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Abstract

Social insects provide promising new avenues for aging research. Within a colony, individu-

als that share the same genetic background can differ in lifespan by up to two orders of mag-

nitude. Reproducing queens (and in termites also kings) can live for more than 20 years,

extraordinary lifespans for insects. We studied aging in a termite species, Cryptotermes

secundus, which lives in less socially complex societies with a few hundred colony mem-

bers. Reproductives develop from workers which are totipotent immatures. Comparing tran-

scriptomes of young and old individuals, we found evidence for aging in reproductives that

was especially associated with DNA and protein damage and the activity of transposable

elements. By contrast, workers seemed to be better protected against aging. Thus our

results differed from those obtained for social insects that live in more complex societies.

Yet, they are in agreement with lifespan estimates for the study species. Our data are also

in line with expectations from evolutionary theory. For individuals that are able to reproduce,

it predicts that aging should only start after reaching maturity. As C. secundus workers are

immatures with full reproductive options we expect them to invest into anti-aging processes.

Our study illustrates that the degree of aging can differ between social insects and that it

may be associated with caste-specific opportunities for reproduction.

Introduction

“Mors certa–hora incerta” (Anselm of Canterbury): all living organisms die at some point due

to extrinsic factors (extrinsic mortality) and/or intrinsic aging processes (intrinsic mortality,

senescence). Aging is associated with time passing by and for most living organisms with a

progressive deterioration of the body, which becomes apparent by a decline in motor and cog-

nitive performance, a collapse of physiological processes and a decline in the ability to deal

with various sources of stress [1–3]. Ultimately, evolutionary theory explains aging by a decline

of the force of natural selection with age [4–7] and for individuals that are able to reproduce it
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predicts aging to start only after the onset of maturity [8]. At the proximate level, multiple

studies have investigated the molecular mechanisms underlying aging and they identified sev-

eral gene pathways, including the insulin/insulin-like growth factor (IGF) signaling (IIS) path-

way [9,10] and the target of rapamycin (TOR) signaling pathway [11,12]. Other important

mechanistic reasons that have been linked to aging are oxidative stress and DNA damage

[13,14], chromatin instability and transposable elements (TEs) [15–18], and telomere attrition

and shortening [19].

Despite aging being widespread among taxa there are huge variations in the aging rate

between species. The queens of social insects (and in termites also the kings), such as honey-

bees, ants, termites and some wasps, not only have extraordinarily long lifespans for insects,

but also can reproduce for decades [20–22]. By contrast, the non-reproducing workers are

generally shorter-lived (few months up to several years), despite sharing the same genetic

background. Outside social insects such differences in lifespan can only be found between

species. This makes social insects promising new models for aging research. The ultimate

reasons why social insect reproductives can live so long are still rarely addressed (reviewed

in [23,24]). The worker’s reproductive capacity is expected to play a major role in explaining

the difference in longevity between queens and workers. In species with sterile workers, the

queen to worker longevity ratio should be larger than when workers can reproduce. When

workers have full reproductive options–as is the case for some termites–they resemble non-

social organisms in that aging should start only after reaching maturity. This is not the case

for sterile workers. In addition, if workers can inherit the breeding position of a colony, we

expect a reduced selection for longevity in queens. Studies on the proximate mechanisms

that can help in testing such hypotheses are starting to accumulate, although they are still

concentrated on the honeybee Apis mellifera, the bumblebee, Bombus terrestris, and a few

ant species (e.g., reviews for honey bee: [25,26]; ant species [27–30]; bumblebee: [31]). Only

three studies exist that address polyneopteran social insects, the termites, [18,32,33] which

evolved eusociality independently from social Hymenoptera (wasps, bees and ants). These

termite studies have in common that they address species with clearly morphologically dis-

tinct castes, where dispersing reproductives and workers do not share the same develop-

mental pathway (Fig 1A) and workers have only reduced or no reproductive options. In

order to understand how the queen: worker difference in longevity evolved with sociality, it

may help to investigate socially less complex species in which workers have full reproductive

options. This is our aim in the current study.

Assuming that gene expression differences reflect phenotypic differences at the protein-

and physiological level, we analyzed transcript expression data of young and old workers,

queens and kings of the drywood termite Cryptotermes secundus (Hill, 1925) (Blattodea, Iso-

ptera, Kalotermitidae). C. secundus workers are totipotent immatures and all reproductives

develop from these workers, there is no distinction between a reproductive and a neuter line

(Fig 1B) [34–36]. This linear developmental trajectory occurs in all wood-dwelling termite spe-

cies (also called one-piece nester, [37]), including all Kalotermitidae and Archotermopsidae

and a few Rhinotermitidae [34,35], and it is widely accepted as ancestral in termites [36].

There are two types of reproductives: primary reproductives that found new colonies after a

nuptial flight as alates, and neotenic secondary reproductives that inherit the colony after the

death of the current reproductives. The colony size in C. secundus is rather small (generally

around 300–400 individuals) [38]. Reproductives of C. secundus can live up to 10–13 years in

the laboratory [22]. Yet the median maximum lifespan of C. secundus is only 6–7 years, even

under optimal laboratory conditions, while that of M. bellicosus is around 10–11 years under

high extrinsic mortality inherent to the field (e.g. predation) [18]. The longevity of the workers

from both species is reversed; the sterile M. bellicosus workers live a few months only [18],
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whereas the totipotent C. secundus workers are rather long-lived as they need a minimum of

four to five years to become reproductives [22]. We analyzed transcript expression differences

between young and old workers, and young and old kings and queens of C. secundus. We com-

pared our results with those obtained for the solitary model insect Drosophila melanogaster
[39–42] and two social insects which live in more complex societies, the ant Cardiocondyla
obscurior [43] and the termite M. bellicosus [18]. Our study contributes novel insights into

how aging changes with sociality.

