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ABSTRACT

To rationally design a productive heterologous
biosynthesis system, it is essential to consider the
suitability of foreign reactions for the specific en-
dogenous metabolic infrastructure of a host. We
developed a novel web server, called MRE, which,
for a given pair of starting and desired compounds
in a given chassis organism, ranks biosynthesis
routes from the perspective of the integration of
new reactions into the endogenous metabolic sys-
tem. For each promising heterologous biosynthesis
pathway, MRE suggests actual enzymes for foreign
metabolic reactions and generates information on
competing endogenous reactions for the consump-
tion of metabolites. These unique, chassis-centered
features distinguish MRE from existing pathway de-
sign tools and allow synthetic biologists to evalu-
ate the design of their biosynthesis systems from
a different angle. By using biosynthesis of a range
of high-value natural products as a case study, we
show that MRE is an effective tool to guide the de-
sign and optimization of heterologous biosynthesis
pathways. The URL of MRE is http://www.cbrc.kaust.
edu.sa/mre/.

INTRODUCTION

Recent advances in genome editing and metabolic engineer-
ing enabled a precise construction of de novo biosynthesis
pathways for high-value natural products (1,2). One impor-
tant design decision to make for the engineering of heterol-
ogous biosynthesis systems is concerned with which foreign
metabolic genes to introduce into a given host organism
(3). Although this decision must be made based on multi-
faceted factors, a major one is the suitability of pathways
for the endogenous metabolism of a host organism, in part
because the efficacy of heterologous biosynthesis is affected

by competing endogenous pathways (3–5). To address this
point, we developed an open-access web server called MRE
(Metabolic Route Explorer) that systematically searches for
promising heterologous pathways by considering compet-
ing endogenous reactions in a given host organism (Figure
1).

There are various computational tools available to guide
the design of heterologous pathways with a range of
scopes and functions. Table 1 summarizes features of sev-
eral heterologous pathway design tools. One key difference
among these design tools is the specification of host organ-
isms. Some tools, including BNICE (6), PredPath (7) and
Metabolic tinker (8), were developed to explore pathways
irrespective of the consideration for host organisms. Thus,
these tools cannot assess the suitability of pathways for a
specific context of the endogenous metabolic system of a
host organism.

Some other tools, on the other hand, restrict the user to
use one specific host organism. For example, pathway de-
sign tools based on flux balance analysis (FBA), such as
XTMS (9), DESHARKY (10), OptStrain (11) and GEM-
Path (12), are specific to the Escherichia coli chassis. While
FBA-based tools tend to offer rich information to evalu-
ate de novo pathways, they demand detailed knowledge of a
given metabolic system with tight reaction-flux boundaries
in order to identify meaningful steady-state flux distribu-
tions among a large number of candidate solutions. Clearly,
such data are only available for well-studied organisms, and
this may be a major reason why FBA-based tools focus on
the pathway design in E. coli.

In contrast, FMM (13) and PHT (14) allow the user to
select a host organism from a large set of choices. How-
ever, these tools do not use the chassis information to
rank suitable biosynthesis pathways for a given endogenous
metabolic system. Instead, with this information, PHT just
reports which enzymes are not natively available in the host,
whereas FMM suggests the introduction of foreign enzymes
for some reactions in heterologous pathways.
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Figure 1. Typical user-interface pages of MRE. (A) The query input page. (B) The summary page for the top-ranked routes. (C) The page for a graph
comprising the top 10 routes. (D) The page for pathway-level information. (E) The competing reaction information page.

Table 1. Feature summary of heterologous pathway design tools

Tool Access Chassis
Chemical
transformation

Thermodynamic
consideration Ranking score Information given for each pathway (Ref.)

