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2Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

Received December 20, 2013; Revised April 14, 2014; Accepted April 15, 2014

ABSTRACT

Analysis of large data sets using computational and
mathematical tools have become a central part of
biological sciences. Large amounts of data are be-
ing generated each year from different biological re-
search fields leading to a constant development of
software and algorithms aimed to deal with the in-
creasing creation of information. The BioMet Toolbox
2.0 integrates a number of functionalities in a user-
friendly environment enabling the user to work with
biological data in a web interface. The unique and
distinguishing feature of the BioMet Toolbox 2.0 is
to provide a web user interface to tools for metabolic
pathways and omics analysis developed under differ-
ent platform-dependent environments enabling easy
access to these computational tools.

INTRODUCTION

In the last few years, computer sciences and mathematics
have contributed to the development of new strategies ap-
plied to biological research. Several free-access databases
along with tools and software packages are available on-
line aiming for the extraction of valuable information from
raw data (1). In the field of biological sciences the use of
computational tools has enabled a rapid expansion of new
applications for data analysis and in silico simulations. New
algorithms and software tools are being constantly devel-
oped helping to deal with the explosively expanding amount
of data produced by science and industry (1,2).

Systems biology has been described as the holistic anal-
ysis of biological systems with the primary goal to under-
stand the interactions between different components and
their regulation. Genome-scale metabolic models (GEMs)
and gene expression profiles are valuable sources of infor-
mation for gene–gene interaction and phenotype predic-
tions applied to systems biology (3,4).

The reconstruction and modification of GEMs and omics
data analysis are tasks that require specialized software
tools (4,5). Several tools for analysis, simulation, editing,
running and visualization of GEMs and omics data have
been developed and are already available; however, most of
the new software and programs generated for bioinformat-
ics applications require the installation of libraries or other
additional software packages before their use. In addition to
this, some programs require programming knowledge on a
command-based platform, which can be bothersome for an
inexperienced user. To overcome these difficulties, the up-
graded version of the BioMet Toolbox (6) is, therefore, in-
tended to provide a web user interface (WUI) to platform-
dependent tools enabling the access by unexperienced users
to these computational tools.

FEATURES

The main contribution of the BioMet Toolbox 2.0, is the on-
line WUI for the previously developed RAVEN (4) and PI-
ANO (3) tools. RAVEN is a software for GEM analysis and
simulation developed in MATLAB. PIANO is a software
developed in R for omics data analysis. The WUI to these
platform-dependent tools provided by the BioMet Toolbox
2.0 enables the use of their functions under a user-friendly
environment with no necessity of previous platform knowl-
edge. The BioMet Toolbox v2.0 web site has been written
in PHP, HTML and JavaScript. RAVEN can also be down-
loaded directly from the BioMet Toolbox 2.0 web site in-
cluding installation guide and tutorial and PIANO can be
downloaded from Bioconductor (7) through the provided
link. In addition to the online WUI tools, the BioMet Tool-
box 2.0 includes improvements to the user interface with a
more logical layout, an expanded collection of high qual-
ity GEMs of different organisms (GEM repository) and a
collection of legacy tools from the previous version of the
BioMet Toolbox (Figure 1).
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Figure 1. BioMet Toolbox v2.0 organization and functionalities.

The provided online WUI tools in BioMet Toolbox v2.0
offer two major groups of analysis which are: (i) GEM anal-
ysis and simulation and (ii) omics data analysis. The analysis
and simulation of GEMs through the WUI tool (RAVEN
powered) provide functionalities as: (i) GEM overview, (ii)
GEM validation, (iii) Reporter metabolites, (iv) Flux bal-
ance analysis (FBA) and (v) GEM random sampling (Fig-
ure 2A). For the GEM overview, users are allowed to upload
their GEM in specific Excel format or SBML format (8) to-
gether with omics data to check the entities of the uploaded
GEM, such as number of genes, reactions and metabolites
for each compartment, the reactions involving only prod-
ucts or only reactants and the metabolites that can be pro-
duced and consumed. In GEM validation the unbalanced
reactions (Elemental balance), dead end reactions, dead end
metabolites, connectivity and isolated networks can be eval-
uated and queried before going to the next step. For GEM
analysis FBA simulations and integrative analysis of omics
data using GEM as a scaffold, such as Reporter metabolite
analysis (9,10), and the identification of transcriptional flux
regulation using random sampling (11), are included.

