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Abstract: Fast detection of heavy metals is very important for ensuring the quality and safety of crops.
Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was
applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao
rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations,
including background normalization, the internal standard method, and the standard normal variate
(SNV). Linear regression models showed a strong correlation between spectral intensity and Cu
content, with an R2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the
tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR)
showed its advantage in extracting effective information for prediction, and its sensitivity reached
1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and
prediction sets, where R2

c and R2
p reached 0.9979 and 0.9879, respectively. This study showed that

LIBS could be considered as a constructive tool for the quantification of copper contamination in rice.

Keywords: laser-induced breakdown spectroscopy (LIBS); rice; copper content; univariate analysis;
multivariate analysis

1. Introduction

Food safety has become a critical issue in public opinion, scholarly research, professional
management, and government regulations worldwide, especially for China where the whole society
has arguably been threatened by it more than by any other problems [1]. Rice, as a major source of
calories and mineral nutrients for Chinese people, is of concern to the public because of heavy metals
contamination. Copper is ranked as the fourth most contaminating heavy metal in farmland, for
it can contribute to the generation of highly-reaction oxygen species which might cause damage to
cells with excessive concentration [2]. Previous study has shown that copper accumulation in plants
mainly resulted from root uptake [3], which implied that excessive copper content might be caused
by polluted soils and irrigation waters. It was found that the average concentration of Cu in paddy
soil was 10 times higher than the Grade II environmental quality standard for soils in some parts of
China (GB15618-1995) [4]. The long-term use of wastewater irrigation also led to significantly higher
concentrations in soils than reference ones [5]. According to the tolerance limit of copper in food (GB
15199-1994), the concentration of Cu in grain is not allowed to be higher than 10 mg/kg. Although no
evidence showed that the concentration of Cu exceeded the national maximum allowable levels in
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rice, it was suggested that it might exceed the reference oral dose for adults and children, based on the
estimated daily intake by human beings [6].

The main spectral analytical methods for the detection of copper content in food are flame
atomic absorption spectrometry (FAAS) [7], inductively-coupled plasma optical emission spectrometry
(ICP-OES), and inductively-coupled plasma mass spectrometry (ICP-MS) [8]. However, these
traditional methods, when analyzing copper content in solid samples, required complex pretreatment.
The results of detection are sensitive to the processes of pretreatment. Laser-induced breakdown
spectroscopy (LIBS) is a recently developed analytical technique for quantitative element analysis in
food. A sample is heated and stimulated by a powered laser, leading to the formation of a plasma above
the surface [9]. The wavelength of emission light from the plasma and the corresponding intensity
reflects the elementary composition and content in samples [10]. Minimal or no sample preparation is
one of its main advantages, which could free us from complex processes of digestion and save time.
Along with its advantages of fast analysis speed, multiple elemental measurements, and the capability
of remote sensing, LIBS may meet the demand of real-time measurement in agriculture [11]. Some
preliminary studies concerning the quantitative analysis of Cu in the field of food detection has been
published, including food supplements [12], nutrient elements [13], and analysis of contaminants [14].

However, the accuracy and precision of quantitative analysis can be affected by atmospheric
conditions, and the physical and chemical properties of samples [15]. Additionally, the pulse-to-pulse
fluctuations in LIBS can be very large with the relative standard deviation (RSD) of laser pulse energy
up to 60% [16], and the analysis uncertainties are generally 4% to 15% with proper data-processing
methods [17]. On the other hand, since the physical and chemical properties of the target can influence
the processes of sample ablation, plasma formation, and other associated processes [18], it can affect
the composition of the laser-induced plasma and result in matrix effects [19]. With respect to the
physical properties, sample preparation, like grinding, screening, and tablet pressing, were routinely
necessary for a flat surface and a uniform microstructure [20]. With respect to the chemical properties
of samples, matrix effects include both spectral and non-spectral interferences. In our experiment, the
chosen Cu characteristic spectral lines did not overlap with other emission lines, so that non-spectral
interferences of matrix effects were the main problem and needed to be eliminated. Otherwise, the
calibration curves for different samples would be significantly different and subsequently influence
the results of quantitative analysis [21].