MRE Open access
web server

Many
choices

Verified KEGG
reactions

Boltzmann factor Fraction of conversions via
normalized Boltzmann weights

Required metabolites, EC numbers for enzymes,
genes for foreign enzymes, reaction free energy,
competing native reactions

–

FMM Open access
web server

Many
choices

KEGG
reactions

No Number of reaction steps EC numbers for enzymes, availability of each
enzyme in various host organisms, suggestion for
foreign enzymes

(13)

PHT Open access
web server

Many
choices

KEGG
reactions

No Number of reaction steps EC numbers for enzymes, local and global
compound similarities for each reaction step

(14)

XTMS Open access
web server

E. coli Predicted
reactions

Favorability Gene scores, reaction steps,
toxicity, yield, Gibbs energy

Source compound for the retrosynthesis path,
predicted reactions with EC numbers, genes for
foreign enzymes, toxicity, production yield

(9)

Metabolic
tinker

Open access
web server

No host RHEA
reactions

Directionality,
favorability

Net favorability Possible reactions for each chemical
transformation step and net favorability

(8)

PathPred Open access
web server

No host Predicted
reactions

No Chemical similarity Final compound of biodegradation, predicted
intermediates and reactions, confidence for each
predicted reaction

(7)

DESHARKY Free download E. coli KEGG
reactions

No Growth rate Source or target compound, EC numbers for
enzymes, genes for some foreign enzymes, growth
rate reduction measures

(10)

BNICE Closed access No host Predicted
reactions

No No pathway ranking 3-level EC number for each predicted chemical
transformation

(6)

Another main feature difference is the basis for chem-
ical transformation of intermediate precursors that forms
metabolic routes. While tools such as FMM, DESHARKY
and Metabolic tinker specify chemical transformation us-
ing metabolic reaction sets from databases [e.g., KEGG (15)
and RHEA (16)], other tools, including BNICE, PredPath
and XTMS, predict some generalized chemical transforma-
tion rules using such curated reaction sets and apply them
to expand potentially feasible metabolic routes.

Unlike these existing tools, MRE focuses on the sug-
gestion of foreign enzymes with well-characterized activi-
ties for promising heterologous pathways by taking into ac-
count the effects of the existing, endogenous metabolic in-
frastructure of a host organism. To find promising biosyn-
thesis routes from a large number of potential candidates,

thermodynamic data offer useful information (17). Some
existing pathway design tools, such as Metabolic tinker and
XTMS, use thermodynamic data to constrain the reaction
directionality or to rank pathways based on their net fa-
vorability, which does not consider competing endogenous
reactions. In contrast, MRE uses thermodynamic data to
rank pathways in a host-dependent manner from the per-
spective of the integration of new reactions into the endoge-
nous metabolic system. In order to suggest actual foreign
enzymes for the design of heterologous biosynthesis path-
ways, MRE only considers verified reactions as metabolic
parts. For each foreign reaction in a suggested heterolo-
gous pathway, MRE generates information about endoge-
nous reactions competing for metabolites. Since one effec-
tive approach to increase the productivity is to attenuate or
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eliminate competing reactions (4,5,18), MRE may also of-
fer useful insights into how to debottleneck and optimize
heterologous pathways.

MATERIALS AND METHODS

Data resources

MRE makes use of several data resources. The main ones
are from the KEGG databases (15). KEGG lists around
4000 organisms, which MRE uses for the selection of a
host organism. The KEGG COMPOUND database is
used to identify metabolites, while the KEGG REACTION
database and the ExPASy ENZYME database (19) are
used to find metabolic reactions with verified activities. The
eQuilibrator dataset (20) is used to obtain the reaction
Gibbs energy in the standard 1M concentration setting. The
KEGG RPAIR database (21) is used to restrict search space
based on the relation between reactants and products. The
KEGG GENES database is used for DNA sequence data
for enzymatic genes, and the KEGG taxonomy mapping
dataset is used to calculate taxonomic distances.

