 5 for Windows and R version 3.2.3. 
One-way Analysis of Variance (ANOVA) allowing 
multiple comparisons was used to estimate differences 
among Gleason score groups.

Associations between clinico-pathologic parameters 
and protein expression in TMA experiments were 
performed by student t-test or chi-squared test. Survival 
curves were calculated according Kaplan-Meier (KM), 
and to detect significant survival differences the Log-Rank 
test was used. Univariate and multivariate Cox regression 
were used to determine predictive properties of AGR2, 
LOX5 and FASN for BCR. A two-sided p-value of ≤ 0.05 
was considered significant. Statistical analysis for the 
TMA expression was performed in SPSS version 22.
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