Univariate analysis is a traditional quantitative analysis method in LIBS analysis. However, this
method is prone to be affected by the matrix. According to the previous studies, analytical signals
could be corrected through pre-processing methods [22], like internal standards and multivariate signal
correction. Twelve different types of normalizations have been used and proven as useful methods to
reduce the differences among sample matrices [23]. Among them, internal standard normalization is
a conventional procedure, where the internal standards can be the constituent element of the target
samples, as well as a buffer gas [24]; but it may be quite difficult to find a suitable element as an internal
standard [25]. Background normalization has proved to be an effective method for the problem of
the matrix effect, since the intensity of the continuum radiation directly relates to the plasma [16];
however, it may restrict the laser energy in a small range [26]. Standard normal variate (SNV) can be
used to minimize unwanted variations caused by particle size distribution [27], as well as to deal with
multivariate analysis [28].

Multivariate analysis has its advantage in extracting chemical information from spectra, while
the performance depends on the algorithm used for calibration. Partial least squares regression
(PLSR), which is one of the most commonly used multivariate analysis for chemical analysis, has been
widely applied to LIBS analysis, like jewelry [29], alloys [30], and plants [31]. The factors related the
variation in the response measurements, are regressed against the properties of interest and applied
for predicting the interested properties of testing samples [32]. This method has been proven as a
good model to minimize the differences of different types of sugar cane varieties [33]. Support vector
machine regression (SVMR) is a quite new method for LIBS analysis. This is a non-linear regression,
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which has been widely used in the analysis of VIS/NIR recently [34]. This potential method has been
applied for agricultural soils with mobile LIBS, showing its abilities in utilizing the most spectral
information to search the relationships within different variables [35].

The aim of our study is to demonstrate LIBS as a practical method for the fast detection of copper
content in rice. In this experiment, uni- and multivariate analyses were employed to establish the
calibration model for quantitative analysis. For univariate analysis, three pre-processing methods were
used to eliminate the fluctuations of experimental condition. For multivariate analysis, two different
algorithms were used and compared to diminish the non-spectral interferences of matrix effects.

2. Materials and Methods

2.1. Rice Material and Sampling

Three kinds of rice commonly found in local supermarkets were used in this experiment, which
were Simiao rice (originating from Guangdong, China), Jiangsu rice (originating from Jiangsu, China)
and regular rice (originating from Shanghai, China). Samples with different copper contents were
prepared in the laboratory with the treatment of a copper (II) sulfate pentahydrate solution [36].

Copper (II) sulfate pentahydrate (CuSO4·5H2O, Hushi, Shanghai, China, AR) was applied to
prepare a series of solutions, where Cu concentrations were 25 mg/L, 50 mg/L, 100 mg/L, 200 mg/L,
400 mg/L, 600 mg/L, 800 mg/L, and 1000 mg/L. Rice was evenly divided into nine groups for
each kind, one as the control group and the rest as treatment groups to obtain rice samples with a
series of Cu concentrations. Each group was soaked in the solution with certain Cu concentration at
4 ◦C for 48 h, and then rinsed three times with ultrapure water. All the samples were dried at room
temperature, respectively milled by high-speed pulverizer (FW100, TAISITE, Tianjin, China), and then
filtered through 200-mesh screens. The milling and filtering processes made the ground sample of each
group a uniform mixture to ensure the consistency of Cu content within each group. These ground
samples were made into pellets by a tablet compressing machine (FY-24, SCJS, Tianjin, China), 1.5 cm
in diameter, under a pressure of 25 kN for 1 min. A total of 270 samples were prepared with 10 parallel
samples for each group.

2.2. LIBS Experimental

The experimental setup mainly consists of a pulsed laser (Vlite 200, Beamtech, Beijing, China), a
delay generator (DG645, Stanford Research Systems, Sunnyvale, CA, USA), optics, a movable sample
stage (TSA50-C, Zolix, Beijing, China) with controller (SC300, Zolix, Beijing, China), a spectrograph
(ME5000, Andor, Belfast, UK), an ICCD camera (DH334-18F-03, Andor, Belfast, UK), and a computer.
Figure 1 shows the structure of the LIBS system used in the experiment. A high-power laser pulse
is focused on the surface of the sample through a set of optics. The interaction of a laser beam with
matter is complex and not fully understood yet, but it will lead to the formation of a plasma with a
high temperature above the sample surface. This evaporated plasma contains many excited species
whose light emissions are later collected and analyzed [9].