Function of MRE

To explore biosynthesis routes with MRE, the user spec-
ifies a host organism and a pair of the starting and tar-
get compounds. To increase its usability and to help the
user specify organisms and compounds, MRE comes with
an auto-completion feature. With advanced options, the
user can override the default setting for the metabolic route
search. These options include the maximum number of re-
action steps (denoted by n), the number of top-ranked path-
ways to generate (denoted by K), and a list of compounds
that are not considered as primary metabolic precursors in
the search, which we call the exclusion list. By default, n
and K are set to 8 and 50, respectively, while the exclusion
list is based on the one from Metabolic tinker (8) and has
101 compounds that have high degrees of connectivity in
its metabolic network graph, for example, water, ATP and
ADP. This exclusion list can also be customized to have
other compounds (e.g., CO2). In addition, MRE allows the
user to constrain the chemical transformation of precursors
based on RPAIR types (e.g., main, cofac and trans). These
filtering schemes to constrain possible chemical transforma-
tions were reported to increase the relevance of the de novo
biosynthesis route suggestion (22). By default, MRE con-
siders chemical transformations based on main, cofac and
trans RPAIR types.

Based on the input query for biosynthesis requirements,
MRE generates the top-K metabolic routes, and the main
result page summarizes these routes. For each metabolic
route, MRE highlights whether it is endogenous or het-
erologous to the host organism. For each foreign reaction
in a heterologous biosynthesis route, MRE predicts which
metabolites may not be available in the host, and it lists ex-
ogenous genes for the corresponding enzymatic activity and
suggests a list of foreign genes based on a taxonomic simi-
larity measure whose cDNA sequences can be downloaded
in the FASTA format. It also shows a list of native reactions
competing for a metabolic precursor with each foreign enzy-
matic reaction. MRE provides a mean to visualize a specific
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Figure 2. Workflow of MRE.

pathway with competing endogenous reactions as well as a
graph aggregating top-ranked routes.

Workflow of MRE

Figure 2 depicts the workflow of MRE. Our tool first con-
structs a directed graph representing a host-independent
metabolic network with verified reactions. This graph com-
prises all metabolic reactions with verified activities found
in the data source, and it is built regardless of the choice
of a host organism for a biosynthesis system. It next as-
signs weights to the edges in the graph in a host-dependent
fashion by classifying which enzymatic reactions are na-
tive and foreign in the given host organism and by using
the thermodynamic data. To search for biosynthesis routes
from the starting material to the product in the host, MRE
explores the host-independent metabolic network with the
host-dependent weighting scheme exhaustively and gener-
ates top-K biosynthesis routes.

Host-independent metabolic network with verified reactions

To construct the host-independent metabolic network, we
first identified metabolic reactions with verified activi-
ties. We categorized enzymatic reactions based on Enzyme
Commission numbers (EC numbers) (23). Each EC reac-
tion (i.e., a reaction class corresponding to each EC num-
ber) denotes a class of catalytic reactions with the same
chemical transformation. To retrieve verified metabolic re-
actions with known enzymes, we filtered out reaction classes
with partially qualified EC numbers as these partial EC re-
actions are unverified and can lead to misinterpretation of
enzymatic activities (24). We also removed those EC reac-
tions that do not contain any enzymes. With this filtering
process, we identified 5389 complete EC reactions and 76
spontaneous reactions with verified activities.

We next estimated the standard reaction Gibbs energy
�rG′◦ for each of these verified reactions using eQuilibra-
tor with absolute temperature set to 298.15K. Each veri-
fied EC reaction is then split into two reactions: the for-
ward reaction with the reaction Gibbs energy �rG′◦ and the
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backward reaction with the reaction Gibbs energy −�rG′◦.
Those EC reactions whose �rG′◦ could not be estimated
were assigned the largest of the estimated values for both
directions. We adopted this approach to take a conserva-
tive stance and avoid the suggestion of biosynthesis routes
containing reactions with no thermodynamic information
as much as possible. Using these reactions, we built a di-
rected graph that models the transformation of metabolites
where its vertices represent metabolites and its edges rep-
resent chemical transformations via verified metabolic re-
actions. Since this directed graph unifies all metabolic re-
actions with verified activities in the reaction databases, its
structure is independent of the endogenous metabolic sys-
tem of any host organism.