Fig 1. Developmental pathways in termites. Developmental pathways in termites with different degrees of sociality. (A) Typical developmental pathway for a termite

with high degree of sociality, e.g. Macrotermes bellicosus (foraging termites). The development is less flexible and the immature workers are not totipotent. Early on

during development (here in the egg stage) caste fate is determined. Individuals can either develop along the apterous line into workers and soldiers or along the

nymphal line into primary reproductives. Arrows indicate the transition of one stage to another; in white: the default nymphal line which occurs in all insects, in black:

deviations from these trajectories, specific to termites. (B) Typical developmental pathway for a termite with low degree of sociality, e.g. Cryptotermes secundus (wood-

dwelling termites). Termite workers are totipotent immatures that can develop into soldiers or two kinds of reproductives, primary or neotenic reproductives. They also

can molt regressively (arrow pointing backwards).

https://doi.org/10.1371/journal.pone.0210371.g001
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Materials and methods

Sample collection, preparation, sequencing and library construction

For this study, C. secundus colonies were collected near Palmerston- Channel Island from a

mangrove ecosystem (12˚30’ S, 131˚00’ E; Northern Territory, Australia) [38]. The colonies

were transferred to wooden blocks of Pinus radiata. After transport to the laboratory, the stock

colonies were kept under standardized conditions in a climate room with a temperature of

28˚C, 70% humidity and a 12h day/night rhythm. Under these conditions colonies develop as

in the field (see [34]).

Total RNA was extracted from twelve different individuals belonging to nine different

colonies: four primary queens, four primary kings and four workers (two young and two

old individuals of each caste, S1 Table). Young queens and kings were collected one year

after the nuptial flight (yearling reproductives). The age was determined by the color of the

cuticle, tunnel size, and colony size, which was approximately 20 workers and one soldier.

The old primary reproductives had been reproducing for at least seven years. Young work-

ers were selected from the youngest worker instars, no more than six months old. The age

of the old workers was at least three years, based on the instar (last larval worker instar) and

the minimum developmental time it takes to reach this instar [34]. They might be older due

to further stationary molts (size remains the same and no morphological changes take

place) or regressive molts (decrease in size and wing-bud development). The sex of C. secun-
dus workers can currently not be determined; there are no reliable morphological differ-

ences between male and female workers and attempts with traditional karyological methods

failed.

An in-house protocol was followed for RNA extraction. Briefly, individuals were placed on

ice and the gut was removed and discarded. Whole bodies were then used for RNA extraction.

Samples were transferred into peqGOLD Tri Fast (PEQLAB) and homogenized in a Tissue

Lyser II (QIAGEN). Chloroform was used for protein precipitation. From the aqueous phase,

RNA was precipitated using Ambion isopropyl alcohol and then washed with 75% ethanol.

Obtained pellets were solved in nuclease-free water. DNA was subsequently digested using the

DNase I Amplification Grade kit (Sigma Aldrich, Cat. No. AMPD1). We performed an RNA

Integrity Number Analysis (RIN Analysis) measuring the RNA concentration with the Agilent

RNA 6000 Nano Kit using an Agilent 2100 Bioanalyzer (Agilent Technologies) for quality con-

trol. Samples with total RNA were sent on dry ice to BGI Tech Solutions (HONGKONG) Co.

and then to Shenzhen, PR China for sequencing. The preparation of the cDNA libraries was

performed by BGI according to their internal and proprietary standard operating procedure.

The company performed paired-end sequencing (not-strand specific) on Illumina HiSeq plat-

forms (S1 Table).

RNA-seq data analysis

The raw reads’ quality was evaluated with FastQC (v0.11.4, [44]). Common Illumina- and BGI

in-house adapter sequences were trimmed from the raw reads using Trimmomatic (v0.33,

[45]) and we kept only reads with a minimum length of 70 bp (for a rationale see [46]). Expres-

sion differences were assessed at the level of the transcripts. Reads were pseudo-aligned with

Kallisto (v0.43.0, [47]) against C. secundus transcriptome obtained from a draft version of the

C. secundus genome (provided as supplementary material on Dryad) [48]. The counts esti-

mated by Kallisto were rounded to the nearest integer and used to check the completeness of

our samples with BUSCO (v. 3.0.2 [49]).The protein coding sequences of the transcripts that

had at least one positive match (n>0 in count table) were used as input for BUSCO. We ran
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BUSCO (at the protein level -m prot) against the insect gene set of ortholog groups (insecta

odb 9) with default settings. This gene set includes 1,658 single copy orthologs.

The Kallisto counts were used as input for DESeq2 (v1.10.1, [50]) in R (v3.2.3, R Core Team

2015) to determine transcript expression differences between old and young individuals of

queens, kings and workers. In DESeq2 the p-values are adjusted for multiple testing using the

false discovery rate (FDR) approach [51]. In order to correct for unaccounted sources of varia-

tion the ‘Surrogate Variable Analysis’ (sva) package (v 3.20.0) as implemented in R was used

[52,53]. The software identifies and estimates surrogate variables for unknown sources of vari-

ation (for instance, batch or colony effects). For data visualization, a principal component

analysis (PCA) was performed with DESeq2 using transformed count data (variance stabiliza-

tion). The age-specific differentially expressed transcripts (DETs) were compared between

castes and the overlaps were visually represented with Venn diagrams generated using the

online tool Venny (v2.1 [54]) and graphically processed with Inkscape (v0.91, www.inkscape.

org).

Functional annotation and enrichment

A draft version of the C. secundus genome was used (provided as supplementary material on

Dryad) [48] to obtain nucleotide and protein sequences. DETs were annotated via a BLASTX

search (CBI BLAST suite v. 2.3.0, [55]) against the protein coding sequences of the termite

Zootermopsis nevadensis (official gene set version 2.2, [56]) with a threshold E-value of 1e-05.

The annotation was complemented by searching DETs at the amino acid level against the

InterPro database with the software InterProScan (v5.17–56.0, [57]), using default settings. We

also searched the translated sequences against the Pfam database (Pfam A, release 30) [58]

with the software hmmscan (option—cut_ga, HMMer v3.1b2, [59]). Additionally, we looked

for possible transposable element (TE) sequences by searching against the Dfam database

(v2.0, [60]) using nhmmer [61] with default settings. To further assist the annotation, we

inferred a set of clusters of orthologous groups (COGs) from the official gene sets at the

amino-acid level of four species with (draft) genomes: C. secundus draft version, the termites

Macrotermes natalensis (official gene set version 1.2 [62]) and Z. nevadensis (official gene set

version 2.2, [56]), and the fruit fly D. melanogaster (version r6.11, [63]). For all species, we

only kept the longest isoform per gene and additionally removed sequences with internal stop

codons and/or selenocysteines (U). The latter causes problems in downstream analyses and

sometimes sequences with selenocysteine are considered to be potential pseudo-genes (see

[48]). COGs were inferred among the four reference species using the software OrthoFinder

(v. 0.4.0 [64]).