Statistical values derived from omics data can be up-
loaded and analyzed through the WUI of omics analy-
sis (PIANO powered), providing functionalities as: (i) Mi-
croarray quality check, (ii) Microarray differential expres-
sion analysis, (iii) Gene set analysis (GSA) and (iv) Consen-
sus gene set analysis (Figure 2B). Since microarray data are
widely used and shared in the research community, BioMet
Toolbox 2.0 provides a standard microarray analysis work
flow including quality assessment, normalization and dif-
ferential expression analysis. Each analysis will generate re-
sult tables and appropriate plots which can be viewed di-
rectly in the WUI or be downloaded by the user. The Gene
set analysis function collects a number of GSA methods
into the same platform, making it easier to test different

methods using the same settings, format and input. The in-
put to this tool is a collection of gene sets and gene-level
statistics. The gene sets can be, e.g. Gene Ontology terms
(12) or any other terms, enabling the identification of statis-
tically significant biological processes. The gene-level statis-
tics can be, e.g. P-values and t-values from the Microarray
differential expression analysis module or statistical values
from RNA-seq data or other gene-centered omics data. The
output of this tool is a network plot detailing the biological
functions, and their connections, that are affected by differ-
entially expressed genes along with a table in Excel format
with the number of genes in each gene set, the gene set statis-
tics and their P-values (normal and adjusted). The Consen-
sus gene set analysis allows the user to combine results from
different gene set analyses and is performed under a combi-
nation of different GSA methods in order to obtain a con-
sensus heat map as an output.

Additionally to the WUI tools, the BioMet Toolbox 2.0
includes an expanded collection of GEMs (Models repos-
itory) including several high quality GEM reconstructions
for different organisms. For fungi the available models are:
Saccharomyces cerevisiae, Pichia pastoris, Pichia stipitis, As-
pergillus niger, Aspergillus oryzae and Aspergillus nidulans.
For bacteria the available models are: Streptomyces coeli-
color, Lactococcus lactis, Synechocystis sp. PCC6803 and
Amycolatopsis balhimycina. All the models in the GEM
repository are available in several formats. Submission of
new GEMs is allowed and highly encouraged in order to
expand the GEM database.

Several web sites are available for either GEM analysis
or omics data analysis (13–19). Nevertheless, as outlined
above, the BioMet Tolbox 2.0 offers an expanded selection
of functions and tools all in one place enabling the user to
combine the results of GEM analysis and omics data anal-
ysis.



Nucleic Acids Research, 2014, Vol. 42, Web Server issue W177

Figure 2. Overview of the online tools workflow. Information flows through the model from left to right with each column showing the corresponding
levels. (A) Online tool for GEM analysis and simulation. (B) Online tool for omics analysis.
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Figure 3. Output results from the Omics analysis online tool. (A) Boxplot of normalized data from the Microarray quality check option. (B) Heatmap
from the Microarray differential expression analysis option. (C) Gene set analysis. (D) Consensus gene set analysis

Along with the WUI tools, some legacy tools (C13,
BioOpt, Reporter Features and Reporter Subnetwork) from
the previous version of the BioMet Toolbox (6) are still ac-
cessible from the BioMet Toolbox 2.0.

SHOW CASE

To illustrate the use of the BioMet Toolbox 2.0 some in sil-
ico simulations were performed by using the RAVEN pow-
ered online tools. These simulations were done by first up-
loading a yeast model (yeast 5.32) (20). The simulated me-
dia was a minimal chemostat medium (glucose-limited) un-
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der aerobic and anaerobic condition with a constrained up-
take rate for glucose specified from a condition of the previ-
ously reported in vivo values (21). Each model file (aerobic
and anaerobic) was then uploaded to the BioMet Toolbox
v2.0 for maximization of biomass production as an objec-
tive function. The GEM overview and GEM validation op-
tions were run in order to find any error in the model (Table
1A). These tools returned a summary of 897 genes, 2034 re-
actions and 1600 metabolites.