Host-dependent reaction weighting scheme

Using the user-specified host organism, we assigned weights
to the edges of the directed graph. To assign the weight of
each outgoing edge from a given compound node, we first
assumed that this reaction was in the host organism and
computed the probability of converting the precursor via
this reaction over the competing native reactions. That is, by
representing the competition for a metabolic precursor with
endogenous reactions by a statistical mechanical model,
we computed the probability of each reaction with �rG′◦
through the Boltzmann distribution. We next took the log-
arithm of this probability and assigned it as the weight of
this outgoing edge. While this type of statistical mechanics
modeling has been widely applied in the context of gene reg-
ulation to capture the promoter states (25–27), it is, to our
knowledge, novel in the context of the biosynthesis system
design. This weighting scheme depends on a host organism
and models the competition for metabolic precursors with
the endogenous reactions. Importantly, this competition-
based weighting scheme can capture the effects of compet-
ing endogenous reactions on heterologous reactions, while
a thermodynamic favorability-based weighting scheme can-
not. This can make their weight assignments widely differ-
ent from each other (as illustrated in Figure 3). A detailed
description of this weighting scheme is given in Appendix.

Biosynthesis route search

Biosynthesis pathways of interest are often those that trans-
form a higher fraction of a starting material to a target prod-
uct. One heuristic to rank pathways based on this produc-
tivity criterion is the net favorability of pathways. At a first
glance, the net thermodynamic favorability can be seen as
a good measure to rank pathways based on this criterion.
However, this measure can only quantify the ratio of the
target concentration to the source concentration at equilib-
rium, which may not correspond well with the true picture
of the titer of the target product, especially when a given
pathway has strong competing reactions and the equilib-
rium concentration of the starting material is substantially
lowered.

As described in the previous section, our reaction weight-
ing scheme is based on the logarithm of normalized Boltz-
mann weights. Unlike thermodynamic favorability measure,

Figure 3. An illustration of differences between the thermodynamic
favorability-based weighting scheme and our competition-based weight-
ing scheme. Nodes are metabolites and edges are metabolic conversions via
reactions. Red edges indicate native reactions, while blue edges indicate for-
eign reactions. (A) The thermodynamic favorability based approach. The
value within a green oval for each edge represents the weight �rG′◦/RT
where R is the gas constant and T is the absolute temperature. (B) The
competition-based approach. For each edge, the value within a pink oval
represents its weight. With this scheme, edges with the same �rG′◦ value
can have different weights in a host-dependent fashion. For example, the
weight of C1 → C3 is ln [e1/(1 + e1 + e1)], while that of C1 → C4 is ln
[e1/(1 + e1)].

this estimates a fraction of a given precursor that is con-
verted into next intermediate metabolites. Thus, a pathway
score based on the sum of all reaction weights in a given
pathway can characterize the lower bound of a fraction of
starting material that is converted into the product through
this pathway, and this score can capture the productivity of
each pathway more appropriately.

Given the metabolic network graph with host-dependent
weights, MRE exhaustively searches for biosynthesis paths
from the given starting material to the given product and
generates top-K metabolic routes, each of which has at most
n reaction steps. In this search, the compounds in the exclu-
sion list are not considered as intermediate precursors of
the product. To rank routes, MRE computes their scores
by summing all reaction weights in each route and keeps K
routes with the highest scores (as illustrated in Figure 4).
MRE transforms the metabolic route search problem into
a classical computer science problem known as K-shortest
loopless path problem (28) and uses an efficient algorithm
to solve it. The core part of the search was implemented in
C++.