A functional enrichment analysis (GO enrichment) was done with DAVID (v6.8, [65]). For

this we made a second set of COGs (see above), but only with C. secundus and D. melanogaster,
and additionally a BLASTP search of C. secundus sequences against the protein coding

sequences (longest isoforms only) of D. melanogaster with a threshold E-value of 1e-05. The

set of homologs used for the GO enrichment consisted of (i) single copy 1:1 orthologs and (ii)

homologs (not single copy 1:1 orthologs) found via the BLASTP search and filtered using the

best bit scores.

Gene identification

We identified COGs for genes of interest (see S2 Table for genes of interest) and retrieved all

protein coding sequences of the respective COG from OrthoDB v. 9.1 [66] for the following

species: D. melanogaster (DMEL), Apis mellifera (AMEL), Cardiocondyla obscurior (COBSC),

Pollistes dominula (PDOM), Tribolium castaneum (TCAS), Z. nevadensis (ZNEV) and Blattella
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germanica (BGER) (sequences provided on Dryad for each COG). COGs were found using

the text search option available in OrthoDB (search for gene name or IDs e.g. “AGO2”,

“FBgn0087035”). We aligned the sequences separately for each COG with MAFFT (v7.294b),

with the G-INS-i algorithm default settings [67]. We built a profile hidden Markov model

(HMM) from each multiple sequence alignment using hmmbuild (HMMER v3.1b2). We then

used the HMM to search with hmmsearch against C. secundus and M. natalensis protein cod-

ing sequences to identify candidate sequences for each COG. For inference of gene trees, we

only kept sequences with a threshold E-value of�1e-40. All candidate sequences were

searched with hmmscan against the Pfam database (Pfam A, release 30).

Phylogenetic trees of closely related genes were inferred for a total of 26 genes of interest

provided on Dryad. We included sequences of all species mentioned above that passed the

threshold (�1e-40). In all sequences, selenocysteine (U) was replaced by “X“. Sequences were

aligned as described above. We subsequently identified ambiguously aligned sequence regions

with Aliscore (v. 2, [68,69]) (settings: -r: maximal number of pairwise comparisons) and subse-

quently removed those sections with Alicut (v. 2.3, https://www.zfmk.de/en/research/research-

centres-and-groups/utilities, masked alignments provided on Dryad). We used IQ-Tree (v.

1.5.5, [70]) to infer phylogenetic gene trees (single genes or groups of closely related genes)

using the Maximum-Likelihood approach separately for genes (gene groups) of interest. Using

parsimony start trees, we estimated the best model with the implemented ModelFinder [71]

for available standard models, including the free rate models LG4M and LG4X [72]. We used

default settings for rates, number of rate categories, and the Bayesian Information Criterion

(BIC) to estimate the best substitution model. Statistical support was inferred from 2,000 non-

parametric bootstrap replicates. We visualized the unrooted trees with bootstrap support using

Seaview (v4.5.4, [73]) and graphically processed the trees with Inskape (v0.91, www.inkscape.

org) (provided in Dryad).

All raw sequencing reads are deposited on EMBL (Primary Accession PRJEB27153, for

sample accession numbers see S1 Table). Additional supplementary data can be accessed from

the Dryad repository (dryad link can be provided upon acceptance).

Comparison with other species

The results obtained in this study were compared with similar aging studies for the fruit fly D.

melanogaster [39–42,74], the ant species C. obscurior [43], and the termite M. bellicosus [18],

the only termite of which comparable aging data exist. Comparisons were done at three differ-

ent levels: (i) differentially expressed genes (DEGs) between old and young individuals for the

studies of Elsner et al. (2018) [18], von Wyschetzki et al. (2015) [43] and Lai et al. (2007) [39];

(ii) GO enriched terms for the studies of Elsner et al. (2018) [18], Wyschetzki et al. (2015) [43],

Doroszuk et al. (2012) [41] and Pletscher et al. (2002) [74]; and (iii) candidate markers of

aging and lifespan regulation for the studies of Doroszuk et al. (2012) [41], Lai et al. (2007)

[39], Magwire et al. (2010) [40] and Carnes et al. (2015) [42]. For C. obscurior and M. bellicosus
we used the corresponding annotation of D. melanogaster 1:1 orthologs and other homologs

[18,43]. In addition, C. secundus DETs were compared with D. melanogaster ‘aging genes’

available in the ageing gene database (GenAge Build 18, [75]).

Results

Differential expression between age-classes within castes in C. secundus
The results of the BUSCO analysis showed for each sample a completeness of more than 90%

of the insect gene set of OGs (insecta odb 9) (see S1 Table). Using transcript transformed

count data, the PCA separated the castes on the first component, which explained 35% of the
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variance (Fig 2). The queens clustered together and were clearly separated from the other

castes, whereas the kings clustered closer to the workers. The second component explained

18% of the variance and separated the age classes. The age class pattern was reversed in the

workers in comparison to the reproductives (Fig 2). Two surrogate variables were estimated

with the package sva [53], and they were included in the formula for differential expression

testing to correct for unaccounted sources of variation. A total of 815 transcripts were signifi-

cantly differentially expressed (DETs) between the age-classes within castes: 193 for the

queens, 248 for the kings, and 374 for the workers (padj < 0.05, S2 Table and Fig 3). These

caste-specific age-related DETs were divided into two groups: transcripts that were more

highly expressed in younger individuals than in older ones (HY) and transcripts that were

Fig 2. Principal component analysis of transcript count data. Principal component analysis of transcript count data with variance stabilizing transformation for two

age classes of reproductives and workers.

https://doi.org/10.1371/journal.pone.0210371.g002
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more highly expressed in old individuals compared to young ones (HO) (Fig 4). Only one HO

DET, annotated as a carboxylesterase like gene, was shared across all castes (see Fig 3); 10% of

the DETs were shared in a pairwise manner. Hence, most DETs were caste specific. DETs in

the workers were involved in a plethora of different functions including metabolic processes,

growth, development and morphogenesis, regulation of transcription, alternative splicing and

chromatin remodeling (S2 and S3 Tables).