In our experiment, the Nd:YAG laser was used as an excitation source, delivering pulse energy of
60 mJ with a pulse width of 8 ns at a wavelength of 532 nm and a repetition rate of 1 Hz. The laser
beam was focused on the samples with a 100 mm focal length optical lens, producing an ablation spot
of 500 µm in diameter. In addition, acquisition delay time was 3 µs and gate width 10 µs, optimized by
pre-experiment to get an ideal signal-to-background ratio (SBR). This experiment was performed in an
atmospheric environment. A movable sample stage was controlled by a stepper motor to accurately
control the position and movement of samples. The accumulation of five laser pulses was taken for
each spectrum, and sixteen LIBS spectra were acquired in sixteen different positions for each pellet.
These sixteen spectra were further averaged to eliminate shot-to-shot fluctuations. As a result, each
spectrum revealed the spectral information of its corresponding sample.
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Figure 1. The structural diagram of the LIBS system.

2.3. Determination of the Reference Value of Copper Content

The concentration of Cu in all rice samples, determined by flame atomic absorption spectrometry
(FAAS) analysis (iCE 3500, Thermo Scientific, Waltham, MA, USA), were used as reference values [37].
The detection procedures were based on Chinese National Standard GB/T 5009.13-2003. Standard
samples of rice (GBW10010) and French bean (GBW10021) were used in order to assure the accuracy of
the results. All glassware was cleaned by soaking in 20% HNO3, and rinsed with ultrapure water and
dried. For dry digestion of samples, portions (0.5 g) of each rice sample were weighed into crucibles,
carbonized for 20 min and then dry-ashed at 550 ◦C for 3 h. After cooling to room temperature,
residuals were dissolved by 5 mL diluted HCl. If necessary, an additional 100 µL of conc. nitric
acid and heating gently can help to dissolve the residuals. The solution was transferred to a 25-mL
volumetric flask and diluted with ultrapure water, and then filtered. A blank sample was prepared in
the same way as a comparison.

2.4. Statistical Analysis

Data were processed via The Unscrambler X (ver. 10.4, Camo Software, Oslo, Norway) and
MATLAB (ver. 2012, MathWorks, The Natick Mall, MA, USA).

For univariate analysis, peak height and peak area were first obtained with Voigt profile
fitting, which has been used for separating from lines of interest from nearby emission lines [38].
Three pre-processing methods, including internal standard methods, background normalization,
and standard normal variate (SNV), were applied separately and compared. The coefficient of
determination (R2) for linear regression was the indicator to evaluate the performance of the
pre-processing method.

For multivariate analysis, all the LIBS spectra were divided into two sets: by sorting the samples
from lowest to highest concentrations according to the reference values, two in every three samples
were assigned to a training set (for calibration), and the rest to a validation set (for prediction). Principal
component analysis (PCA) is a classic technique used for feature extraction and data representation [39].
This method provides visual results of relationships between samples and variables, and insights
into sample homogeneities and heterogeneities at the same time [40]. It is widely used as a method
of classification [41] and dimensionality reduction [42] in LIBS. In this experiment, PCA was used
to visualize the differences among different kinds of rice, and served as a dimensionality reduction
method. The partial least squares (PLS) algorithm is a factor analysis method, which is desirable
to acquire more predictive information in the first few factors [43]. In this case, partial least square
regression (PLSR) was used here to construct a multivariate linear model, as well as for quantitative
prediction. Support vector machine regression (SVMR) is derived from support vector machine
(SVM) [44]. It does well in non-linear regression for high-dimensional datasets [45], and was applied
to construct a non-linear regression model here. There are two main parameters in SVMR, which
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includes the penalty parameter C and the kernel function parameters, such as γ for the radial basis
function (RBF) kernel [46].