RESULTS

Computational performance analysis in the runtime environ-
ment

To evaluate the computational performance of MRE, we
measured its processing time in the runtime environment.
To this end, we randomly selected 1000 reachable pairs of
source and target compounds. With the setting of the largest
reaction step size and the largest number of top-ranked
pathways (i.e., n = 20 and K = 500), it took less than 10 s for
MRE to exhaustively explore routes and process queries on
average. In 95% of the samples, the processing time was less
than 20 s, and even in the worst case, it was just less than
30 s. With the default setting (i.e., n = 8 and K = 50), the
processing time was at most 1.36 s. Thus, we expect that the
exhaustive pathway search employed in MRE will not com-
promise the user experience based on its processing time.
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Figure 4. An illustrative example to show differences in ranking outcomes
between the thermodynamic favorability based approach and our new re-
source utilization competition-based approach. (A) A simplified metabolic
network. Nodes are metabolites and edges are metabolic conversions. Red
edges indicate native reactions, while blue edges indicate foreign reactions.
The value within a green oval for each edge indicates �rG′◦/RT where R
is the gas constant and T is the absolute temperature. Here, compound C1
is the starting metabolite, and compound C6 is the target product. There
are three routes for this biosynthesis. (B) Ranking of the three biosynthesis
routes with the thermodynamic favorability approach (the lower the score,
the better) and our competition-based approach (the higher the score, the
better). For example, the score of C1 → C4 → C6 is −1 + 2 = 1 with the
former, whereas it is ln [e1/(1 + e1)] + ln [e−2/(1 + e−2 + e−10)] = −2.44
with the latter.

Case study

As a case study, we applied MRE to search for pathways
for various biosynthesis specifications using either E. coli
K-12 MG1655 or Saccharomyces cerevisiae as the host or-
ganism. Table 2 summarizes the top-ranked heterologous
pathways that MRE discovered. This shows that, in biosyn-
thesis of a range of high-value natural products, MRE was
able to identify pathways that are known to be productive.
We also analyzed the results by comparing them with those
from four open-access web servers that can design heterolo-
gous biosynthesis pathways, namely, FMM (13), Metabolic
tinker (8), PHT (14) and XTMS (9). To explore biosynthesis
pathways with these tools, we used their default configura-
tions.

Biosynthesis of naringenin. Naringenin is a plant sec-
ondary metabolite, which is reported to have various health
benefits (37), including high antioxidant capacities (38) and
significant antiviral effects on the hepatitis C virus (39). Ow-
ing to inefficiencies in the production of naringenin from
natural plant sources, metabolic engineering to have an effi-
cient microbial synthesis of this high-value natural product
is thought to be a commercially viable alternative (29,40).

In this analysis, we selected L-tyrosine (KEGG com-
pound ID: C00082), an aromatic non-essential amino acid,
as the starting material since a state-of-the-art heterologous
naringenin production from L-tyrosine in an E. coli strain
is known (see Figure 5A). This heterologous biosynthesis
route comprises four foreign enzymatic reactions. To an-
alyze the performance of MRE in comparison with other
tools, we applied two open-access biosynthesis pathway web
servers, Metabolic tinker (8) and XTMS (9). Since these two

recently developed tools also rely on reaction thermody-
namic data for their pathway ranking, we can also analyze
the effects on our competition-based ranking scheme.

Given this biosynthesis requirement, Metabolic tinker
and PHT were not able to find any pathways, while XTMS
generated a predicted pathway with hypothetical reactions
as its top-ranked candidate. In contrast, the top-ranked
route from MRE and FMM was identical to the state of
the art. The pathway information given by MRE indicates
that the third reaction in the pathway, which transforms p-
coumaroyl-CoA into naringenin chalcone, is a bottleneck
and competes for the availability of cofactor malonyl-CoA
with a more favorable native reaction involved in the fatty
acid biosynthesis in the E. coli host (Figure 5B). This sug-
gests that an increase in the concentration of malonyl-CoA
or the inhibition of the fatty acid biosynthesis could en-
hance the productivity of this naringenin biosynthesis path-
way. Indeed, previous studies demonstrated that both an in-
crease in the availability of malonyl-CoA in the host and a
decrease in the activities in the fatty acid pathway can in-
crease the naringenin titers (29,41). While FMM was also
able to identify the heterologous naringenin biosynthesis
pathway that MRE found, the pathway information given
by FMM was not helpful to find an optimization target as
FMM does not have a feature to quantify the effects of com-
peting reactions in the host.