Differential expression of genes linked to aging

The DETs that were considered important for aging were split into the following categories: (i)

DNA damage response, genome stability and telomeres; (ii) transposable elements (TEs); (iii)

oxidative stress; (iv) neural aging; (v) reproduction, (vi) immunity and (vii) other age-related

genes.

DNA damage response, genome stability and telomeres. Two DETs more highly

expressed in young compared to old queens (HY) were linked to DNA damage repair, genome

stability and telomere maintenance: serine/threonine-protein kinase ATR (ATR/mei-41) and

Ku80 [76–79]. Linked to DNA repair in kings were three HY and one HO DETs: ‘mismatch

repair endonuclease PMS2’ (Pms2), ‘MORF related gene 15’ (MRG15), ‘Translationally

Fig 3. Venn diagram of differentially expressed transcripts. Shared differentially expressed transcripts (DETs) with

age (old vs. young) between C. secundus queens (Q), kings (K) and workers (W). Blue: old queens vs young queens,

yellow: old kings vs young kings and green: old workers vs young workers.

https://doi.org/10.1371/journal.pone.0210371.g003

Transcript expression differences between old and young in the termite Cryptotermes secundus

PLOS ONE | https://doi.org/10.1371/journal.pone.0210371 February 13, 2019 8 / 26

https://doi.org/10.1371/journal.pone.0210371.g003
https://doi.org/10.1371/journal.pone.0210371


controlled tumor protein’ (Tctp) [80–82] and fancl [83]. Other important HY DETs in kings

were kin17 protein related to DNA damage response [84], and nucleosome assembly protein1

(nap1) related to telomere maintenance [85]. The workers shared with the queens the expres-

sion of ATR but in opposite direction (HY in queens and HO in workers, S1 Fig) and had

another HO DET with homology to ATR (not shared with the queens, S2 Table). Workers had

additionally three more HY DETs involved in telomere maintenance, DNA repair and DNA

damage response: regulator of telomere elongation helicase 1 (RTEL1), nap1 (shared with

kings HY), and DNA mismatch repair protein Mlh1-like (Mlh1) [80,85,86].

Transposable elements. Seven HY and thirteen HO DETs in queens were linked to TEs.

Out of these, two HY and three HO were shared with the kings (Fig 4A and 4B). One of the

shared HY DETs was identified as ‘pelota’ (pelo), a gene that encodes a conserved protein

involved in transposon silencing [87]. Kings had in total eight HY and seven HO DETs related

to TEs. One of the HY DETs in kings was identified as a homolog of vasa, a gene involved in

transposon silencing in the germline by participating in piRNA biogenesis and amplification

[88], and another one was identified as ‘Heat shock protein cognate 4’ (Hsc70-4), which is

involved in the RNA interference pathway (RNAi) and in heterochromatin formation [89,90].

Strikingly, 21 DETs in workers were associated with TEs and contrary to the reproductives

most of these DETs were more highly expressed in young compared to old individuals: 19 HY

and two HO (S2 Table). One of the HY DETs in workers was identified as ‘eggless’, which is an

H3K9 methyltransferase that interacts with heterochromatin protein 1 (HP1) to spread hetero-

chromatin, and it is necessary for TE silencing via piRNA pathway [91,92]. Of the two HO

DETs in workers, one was annotated as ‘Vacuolar H+ ATPase 16kD subunit 1’ (Vha16-1).

Vha16-1 participates in the uptake of dsRNA to the cell, which allows the activation of the

RNAi pathway [93].

Oxidative stress. In queens and kings, one HY DET was identified as darkener of apricot

(Doa) (Fig 4A), which among other functions can negatively regulate the expression of super-

oxide dismutases (SOD1 and SOD2) in D. melanogaster [94]. Additionally, in kings the GO

enrichment revealed for the HY DETs multiple GO BP terms related to catabolism of xenobi-

otic compounds and insecticides (S3 Table). The signal for these BP terms originated from

seven HY DETs annotated as cytochrome P450 family 6 (CYP6). Another HY DET in kings

was identified as a catalase-like gene. Other DETs in kings potentially involved in oxidative

stress were identified as cytochrome P450s family 4 (CYP4, one HY and two HO), cytochrome

P450 of unknown family (HY, homologue to CYP303a1), and one mitochondrial uncoupling

protein (HY), which can modulate and reduce ROS production [95]. In workers multiple tran-

scripts were associated to oxidative stress: two catalase-like proteins (both HO, one of them

shared in opposite direction with kings, see S1 Fig), a homolog of ‘inactivation no afterpoten-

tial E’ (HO, inaE in D. melanogaster)”, a carbonic anhydrase (HO), isocitrate dehydrogenase

(HO) and five cytochrome P450s from different families (one HY and four HO, see S2 Table).

P450 genes, however, can also play an important role in caste differentiation in termites and

hence need not be linked with oxidative stress.

Neural aging. In queens three HY DETs were potentially linked to aging of the brain: Pal-

mitoyl-protein thioesterase 1 (Ppt1) and two Down syndrome cell adhesion molecules

(Dscam) [96,97]. One of the Dscam proteins was shared with workers but the change in

expression with age was in opposite direction (HY in the queens but HO in the workers, S1

Fig). In kings, one HY DET was identified as a homolog of apolipoprotein D (ApoD). ApoD is

mainly expressed in the brain and nervous system and its over expression in D. melanogaster
increases lifespan and stress resistance [98,99]. Additionally in kings, the 1:1 ortholog of refrac-

tory to sigma p (ref(2)p), a marker of neuronal aging and an important component of the

mitochondrial unfolded protein response [100], was upregulated (HO).
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Reproduction. In queens four DETs were linked to fertility signaling and reproduction:

Neofem2 and Follicle cell protein 3C (Fcp3C, both HO), and two homologs of D. melanogaster
gene CG33981 (HY) [101–103]. Both CG33981 homologs, were expressed in workers in oppo-

site direction compared to queens (HO in workers and HY in queens, S1 Fig). Multiple GO

terms connected to reproduction were enriched in the HY transcripts of kings (see S3 Table).