The root mean squared error for calibration (RMSEC), cross-validation (RMSECV), and prediction
(RMSEP), and the coefficient of determination for cross-validation (R2

cv) and prediction (R2
p), were

used as indicators to evaluate the performance of models. RMSECV was used to optimize the model’s
parameters [1], and preferable parameters were used when the value of RMSECV reached its minimum.
In order to avoid over-fitting, a 10-fold cross-validation was performed to optimize the parameters [47]
until the values of RMSEC, RMSECV, and RMSEP were the closest.

3. Results and Discussion

3.1. Spectral Characterization of Rice Samples

LIBS is a form of element analytical spectroscopy, reflecting the emissions of excited atoms and
ions from a produced plasma [19]. The average spectra of three kinds of rice samples are illustrated in
Figure 2, showing the similarity of elemental composition in rice. According to the NIST database,
the main spectral emission lines corresponded to C (247.856 nm), Mg (279.553 nm, 285.213 nm, and
821.304 nm), Cu (324.754 nm and 327.396 nm), CN (388.246 nm), Ca (393.366 nm and 422.673 nm), Na
(589.592 nm), H (656.277 nm), N (742.364 nm, 744.229 nm, 746.831 nm and 868.340 nm), K (766.490 nm
and 769.896 nm), and O (777.194 nm and 844.636 nm). In this case, a chemometric data analysis method
was needed for further detailed analysis. Samples, without adding extra Cu, were used to distinguish
the differences among three kinds of rice, i.e., 10 samples for each kind and 30 samples in total.
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Figure 2. LIBS spectra of three different kinds of rice. Raw spectra of three different kinds of rice
without extra added Cu.

The LIBS full spectra were analyzed by PCA. The total number of rows (30) and columns (22,036)
corresponded to the number of samples and the spectral wavelength, respectively. The maximum
number of PCs was set as 10 when calculating. The loadings (see Figure 3b) showed the main
distinguishing elements of the spectra, e.g., C at 247.856 nm, Mg at 279.553 nm and 285.213 nm, K at
766.490 nm, and Ca at 393.366 nm and 422.673 nm.

Although PC-1 had the largest possible variance, the differences of these three kinds of rice
were not significant using PC-1. According to loadings plot, PC-1 was mainly concerned with the
information of C, H, and O, and the content of these elements might not have large differences among
different kinds of rice. On the other hand, PC-2, PC-3, and PC-4 also included the information of Mg,
K, etc., which might be the reason leading to the diversity. According to the scores plot of PC-2 versus
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PC-3 (see Figure 4a), differences among three kinds of rice is feasible, while clusters are overlapped,
especially for Jiangsu rice and Simiao rice. Samples are well separated in Figure 4b.Sensors 2018, 18, x FOR PEER REVIEW  6 of 15 
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The dispersion of samples for certain kinds of rice could also be seen in the plots. In the LIBS
spectra, PCs revealed the elemental components of samples. The dispersion might show the individual
differences of samples. For another, inhomogeneous microstructure of each sample within each pellet
may contribute to this phenomenon [48].

3.2. Comparison the Results of Univariate Analysis with Different Pre-processing Methods—Univariate
Calibration

In addition to the three different kinds of rice, data involving all three kinds of rice was also
considered as a set for quantitative analysis. All of the raw data were processed by baseline correction
beforehand, to reduce the influence of the background. Spectral lines at 324.754 nm and 327.396 nm
of Cu were used for the following univariate analysis. Reference values of Cu concentrations were
detected by FAAS, and results and uncertainties are shown in Table 1.
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Table 1. Reference values of Cu concentrations and uncertainties detected by FAAS

Regular Rice Content (ppm) Jiangsu Rice Content (ppm) Simiao Rice Content (ppm)