Production of value-added chemicals from glycerol. Glyc-
erol is a readily available and relatively inexpensive chemi-
cal compound that can be generated in large amounts as a
byproduct of biodiesel and bioethanol production processes
(42,43). Because of its economic viability and long-term sus-
tainability, fermentative production of high-value materials
from glycerol has gained much attention recently (44). By
using glycerol as the starting material, we searched for path-
ways for the production of two value-added chemicals, 1,3-
propanediol (1,3-PDO), a commodity chemical mainly used
to make polyester fiber, and 1,2-propanediol (1,2-PDO), an-
other high-demand commodity chemical used to make a
wide range of products including antifreeze, thermoset plas-
tics and cosmetics.

We first applied MRE to search for pathways for the
production of 1,3-PDO in E. coli chassis. The top-ranked
pathway that MRE identified is a known two-step heterol-
ogous pathway (42), which requires the introduction of a
glycerol dehydratase gene and a 1,3-propanediol dehydro-
genase gene in the host (Figure 6A). Since the first glycerol
dehydratase reaction competes for the utilization of glyc-
erol against several native reactions including glycerol ki-
nase, MRE predicts that this can be a target for productiv-
ity optimization. Metabolic tinker and XTMS were not able
to find any pathways for the 1,3-PDO production, whereas
FMM and PHT found the same pathway that MRE identi-
fied.

We next applied MRE to search for pathways for the syn-
thesis of R-1,2-PDO in the yeast chassis. We found that
the top-ranked pathway (Figure 6B) was a known synthe-
sis pathway for 1,2-PDO (31). In this pathway, glycerol
is first converted to dihydroxyacetone phosphate (DHAP)
via two native enzymatic reactions. Methylglyoxal syn-
thase then transforms DHAP into methylglyoxal, which is,



W222 Nucleic Acids Research, 2016, Vol. 44, Web Server issue

Table 2. Top-ranked pathways identified by MRE for various biosynthesis specifications

Biosynthesis specification Results of top-ranked pathway identified by MRE Comparison with existing tools

Source Target Host Steps Necessary foreign enzymes Remark Found a patha
Match with
MREb

L-tyrosine naringenin E. coli 4 4.3.1.23, 6.2.1.12, 2.3.1.74, Recovered a known route
(29)

FMM, XTMS FMM

(C00082) (C00509) (ECO) 5.5.1.6 as the top route
glycerol 1,3-PDO E. coli 2 4.2.1.30, 1.1.1.202 Recovered a known route

(30)
FMM, PHT FMM, PHT

(C00116) (C02457) (ECO) as the top route
glycerol R-1,2-PDO yeast 5 4.2.3.3, 1.1.1.79, 1.1.1.77 Recovered a known route

(31)
MT MT

(C00116) (C02912) (SCE) as the top route
acetyl-CoA artemisinic

acid
yeast 10 2.5.1.92, 4.2.3.50, 4.2.3.82, Recovered a known route

(32),
none none

(C00024) (C20309) (SCE) 4.2.3.24, 1.14.13.158 and predicted better ones
L-tyrosine resveratrol E. coli 3 4.3.1.23, 6.2.1.12, 2.3.1.95 Recovered a known route