This signal came from multiple transcripts including pelo, hsc-4 and nap1 that are involved in

transposon silencing, heterochromatin formation and genome stability (see Transposable

elements).
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Fig 4. Venn diagrams and heatmaps of differentially expressed transcripts. Shared differentially expressed transcripts (DETs) with age (old vs young) between C.

secundus queens (Q), kings (K) and workers (W). The heatmaps depict the log2fold changes in expression within castes, only DETs. Each row corresponds to a DET and

each column to a caste. NS: differential expression not significant (padj>0.05); transcripts in bold are discussed in the text. Roman numerals link the DETs shared

between castes to the heatmaps. (A) DETs more highly expressed in young compared to old individuals (HY). (B) DETs more highly expressed in old compared to

young individuals (HO). In Venn diagrams, blue: old queens vs young queens, yellow: old kings vs young kings and green: old workers vs young workers.

https://doi.org/10.1371/journal.pone.0210371.g004
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Table 1. Comparison of GO enriched terms between species.

Queens

GO Term GO ID Csec CO Mb_MW DM # genes Csec # genes CO # genes Mb_MW # genes DM

striated muscle tissue development GO:0014706 - NA NA + 3(19) NA NA 12

anatomical structure homeostasis GO:0060249 - + NA + 5(118) 4(31) NA 13

muscle tissue development GO:0060537 - NA NA + 3(24) NA NA 12

actomyosin structure organization GO:0031032 - - NA + 4(72) 5(23) NA 12

cell development GO:0048468 - + + NA 17(1321) 19(475) 378(1138) NA

regulation of biological quality GO:0065008 - NA + NA 14(1023) NA 318(929) NA

chromosome organization GO:0051276 - + NA - 8(437) 13(182) NA 165

synapse assembly GO:0007416 + NA + NA 3(36) NA 62(140) NA

Workers

GO Term GO ID Csec CO Mb_MW DM # genes Csec # genes CO # genes Mb_MW # genes DM

cell adhesion GO:0007155 - NA NA + 12(365) NA NA 58

biological adhesion GO:0022610 - NA NA + 9(205) NA NA 58

DNA metabolic process GO:0006259 - + NA - 10(270) 9(159) NA 141

organic acid biosynthetic process GO:0016053 - NA NA + 5(73) NA NA 25

metabolic process GO:0008152 - NA - NA 75(3998) NA 1261(3582) NA

actomyosin structure organization GO:0031032 - - NA + 5(72) 5(23) NA 12

myofibril assembly GO:0030239 - - NA + 4(43) 4(11) NA 9

epithelium development GO:0060429 - + + + 23(878) 10(166) 279(798) 46

instar larval or pupal development GO:0002165 - NA + + 17(557) NA 190(519) 95

post-embryonic development GO:0009791 - NA + + 18(615) NA 198(570) 100

tissue development GO:0009888 - NA + NA 25(935) NA 291(848) NA

synapse assembly GO:0007416 + NA + NA 10(166) NA 62(140) NA

oxidation-reduction process GO:0055114 + - - + 15(365) NA 176(336) 164

protein localization GO:0008104 + NA NA - 5(44) NA NA 112

modulation of synaptic transmission GO:0050804 + NA + NA 7(103) NA 41(89) NA

morphogenesis of an epithelium GO:0002009 + + + + 3(19) 10(160) 198(524) 44

carbohydrate metabolic process GO:0005975 + - NA NA 16(363) 16(193) NA NA

cellular carbohydrate metabolic process GO:0044262 + - NA NA 9(193) 11(109) NA NA

carboxylic acid metabolic process GO:0019752 + - - NA 10(248) 19(181) 112(229) NA

oxoacid metabolic process GO:0043436 + - - NA 10(249) 19(181) 113(230) NA

organic acid metabolic process GO:0006082 + - - NA 11(290) 19(181) 127(268) NA

multicellular organism reproduction GO:0032504 + + + - 5(49) 20(373) 234(745) 183

regulation of nervous system development GO:0051960 + NA + + 13(274) NA 39(83) 21

synapse organization GO:0050808 + NA + + 12(244) NA 82(195) 14

ion homeostasis GO:0050801 + NA NA + 6(99) NA NA 14

lumen formation, open tracheal system GO:0035149 + NA NA + 3(17) NA NA 4

learning or memory GO:0007611 + NA + + 7(142) NA 65(120) 22

regulation of cell morphogenesis GO:0022604 + NA + + 8(180) NA 66(152) 32

single-organism metabolic process GO:0044710 + NA - NA 43(1266) NA 442(1172) NA

small molecule metabolic process GO:0044281 + NA - NA 19(617) NA 251(572) NA

regulation of multicellular organismal dev. GO:2000026 + NA + NA 21(442) NA 158(380) NA

multicellular organismal process GO:0032501 + NA + NA 77(3138) NA 780(2737) NA

regulation of developmental process GO:0050793 + NA + NA 23(605) NA 199(524) NA

single-multicellular organism process GO:0044707 + NA + NA 66(2660) NA 692(2349) NA

regulation of anatomical structure morphogenesis GO:0022603 + NA + NA 13(255) NA 85(224) NA

regulation of multicellular organismal process GO:0051239 + NA + NA 22(608) NA 197(524) NA

(Continued)
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Immunity. Several DETs between age-classes were related to immunity. Two DETs were

shared between queens and workers in the same direction (HY, Fig 4), and were identified as a

‘thaumatin-like’ protein and a ‘termicin family’ protein. These proteins are involved in

immune defense against fungal infections [104–106]. Queens and kings shared the differential

expression of ‘modular serine protease’, which is involved in innate immunity [107,108], but

in opposite direction (HY in kings and HO in queens). In kings, two more HO DETs were

linked to immunity: an antimicrobial peptide Attacin, and a protein containing a ‘single

domain Von Willebrand factor type C’ (SVWC). Proteins with the SVWC domain are

involved in response to bacterial infections and viral challenges (see [109]). In workers two

genes involved in innate immune response coding for a transglutaminase and a peptidoglycan

recognition protein [110,111] were significantly differentially expressed (both HO).