1 5.68 ± 0.06 1 7.60 ± 0.11 1 5.10 ± 0.06
2 28.54 ± 0.78 2 59.48 ± 0.58 2 59.07 ± 1.18
3 46.35 ± 0.57 3 80.45 ± 1.53 3 103.18 ± 1.07
4 63.99 ± 1.17 4 123.09 ± 1.56 4 256.52 ± 4.43
5 71.09 ± 1.02 5 274.34 ± 4.22 5 396.65 ± 4.91
6 113.94 ± 2.26 6 554.35 ± 7.78 6 572.53 ± 9.72
7 116.84 ± 4.94 7 651.68 ± 8.07 7 742.62 ± 11.13
8 1162.10 ± 34.86 8 1104.76 ± 19.10 8 1074.92 ± 11.06
9 1668.75 ± 33.36 9 1115.28 ± 13.49 9 1213.76 ± 15.41

Figure 5 shows the relationship between Cu concentrations of Simiao rice and their corresponding
peak intensities at 324.754 nm and 327.369 nm. According to the curve-fitting results, self-absorption
phenomenon was evident when the reference Cu concentration was larger than 1000 ppm. However,
no feasible self-absorption could be found at the corresponding spectral lines. According to the
previous study, a pronounced non-linearity in the calibration function at increasing concentration
(greater than approximately 1000 ppm), with or without a feasible occurrence of self-absorption on the
spectra, was caused by the complex interaction mechanism between the atoms/ions and the radiation
which is emitted and successively reabsorbed [49]. In this experiment, we would simply focus on the
data where Cu concentrations are smaller than 1000 ppm.
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In addition to natural broadening, Doppler broadening, instrumental broadening and collision
broadening are the main line broadening mechanisms in LIBS [50]. The Doppler broadening and
instrumental broadening lead to a Gaussian line profile while the latter leads to a Lorentz profile.
Hence, the actual measured line profile might be the convolution of these two kinds of profiles. In that
case, Voigt profile was applied, and it was fitted well with the raw data of spectra (R2 more than 0.99).
Then, the peak area was calculated through integrating the peak intensity versus wavelength, and the
continuous background was subtracted through linear fitting. The results of linear regressions using
peak height and peak area are shown in Table 2. For Jiangsu Rice and Simiao Rice, the performance of
this linear regression model was pretty good with R2 more than 0.98, while regular rice performed
worse, with an R2 just over 0.90. In general, Voigt profile fitting performed no improvement or offered
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even worse results, compared with the values of R2 with peak intensities of the corresponding spectral
lines. This indicated that Cu I at 324.754 nm and 327.396 nm were not influenced by nearby emission
lines. The peak intensity of the spectrum is sufficient to express the linear relationship with Cu
concentration in rice, which would be used for the following data pre-processing.

Table 2. The results for univariate calibration with different pre-processing methods.

Analytical Signal R2

Regular Rice Simiao Rice All Kinds

324.754 nm
Peak intensity 0.9962 0.9051 0.9880 0.9875

Peak intensity/Background 0.9971 0.9601 0.9884 0.9845
Voigt profile (peak height) 0.9958 0.8985 0.9863 0.9853

Voigt profile (area) 0.9941 0.9033 0.9822 0.9807
Peak intensity/C I 247.856 nm 0.9989 0.9717 0.9932 0.9898

SNV 0.9984 0.9719 0.9895 0.9873

327.396 nm
Peak intensity 0.9985 0.9303 0.9918 0.9884

Peak intensity/Background 0.9964 0.9769 0.9893 0.9829
Voigt profile (peak height) 0.9984 0.9227 0.9920 0.9886

Voigt profile (area) 0.9985 0.9183 0.9912 0.9830
Peak intensity/C I 247.856 nm 0.9993 0.9125 0.9880 0.9863

SNV 0.9986 0.9864 0.9889 0.9872

The calculated coefficients of variation of peak intensities for each kind of rice varied from
4– 25% (n = 10), which might affect the performance of linear regression. According to the previous
study [51], the intensity of the signal correlated with the amount of the ablated matter to some degree.
The fluctuation of pulse energy is one of the reasons that cause this problem [52], and the RSD for
shot-to-shot variation could reach up to 60% in LIBS [16]. During the experiment, we also found that
the ablated craters became larger with higher metal element concentrations, which would absolutely
make an impact on the signal intensities and subsequent linear regressions. Additionally, the diversities
of different kinds of rice (which we discussed in Section 3.1) might contribute to the fluctuations of
intensity, as well. The most common methods to reduce fluctuations for quantitative analysis were the
“internal standard” method and the “background normalization” [53].