(33)
FMM FMM

(C00082) (C03582) (ECO) as the top route
D-xylose xylitol E. coli 2 1.1.1.21, 1.1.1.307 Recovered two known

routes (34)
FMM, PHT FMM, PHT

(C00181) (C00379) (ECO) as the top routes
PRPP histidine E. coli 8 2.6.1.27 Predicted

better and shorter routes FMM, MT none
(C00119) (C00135) (ECO) than a known native route

(35)
chorismate tryptophan yeast 5 none Predicted the native route

(36) as
FMM, MT, FMM

(C00251) (C00078) (SCE) the best, and found shorter
routes

PHT

For each biosynthesis specification, the source and target compounds are specified in KEGG ID, and the host organism is in KEGG organism code. For
each pathway, the number of reaction steps and the necessary foreign enzymes(in EC number) are specified. Comparison with FMM (13), Metabolic tinker
(MT) (8), PHT (14) and XTMS (9) is also shown. For each tool, its default setting was used, except for the configuration of a pathway length, which was
set to accommodate known pathways.
aTools that have identified at least one path for a given biosynthesis specification.
bTools whose top-ranked pathway is the same as the top-ranked one from MRE.

A

B

Figure 5. A heterologous biosynthesis pathway to produce naringenin from L-tyrosine in an E. coli host. (A) The structure of an experimentally derived
biosynthesis pathway (29). The EC number for each reaction is indicated below the arrow. The KEGG compound ID of each metabolite is framed in red.
The abbreviations are: tyrosine ammonia lyase (TAL); 4-coumarate:CoA ligase (4CL); chalcone synthase (CHS) and chalcone isomerase (CHI). (B) The
information of the top-ranked biosynthesis pathway in MRE.
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Figure 6. Pathway-level graphs generated in MRE. (A) The top-ranked pathway for the production of 1,3-PDO from glycerol in E. coli. (B) The top-ranked
pathway for the production of R-1,2-PDO from glycerol in yeast. (C) A known pathway and (D) top-ranked pathway for the production of artemisinic
acid from acetyl-CoA in yeast. In these graphs, oval nodes represent compounds, while box nodes represent reactions. For compound nodes, red nodes are
the starting material, green nodes are the target products and yellow nodes are other compounds. For reaction nodes, purple nodes are native reactions,
cyan nodes are foreign reactions and gray nodes are competing native reactions.

in turn, converted into (R)-lactaldehyde. Finally, lactalde-
hyde reductase is used to produce R-1,2-PDO from (R)-
lactaldehyde. FMM and PHT were not able to find any
pathways that convert glycerol into R-1,2-PDO, whereas
Metabolic tinker identified the same pathway that MRE
found as the top-ranked one. Since XTMS focuses on the
E. coli chassis, we applied this tool to search for heterolo-

gous R-1,2-PDO production pathways in E. coli; however,
no pathways were found.

Production of artemisinic acid. Artemisinic acid is an inter-
mediate precursor for antimalaria drug artemisinin (32,45),
and its production is often celebrated as one of the early
success stories of the combination of metabolic engineer-
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ing and synthetic biology (46). This engineered biosyn-
thesis pathway utilizes the endogenous mevalonate path-
way in budding yeast to transform acetyl-CoA into far-
nesyl pyrophosphate (FPP), which is then converted into
artemisinic acid with heterologous amorphadiene synthase
and three-step oxidation reactions (32,45).

To see if MRE could recover this engineered pathway,
we applied it to explore pathways for the production of
artemisinic acid from acetyl-CoA in yeast. We found that
one of the top-ranked pathways that MRE generated was
this known heterologous pathway (Figure 6C). Interest-
ingly, the pathway that MRE identified as the top candi-
date (Figure 6D) was slightly different from the previously
engineered pathway. The difference lies in how isopentenyl
pyrophosphate (IPP) is converted into farnesyl pyrophos-
phate (FPP). In the top-ranked path, IPP is first converted
into (2Z,6Z)-farnesyl diphosphate (Z,Z-FPP). This route is
chosen because IPP is a precursor of a thermodynamically
highly favorable native reaction, and the conversion reac-
tion from IPP to Z,Z-FPP is much more favorable than that
from IPP to FPP, enabling a higher fraction of IPP to be uti-
lized in the route. By using Z,Z-FPP as the precursor, this
route introduces three foreign carbon-oxygen lyases to form
FPP. FMM, Metabolic tinker and PHT were not able to find
any pathways. XTMS found a partial pathway that converts
FPP into artemisinic acid, albeit it is for the E. coli chassis.