Other age-related genes. The 1:1 ortholog of ATP citrate lyase (ATPCL), a gene that in D.

melanogaster males has a pro-aging effect [112], was upregulated in old reproductives (HO,

Fig 4). In contrast to ATPCL, the 1:1 ortholog of ‘ATP synthase, subunit D’ (ATPsynD), whose

downregulation in D. melanogaster with low carbohydrate to protein diet has been associated

to a lifespan extension [113], was downregulated in old kings (HY).

In old workers, the 1:1 ortholog of ‘S-adenosylmethionine Synthetase’ (Sam-S) was downre-

gulated. The decrease of S-adenosylmethionine has been linked to a lifespan extension in C.

elegans and D. melanogaster [114,115].

Comparison with other species

The results for the age-associated expression differences in C. secundus were compared with

the results of similar aging studies for reproducing females of a solitary insect, D. melanogaster,

Table 1. (Continued)

single-organism process GO:0044699 + NA + NA 102(4866) NA 1124(4284) NA

system development GO:0048731 + NA + NA 50(1997) NA 527(1766) NA

cell-cell signaling GO:0007267 + NA + NA 19(554) NA 185(501) NA

single-organism behavior GO:0044708 + NA + NA 13(333) NA 136(295) NA

synaptic signaling GO:0099536 + NA + NA 11(258) NA 105(234) NA

anterograde trans-synaptic signaling GO:0098916 + NA + NA 11(258) NA 105(234) NA

chemical synaptic transmission GO:0007268 + NA + NA 11(258) NA 105(234) NA

trans-synaptic signaling GO:0099537 + NA + NA 11(258) NA 105(234) NA

multicellular organism development GO:0007275 + NA + NA 57(2423) NA 626(2136) NA

localization GO:0051179 + NA + NA 44(1792) NA 467(1592) NA

neuromuscular junction development GO:0007528 + NA + NA 8(161) NA 60(136) NA

regulation of biological quality GO:0065008 + NA + NA 28(1023) NA 318(929) NA

r. of synaptic growth at neuromuscular junction GO:0008582 + NA + NA 6(96) NA 41(80) NA

regulation of neuromuscular junction development GO:1904396 + NA + NA 6(98) NA 41(82) NA

single-organism cellular process GO:0044763 + NA + NA 89(4255) NA 979(3753) NA

regulation of synapse assembly GO:0051963 + NA + NA 6(101) NA 42(85) NA

cognition GO:0050890 + NA + NA 7(142) NA 65(120) NA

regulation of cell differentiation GO:0045595 + NA + NA 11(297) NA 99(247) NA

Comparison of GO enriched terms between species. Csec: Cryptotermes secundus, CO: Cardiocondyla obscurior [43], Mb_MW: Macrotermes bellicosus major workers

[18] and DM: Drosophila melanogaster [41]. A minus (-) sign stands for higher expression in the young compared to old individuals, and a plus sign (+) stands for

higher expression in the old compared to young individuals. NA: not applicable since not differentially expressed. # genes: total number of differentially expressed genes

with this enriched GO term, number in brackets is the total amount of genes expressed (background) with this GO term.

https://doi.org/10.1371/journal.pone.0210371.t001
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and two social insects, the ant C. obscurior and the termite M. bellicosus (using the respective

orthologs or homologs to D. melanogaster). We concentrate on C. secundus queens here as

kings (males) were not studied in the other species. Results of the kings of C. secundus are pro-

vided in S3 and S4 Tables.

Comparison with D. melanogaster. Regarding GO enrichment, C. secundus queens

shared only five GO terms with the flies [41], only one in the same direction (Table 1). In

workers ten GO terms were shared with D. melanogaster females in opposite direction and

nine GO terms were shared in the same direction. One GO term of interest was ‘oxidation-

reduction process’ (oxidative theory of aging) (see Table 1). 30 DETs in C. secundus were

shared with the candidate markers of aging and lifespan determination of the studies of Lai

et al. (2007) [39], Doroszuk et al. (2012) [41] and Carnes et al. (2015) [42] (S6 Table). In the

reproductives, four HY DETs (four transcripts in queens and two of these shared by kings,

same gene) were identified as homologs of Ecdysone-inducible gene L2 (Imp-l2), which is a

gene contained in the GenAge database.

Comparison with the ant C. obscurior

Contrary to D. melanogaster [39], few DETs identified as D. melanogaster 1:1 orthologs were

shared with C. obscurior queens [43] (Table 1, S4 and S5 Tables). The workers shared, among

others, the gene juvenile hormone epoxidase (1:1 ortholog to D. melanogaster) with C. obscur-
ior queens (HO in both species).

Comparison with the termite M. bellicosus
The GO enrichment results of C. secundus can only be compared with the enrichment results

of M. bellicosus major workers as very few genes were differentially expressed between young

and old M. bellicosus reproductives [18]. C. secundus queens shared three enriched GO terms

with M. bellicosus major workers two in opposite direction and one in the same direction

(Table 1). C. secundus workers shared with M. bellicosus major workers ten GO terms in oppo-

site direction and 32 in the same direction (Table 1).Most of the GO terms were related to

development, morphogenesis and metabolism.

The comparison using C. secundus DETs (without considering GO terms) was done against

M. bellicosus DE genes (old vs young) of queens, kings, minor workers and major workers. Els-

ner et al. (2018) [18] found only two DE genes in M. bellicosus kings, and no overlap was

found with C. secundus DETs. C. secundus queens shared a 1:1 orthologue with M. bellicosus
queens, a cytochrome b5 (HO) (S4 Table). Additionally, the queens shared 17 genes with M.

bellicosus major workers (1:1 orthologs to Drosophila in both species, S4 Table). Five genes

showed an opposite expression pattern (HY in C. secundus queens and HO in M. bellicosus
major worker) of which one was identified as an aging marker in Drosophila: cora [40,41] (S4

and S6 Tables). Cora was also upregulated in old minor workers of M. bellicosus (HO). The

function of cora is not known but it interacts with forkhead box, sub-group O (foxo, IIS path-

way) and rictor (mTOR pathway) [116]. Three genes were upregulated in C. secundus queens

and M. bellicosus major workers (HO in both species) and nine genes were downregulated

(HY in both species). Workers shared 46 genes (more than half functionally annotated) with

M. bellicosus major workers, 24 in the same direction (15 HY and 9 HO) and 22 in opposite

direction (all 1:1 orthologs to Drosophila in C. secundus, S4 Table).