The traditional “internal standard” method chooses an element or an external element, of which
the concentration is known beforehand. In LIBS, instead, the internal standard element could be the
main element with an almost constant content [25]. Carbon was an ideal choice as the internal standard
element in this experiment, and C II at 247.856 nm was easily recognized in the spectra. The results
of linear regression showed that analytical lines at Cu I 324.754 nm normalized by C II at 247.89 nm
provided better linearity of the calibration curve for each kind of rice, as well as for the whole samples,
especially for regular rice with R2 reaching 0.9717, while the results were worse for Cu I at 327.396 nm
(except for Jiangsu rice).

“Background normalization” is another effective way for correcting this problem, which is based
on the spectral intensity normalized by the continuous background of the laser plasma. This method
is preferred when no ideal internal standard can be found [53], and has been proved to be reliable
and accurate in reducing fluctuations to the external error sources [54].The value of the background
was an averaged intensity of a spectral range near the interested spectral line, within which no other
strong emission lines could be found. Overall, this pre-processing method slightly improved the linear
regression results for Cu I at 324.754 nm and slightly worsened the results for Cu at 327.396 nm, except
Regular rice of which R2 improved to 0.9717 and 0.9769, respectively.

The standard normal variate (SNV) method could take the place of normalization with a spectral
line when it is difficult to find a constant element, as well as be used to eliminate the fluctuations
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of experimental conditions (external influences), including temperature, pressure, and pulse energy.
According to Table 2, this was an effective method to alleviate the external interferences, as the R2 of
linear regression improved for almost every single kind of rice (except Cu I at 327.396 nm for Simiao
rice). However, it made little contribution to the matrix effect (internal interferences), as no significant
improvement of the values of R2 were observed. This was in accordance with the previous study,
saying that SNV was only suitable for analysis based on the same matrix, for the SNV transformation
depends on the mean and standard deviation of the entire spectrum, which can easily be influenced by
the material [28].

For all three kinds of rice, however, these pre-processing methods had little impact on the
performance of linear regression. It was implied that the fluctuations of the experimental conditions
were not the main factor which could influence the quantitative analysis of copper content in different
kinds of rice.

The best results of calibration curves were shown in Figure 6. The preferable results were
processed with internal standard C at 247.856 nm, except for regular rice. The limit of detection (LOD)
was calculated based on the 3σB-IUPAC definition [18]:

LOD =
3σB

S
(1)

where σB is the standard deviation of the background, and S is the slope of the calibration line. The
best LOD were obtained at Cu 324.754 nm with the process of SNV, which were 4.63 ppm for Jiangsu
rice, 8.13 ppm for regular rice, 4.87 ppm for Simiao rice and 4.64 ppm for all kinds.
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(b) regular rice: Cu at 327.396 with SNV processed; (c) Simiao rice: I (Cu I 324.754 nm)/I (C I 247.856
nm); and (d) the total samples: I (Cu I 324.754 nm)/I (C I 247.856 nm).

3.3. Comparison the Results of Multivariate Analysis with Different Algorithms (PLS and SVMR)

Aiming at alleviating the problem of matrix effects, multivariate analysis was applied to all three
kinds of rice samples. In this experiment, the PLSR linear method and the SVMR nonlinear method
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were employed to establish the calibration models. The results for multivariable analysis of three kinds
of rice samples are shown in Table 3 and Figure 7.

Table 3. The results for multivariate analysis for total samples with different modeling algorithms.

Algorithm Calibration Validation

R2
c RMSEC RMSCV R2

cv R2
p RMSEP

PLSR 0.9767 34.8186 38.1774 0.9727 0.9808 33.2252
SVMR 0.9929 33.5980 121.6671 0.8816 0.8858 84.0770
SVMR (data reduction) 0.9979 11.1120 26.6166 0.9866 0.9879 24.7755
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For the PLS model, the number of latent variables was optimized to three when the minimal
RMSECV was achieved, explaining more than 97% of the X-variance. The performance of PLSR was
comparable with univariable analysis, with R2

p of 0.9808 and RMSEP of 33.2252 mg/kg. The sensitivity
of PLS is 1.95 ppm, which was calculated using the net analyte signal (NAS) [55].