DISCUSSION

In this paper, we introduced MRE, an open-access biosyn-
thesis design tool, that searches for promising metabolic
routes for a given biosynthesis specification and suggests
exogenous enzymes for heterologous biosynthesis pathways
based on the infrastructure of an endogenous metabolic sys-
tem. A main limitation of MRE is its reliance on the data
sources (mainly KEGG) to mine verified metabolic reac-
tions and to search for biosynthesis routes based on them.
Indeed, while painstaking effort has resulted in a large col-
lection of annotated metabolic reaction data, among the
9910 reactions in the KEGG REACTION database (Re-
lease 76.0), we found 1272 with no EC numbers, 1079
with partial EC numbers and 2170 with no annotations for
associated genes. While this deficiency can prevent MRE
from finding promising biosynthesis pathways, we expect
the number of verified reactions in KEGG to increase over
time and this issue to be alleviated eventually. At the same
time, we are considering an option to also integrate other
metabolic reaction databases such as Rhea (16) in a future
release.

Several existing tools took an approach to expand a list
of metabolic parts in hand by defining specific transforma-
tion rules (6,7,9), albeit such rules can be subjective (47).
To design biosynthesis systems, this approach relies on the
prediction of metabolic parts with specific metabolic ac-
tivities, which may or may not exist. Thus, the design of
biosynthesis systems via this top-down approach may re-
quire the de novo design of unnatural proteins to achieve
specific metabolic activities. MRE was, on the other hand,
developed to suggest actual enzymes for heterologous path-
ways. Thus, it takes a complementary, bottom-up approach
in which a biosynthesis system is designed by using well-

characterized metabolic parts. To this end, we made a con-
scious decision to use only verified reactions.

Here, by using the biosynthesis of a range of high-
value natural products as a case study, we have shown
that MRE can suggest promising heterologous biosynthesis
pathways and provide useful information to pinpoint bot-
tlenecks of pathways. In summary, with the host-dependent
competition-based pathway ranking scheme along with the
suggestion of foreign enzymes with competing endogenous
reactions, MRE is expected to offer novel insights into the
design and optimization of heterologous biosynthesis sys-
tems.
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APPENDIX

MATHEMATICAL DESCRIPTION OF THE HOST-
DEPENDENT REACTION WEIGHTING SCHEME

To derive a mathematical description of the weighting
scheme, we consider a scenario in which to generate weights
for edges in the reactions transforming precursor C. Here,
let RN be a set of native reactions that can transform C in a
given host organism. For each reaction r that can transform
C, we set e−�r G ′◦/RT as its Boltzmann factor. Then, we define
f(r), the normalized Boltzmann factor for r, as follows:

f (r ) = e−�r G ′◦/RT

1 + e−�r G ′◦/RT + ∑
r ′∈RN\{r} e−�r ′ G ′◦/RT

, (1)

where R is the gas constant and T is the absolute temper-
ature. That is, those reactions that are not in the host or-
ganism do not affect the calculation of the Boltzmann dis-
tribution. If r ∈ RN, then f(r) is simply based on the Boltz-
mann distribution of the native reaction system transform-
ing compound C. On the other hand, if r �∈ RN, then f(r) is
based on the Boltzmann distribution of the reaction system
that contains all native reactions transforming C and for-
eign reaction r. With this scheme, in our graph, every edge
that transforms C in reaction r has the weight log f(r).


	APPENDIX