The shift from respiratory to fermentative metabolism
leading to ethanol production was further investigated us-
ing the GEM as a scaffold for integrative analysis of tran-
scriptome data from these growth conditions (22). The tran-
scriptome data were retrieved from the Array express num-
ber E-MEXP-3704. GEM random sampling was run, com-
paring the significance of change in flux between aerobic
and anaerobic conditions (Table 1B). This tool generates a
N × 3 column matrix with the probabilities of a reaction:
(i) changing both in flux and expression in the same di-
rection, (ii) changing in expression but not in flux and (iii)
changing in flux but not in expression or changing in op-
posed directions in flux and expression. A comparison be-
tween simulated productions, uptakes and growth rates and
those obtained from previously published experimental in
vivo results for aerobic and anaerobic conditions (21) are
shown in Table 2A. The same model file was then uploaded
along with the P-values from differential gene expression
analysis under the two conditions to identify metabolite
hotspots. The top 10 ranking metabolites are presented in
Table 2B. Clearly, components associated with respiration
and adenosine triphosphate generation (including proton in
the mitochondria) are among the top-reporter metabolites
as the energy generation is completely shifted from respira-
tion to fermentation when changing from aerobic to anaer-
obic growth.

For the PIANO powered online tools a gene expression
data set from Saccharomyces cerevisiae was downloaded
from the Gene Expression Omnibus Database using acces-
sion number GSE21988 containing the nutrient-dependent
regulation gene expression in S. cerevisiae. This data set
contains the gene expression profiles from S. cerevisiae
while growing in chemostat cultures on carbon or nitrogen
starvation using either glucose or ethanol as carbon source
(23). For this experiment, growth limitation was done by
either carbon or nitrogen. When carbon was limited, the
growth was tested on either glucose or ethanol (using am-
monium sulfate as the nitrogen source). When ammonium
sulfate was the limited factor, either glucose or ethanol was
used as the carbon source. Raw .CEL files were uploaded to
the online tool for omics analysis and the Microarray qual-
ity check was first performed, obtaining all the plots for raw
and normalized data (See example in Figure 3A). For the
Microarray differential expression analysis the compared
conditions were: Glucose versus Carbon limited, Glucose
versus Nitrogen limited, Ethanol versus Carbon limited and
Ethanol versus Nitrogen limited. The heatmap obtained
can be observed in Figure 3B. The heatmap shows the ex-
pression levels of the top significant differentially expressed
genes for the compared conditions. In this chart the dif-
ferences between the four conditions are clearly observed.
The results from gene set analysis were illustrated as a net-

work plot in Figure 3C detailing the biological functions en-
riched with significantly differentially expressed genes. Fur-
thermore the results from the consensus gene set analysis
are illustrated in Figure 3D as a heatmap and provides sim-
ilar information as the network plot in the GSA, but by
showing the directionality of the gene set (up or down reg-
ulated) represents better detail for further biological inter-
pretation.

These examples show how the BioMet Toolbox v2.0 can
be used to obtain quantitative estimations of fluxes and
growth rates in good agreement with previously reported
in vivo results. At the same time, this tool provides a helpful
and robust way to perform analysis from omics data, which
can be used to identify new metabolic routes, gene targets
for genetic engineering and transcriptional changes occur-
ring in biological systems.

SUMMARY

The BioMet Toolbox v2.0 offers a selection of online soft-
ware tools for biological data analysis along with free ac-
cess to a collection of GEMs for their use in phenotype
simulations. Among the advantages of using the BioMet
Toolbox v2.0 are its web-based free availability and its user-
friendly and platform-independent online tools allowing for
omics data analysis and GEM analysis and simulation un-
der a WUI environment, suitable for both inexperienced
and advanced users. The online interface for the RAVEN
and PIANO powered tools represents an important ad-
vance in the field of system biology allowing the final user
to perform different features from an easy to use WUI en-
vironment avoiding any complicated software installation.
The BioMet Toolbox v2.0 offers the alternative option to
download the RAVEN and PIANO in order to perform
a wider range of functionalities under different command-
based platforms. Additionally, the BioMet Toolbox v2.0 of-
fers the possibility of constant growth in additional features
and updated functionalities.

AVAILABILITY

BioMet Toolbox v2.0 is freely available at www.biomet-
toolbox.org. Contact: biomet2 [at] sysbio.se.
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A
BioMet Toolbox v2
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