For the SVMR model, the performance was not so ideal (see Table 3) with an R2
cv of 0.8816 and R2

p
of 0.8858. The distinct differences of RMSEC, RMSECV, and RMSEP implied the over-fitting problem
of the model. This might be due to too many independent variables of the spectral data [1]. In that
case, PCA was applied here as a data reduction method to obtain a more effective regression model.
According to Figure 8, the first 17 PCs were used which explained more than 85% variance of the data.
Relatively good performance of SVMR could be acquired, where R2

c and R2
p were 0.9979 and 0.9879,

respectively, and the problem of over-fitting was relieved a great deal, for the close value of RMSECV
and RMSEP [47]. The calibration result showed SVMR as an effective method dealing with matrix
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effects. However, the problem of overfitting could not be avoided, comparing the results of calibration
and cross-validation for SVMR (see Figure 7).
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Both algorisms could eliminate matrix effects to some degree. PLS might be more reliable
compared with SVMR, because it had similar performances of calibration and validation. SVMR, on
the other hand, was easy to be overfitted, which led to the relatively larger RMSECV and RMSEP,
especially before the process of data reduction. Hence, some feature extraction methods, such as PCA,
were recommended before SVMR was applied.

4. Conclusions

Relatively easy sample preparation is one of distinctive advantages of LIBS over other established
spectrochemical methods, like FAAS. For one thing, the processes are easy and repeatable, including
drying, grinding, and tablet pressing. The instruments needed for sample preparation are quite
common, and no aggressive chemicals, like nitric acid or hydrogen peroxide, are needed. For another,
in our experiment, 270 samples were made in total. We required about nine hours of preparation
for LIBS, during which only around 100 samples could be prepared using microwave digestion.
Additionally, samples with certain requirements could be made with easy methods in the laboratory,
like soaking samples in salt solutions with different concentrations of heavy metal elements [56], which
would be very meaningful for further studies.

In this experiment, results of PCA analysis showed the different contents of nutrient elements
(e.g., C, K, and Mg) in different kinds of rice. This implied the feasibility of LIBS as a method for
the classification for different kinds of rice, as well as evaluating product quality. The distinguished
differences among different kinds of rice samples also indicated the existence of matrix effects, and the
need for proper data processing in order to acquire a reliable and accurate analytical model for the
determination of Cu concentration in rice.

For univariate analysis, a significant non-linearity suggested that Cu concentrations were no more
than 1000 ppm. Strong linear relationships could be seen between Cu concentrations of samples and
the corresponding characteristic peak intensities of the spectra. Cu at 324.754 nm is more preferable for
quantitative analysis, due to its relatively higher intensity and lower LOD. In general, pre-processing
methods used in this experiment, i.e., internal standard method, background normalization, and SNV,
could be used to correct the variation of experimental conditions, e.g., the fluctuation of pulse energy.
The internal standard method might be more preferable than the other two, and C at 247.856 nm could
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be an ideal choice as an internal standard. However, these three pre-processing methods have little
effect to the differences of the target, itself, such as matrix effects.

For multivariate analysis, PLS showed its high efficiency in extracting effective information from
the vast spectral data, and obtaining good results for modeling and prediction. Additionally, the
sensitivity of PLS reached as low as 1.95 ppm, while PCA-SVMR showed its capability for reducing
the influence of the matrix effect, as well as offering preferable results with R2

c reaching 0.9979 and R2
p

reaching 0.9879.
Good results for both qualitative and quantitative analysis showed that LIBS could be an efficient

and convenient method for classification, as well as quantification of copper content in rice. RSDs for
univariate analysis with data pre-processing were lower than 15% with data pre-processing and were
lower than 12% for multivariate analysis, which were more than 20% for raw data. The presented
results provided the first proof-of-principal data for fast detection of heavy metals in food.
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