Discussion

We identified many age-related expression changes in C. secundus reproductives, which live in

less complex colonies. This differs from the higher termite M. bellicosus, for which only very
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few genes were differentially expressed in the heads of young and old reproductives [18]. Our

results imply that C. secundus reproductives have an earlier onset of aging than those of M. bel-
licosus, as supported by longevity data. Macrotermes reproductives can live for 20 years and

more, while the maximum lifespan of C. secundus reproductives is around 10–13 years [22]. In

contrast, the totipotent C. secundus workers showed fewer signs of aging in line with the

hypothesis that in organisms with full reproductive options, aging is expected to start only

after reaching maturity. For the present study we assumed that transcript expression differ-

ences reflected changes at the protein level (as most transcriptome studies do). This is known

to be the case for certain proteins in D. melanogaster (e.g., heat shock proteins and propheno-

loxidase) [117] and in bees (e.g. vitellogenin [118]), but results need to be taken with caution

because transcript and protein abundances do not necessarily correspond [119–121].

Aging in C. secundus compared to other social insect species

Age-associated expression changes in C. secundus can be related to senescence processes, such

as TE-activity and its resulting DNA and protein damage. In queens and kings, DETs related

to DNA damage repair and genome stability were downregulated in old compared to young

individuals (S2 Table). This also applied to old workers but in addition they had two ATR
homologs upregulated in old individuals (S2 Table). ATR coordinates DNA damage responses

(repair and cell cycle checkpoint signaling), participates in telomere maintenance and contrib-

utes to genome stability [76–78]. This implies that the protection against damage decreased

with age in the reproductives but less so in workers.

This view is also supported by our results for TE activity. TEs have been associated with

aging in a broad range of animals, from C. elegans, D. melanogaster, and mice to humans

[17,122–126] and most recently in termites [18]. Old queens had more TE-related transcripts

than young queens and associated with this was a downregulation of a 1:1 ortholog (D. mela-
nogaster) encoding pelo, which is involved in TE silencing [87]. In kings the number of TE

related transcripts was similar in old compared to young kings (see S2 Table) but three genes

involved in TE silencing were downregulated with age (HY): pelo and the homologs of vasa
and Hsc70-4 [87–90]. The reverse was found for workers in which the very low TE activity

(two DETs) in old workers was accompanied with an upregulation of Vha16-1, which is neces-

sary for the activation of the RNAi pathway and a systemic response against TEs [93]. In line

with TE activity, was the downregulation of ATPCL (Acetyl-CoA metabolism) in the repro-

ductives (HY). This gene has been connected to a disregulation of histone acetylation levels

and the disruption of heterochromatin formation (high TE content) [112,127].

The TE-related transcripts upregulated in young workers might not be related to aging but

developmental processes. Some upregulated TE-related transcripts in young workers were

LINE (long interspersed nuclear elements) retrotransposons (Dfam results, S7 Table). LINE-1

retrotransposons have been shown to regulate global chromatin accessibility in the early

embryo in mice [128]. Though it still requires further studies, we propose that the TE related

activity in young C. secundus workers reflects regulation of complex postembryonic develop-

ment of these immature instars, in line with other development-related worker DETs and the

GO enrichment results (S2 and S3 Tables).

Despite the differences in tissue specificity (C. secundus: whole body without gut vs M. belli-
cosus: head only), which might increase the number of false negatives (see [129]), our current

results compared with those for the termite M. bellicosus [18] reveal some striking similarities

and differences. While the same aging-related mechanisms were detected (TE-activity and

piRNA mediated TE defense), the aging pattern seems reversed between castes. Old major M.

bellicosus workers were characterized by a high TE activity whereas reproductives in this
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‘higher’ termite seem to be protected against TEs by the piRNA pathway [18]. This difference

can be explained by the fact that the major workers of M. bellicosus are sterile, while C. secun-
dus workers are totipotent immatures from which all reproductives derive (Fig 1B). Evolution-

ary theory predicts that in organisms with full reproductive options aging starts only after the

onset of maturity [8]. Hence, we expect that the totipotent C. secundus workers are selected to

invest in anti-aging processes, while this is less the case for sterile M. bellicosus workers in

which all reproduction is channeled through a separate sexual line (Fig 1A).

Many other factors differ between the two termite species, most importantly lifestyle and asso-

ciated with it, colony size and pathogen load. C. secundus is a drywood termite that nests in a sin-

gle, non-decomposed piece of wood which the workers never leave to forage outside. Hence, like

other drywood termites [130], C. secundus probably has a low pathogen load for workers and

reproductives, and it has small colony sizes and workers (and reproductives) that experience low

extrinsic mortality risks [131]. By contrast, M. bellicosus belongs to the foraging termites in which

workers leave the nest to collect food and bring it back. Associated with this lifestyle are–besides

reduced reproductive options for workers–larger colony sizes, and increased pathogen loads and

extrinsic mortality risks, especially for workers [22]. Extrinsic mortality risks are the most impor-

tant factors to influence aging in non-social organisms where all individuals can reproduce [4,8].

Hence, we also would predict faster aging of workers due to increased extrinsic mortality risks in

M. bellicosus. However, these models do not consider social organisms and how things change

with sterility. Models including all these factors are warranted to determine the separate contribu-

tion of different factors (e.g. worker sterility, colony size, and extrinsic mortality) for the evolution

of lifespans in social insects. In termites, these factors form ‘syndromes’ associated with life type.

Foraging termite species are always socially more complex, and have workers with reduced repro-

ductive capacities and shorter lifespans than wood-dwelling species [22]. Hence, these traits seem

to co-evolve and it will be difficult to separate and test the contribution of single factors.

An upregulation of genes, such as catalases and SODs, involved in the protection against

oxidative stress has been associated with the long lifespan of queens of the termite Reticuli-
termes speratus in studies that compared neotenic queens and workers of unknown age

[32,33]. This species lives in colonies with a degree of social complexity and worker reproduc-

tive options intermediate between M. bellicosus and C. secundus. Its developmental system is

complicated and lifespan data have not been published. As a foraging species, it has bifurcated

development, hence workers have reduced reproductive options but they seem to be not fully

sterile. Similar to C. secundus, founding queens (primary queens) can be replaced in R. spera-
tus. However, they seem to be rather short lived and replacements are produced from nymphal

instars via parthenogenesis [132]. We also found evidence that oxidative stress plays a role in

aging in C. secundus, but it supports the view that non-sterile workers, in contrast to the repro-

ductives, increase their protection with age: catalase (two DETs), inaE, carbonic anhydrase

and idh—all genes important in oxidative stress defense [133–136]—were upregulated in old

compared to young workers. The expression of one catalase (upregulated in old workers) was

downregulated in old kings and the 1:1 ortholog of doa was downregulated in old reproduc-

tives. Doa negatively regulates the expression of SOD1 and SOD2 [94]. Although cytochrome

P450s from the families CYP6 and CYP4 were differentially expressed in workers, these genes

might be connected to caste differentiation rather than oxidative stress [137,138], and for

kings, other functions for the differentially expressed CYP4 can also not be excluded.

Neural aging

Neurodegeneration and the decline in cognitive functions is characteristic of aging in

many species [119,139,140]. However, such a decline with age was not observed in the ant
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Pheidole dentata: old workers neither experienced a deterioration of cognitive functions

nor changes in the brain characteristic of aging [141]. These results question whether neu-

ral deterioration is a hallmark of aging in social insects. Although in our study no tests

were performed regarding the decline of cognitive performance and sensory perception in

old workers, the higher expression of odorant receptors (four DETs, see S2 Table) and the

expression of idh involved in the protection against oxidative stress damage in dopami-

nergic neurons [136], might be a sign of no aging in C. secundus workers. In contrast, we

consider the upregulation with age (HO) of ref(2)p in kings and the downregulation of

Ppt1 (HY) in queens as clear signs of nervous system degeneration and aging. Ref(2)p is a

conserved marker of neuronal aging [100,142], and the deficiency of Ppt1 in flies is associ-

ated with an abnormal accumulation of lipofuscin in the nervous system (lipofuscin accu-

mulates with age) and a reduced lifespan [96]. Some neurodegenerative diseases in

humans are caused by mutations in Ppt1 [143].

The role of immunity in aging

The loss of immunocompetence and the dysregulation of the immune system are considered a

hallmark of aging [144–146], but how aging and immunity influence each other is still not

completely understood [147]. In D. melanogaster, an overexpression of immunity genes is

characteristic of aging [148–150]. An immunity response clears pathogens but it can also cause

tissue damage via inflammation. Thus a hyper-activation of the immune system can represent

a state of immunopathology and promote aging [146]. Overall, all castes in C. secundus showed

an increase in expression of immunity genes with age, but to properly interpret these results

the caste-specific interplay between immunity and oxidative stress response should be consid-

ered. Immune defense is associated with an upregulation of oxidative stress response genes

[151–154]. Hence, the overexpression of immunity genes and the downregulation of stress

and oxidative stress response genes in C. secundus reproductives (but not workers) could

reflect the lack of homeostasis between pathways, and be eventually interpreted as a sign of

aging.

Typical aging pathways in C. secundus
We found few but relevant DETs connected with typical aging pathways like the IIS or the

TOR pathway: Imp-12, prmt1 and cora, which were all over-expressed in young compared to

old queens (Imp-12 also in young kings). These genes have been described to directly or indi-

rectly interact with foxo (IIS pathway). Imp-l2 binds insulin like peptides (ILPs) and its over-

expression in D. melanogaster leads to a lifespan extension [155,156]. Thus a decline in expres-

sion of Imp-l2 in old C. secundus reproductives might again be a sign of aging. Prmt1 encodes

an arginine methyltransferase, which, in mammals, methylates foxo [157,158]. The function of

cora is unknown, yet for D. melanogaster, experimental evidence exists that it physically inter-

acts with foxo (IIS pathway) and rictor (TOR pathway) [116]. ATPsynD, differentially

expressed in kings (HY), was another gene connected to the TOR pathway and involved in

aging. The downregulation of this gene in D. melanogaster conferred a lifespan extension to

females fed with a low carbohydrate-to-protein diet [113]. The effect of this gene in the context

of termites and their diet should be explored in future studies. The expression patterns of Imp-
l2, prmt1, ATPsynD and cora in C. secundus suggest that, as in other insects/animals lifespan

determination and aging processes might be modulated by the typical aging pathways IIS and

TOR.
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Conclusions

Our results demonstrate that reproductives of the lower termite C. secundus show signs of

senescence. The age related changes in expression suggest that aging might be linked to TE

activity, oxidative stress and ‘wear and tear’, and that it may partly be modulated by the IIS

pathway, immunity response and epigenetic modifications. For the totipotent workers, which

can become reproductives, we did not find evidence of aging but rather a strong signal of

metabolism, growth and development as indicated by the identity of DETs and the GO enrich-

ment analysis. Hence our results contrast strongly with those for the higher termite M. bellico-
sus where reproductives do not show signs of aging while the major workers did [18]. This is

in line with the general prediction of life history theory for organisms with reproductive

options that aging should only start after having reached maturity [8]: the totipotent C. secun-
dus workers are immatures (they are larval instars) that can develop into reproductives and

hence should not age. M. bellicosus workers are also non-adults, but in contrast they are irrevo-

cably sterile and experience much higher extrinsic mortality risks which should both favor

faster aging. The degree to which workers can reproduce differs across social insect species

and generally correlates with sociality [159]. Therefore, we suggest that aging in reproductives

and workers depends, among other factors, on the degree of worker’s reproductive options

which should be tested in future studies.
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