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Ca2+ concentrations drop rapidly over a distance of a few tens of nanometers from

an open voltage-gated Ca2+ channel (Cav), thereby, generating a spatially steep and

temporally short-lived Ca2+ gradient that triggers exocytosis of a neurotransmitter filled

synaptic vesicle. These non-steady state conditions make the Ca2+-binding kinetics of

the Ca2+ sensors for release and their spatial coupling to the Cavs important parameters

of synaptic efficacy. In the mammalian central nervous system, the main release sensors

linking action potential mediated Ca2+ influx to synchronous release are Synaptotagmin

(Syt) 1 and 2. We review here quantitative work focusing on the Ca2+ kinetics of

Syt2-mediated release. At present similar quantitative detail is lacking for Syt1-mediated

release. In addition to triggering release, Ca2+ remaining bound to Syt after the first

of two successive high-frequency activations was found to be capable of facilitating

release during the second activation. More recently, the Ca2+ sensor Syt7 was identified

as additional facilitation sensor. We further review how several recent functional studies

provided quantitative insights into the spatial topographical relationships between Syts

andCavs and identifiedmechanisms regulating the sensor-to-channel coupling distances

at presynaptic active zones. Most synapses analyzed in matured cortical structures

were found to operate at tight, nanodomain coupling. For fast signaling synapses a

developmental switch from loose, microdomain to tight, nanodomain coupling was

found. The protein Septin5 has been known for some time as a developmentally

down-regulated “inhibitor” of tight coupling, while Munc13-3 was found only recently

to function as a developmentally up-regulated mediator of tight coupling. On the other

hand, a highly plastic synapse was found to operate at loose coupling in the matured

hippocampus. Together these findings suggest that the coupling topography and its

regulation is a specificity of the type of synapse. However, to definitely draw such

conclusion our knowledge of functional active zone topographies of different types of

synapses in different areas of the mammalian brain is too incomplete.
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INTRODUCTION

The release of neurotransmitter from presynaptic terminals and

its modulation via synaptic plasticity are the bedrocks of directed

information flow within neuronal circuits of the central nervous
system (CNS). An action potential (AP) triggers the release of a

neurotransmitter filled synaptic vesicle (SV) by opening voltage-
gated Ca2+ channels (Cavs) in the presynaptic active zone (AZ).
The inflowing Ca2+ diffuses toward the SV, which bears the
primary Ca2+ sensor proteins Synaptotagmin (Syt) 1 or 2 on
its surface that are required for triggering its fusion with the
presynaptic plasma membrane. Ca2+ binding to Syt changes its
conformation and the resulting interaction with proteins of the
core release machinery, the soluble N-ethylmaleimide-sensitive
factor attachment protein receptor (SNARE) proteins, and other
proteins at the AZ ultimately triggers the fusion of the SV with
the presynaptic plasma membrane (Südhof, 2013; Kaeser and
Regehr, 2014). Thus, although aspects of this process are still not
understood, it can be noted that Syts link Ca2+ influx to SNARE
mediated SV fusion.

The process of transmitter release is probabilistic, i.e., not
every AP leads to exocytosis; rather it triggers the release of
a SV only with a certain probability. The average vesicular
release probability (pr) can be quantified by way of analyzing
fluctuations in postsynaptic current amplitudes (PSCs) under
conditions of different pr, e.g., at different concentrations of
extracellular Ca2+ ([Ca2+]e; Clements and Silver, 2000). Instead
of recording PSCs, recently it became also feasible to more
directly monitor glutamate release from individual boutons by
imaging the fluorescence of a genetically encoded, intensity-
based glutamate-sensing fluorescent reporter (iGlusnFr; Jensen
et al., 2017; Helassa et al., 2018; Marvin et al., 2018).

The initial pr (pr1) is an important factor not only in
determining the release fidelity for a single AP but also in setting
the properties of short-term plasticity of a synapse (Zucker and
Regehr, 2002; Abbott and Regehr, 2004). This can be illustrated
by a simple example of paired-pulse ratio (PPR) in the absence
of replenishment of SVs between the two APs of a paired-pulse
experiment. In this case PPR = pr2/pr1 (1-pr1), where pr2 is
the release probability of the second release process, which may
differ from pr1. In general, it can be noted that if pr1 > 0.5 the
synapse will depress, i.e., PPR < 1, and only the magnitude of the
depression will depend on pr2. However, if pr1 < 0.5 the synapse
will show facilitation or depression depending on pr2.

The pr depends on the Ca2+-binding kinetics of the release
machinery, i.e., the Ca2+-binding kinetics of Syt in the context of
the SNARE and other proteins at the AZ, and on the amplitude
and time course of the Ca2+ signal “seen” by Syt. The latter
depends on different factors, including the number and types
of Cavs, their diffusional distance to Syt, and the characteristics
of other Ca2+-binding proteins present in the terminal. Ca2+

entering the presynaptic terminal builds a steep, short-lasting
concentration gradient around the mouth of the open Cavs that
rapidly diminishes with increasing distance from the channel.
Due to the steepness and short duration of this Ca2+ gradient
a chemical equilibrium is never established in this process. This
makes the intracellular Ca2+-binding kinetics of the release

sensor, rather than its affinity alone, as well as its diffusional
distance to the Cavs crucial to the control of speed and reliability
of transmitter release (Bollmann et al., 2000; Schneggenburger
and Neher, 2000; Eggermann and Jonas, 2012). In this review we
will focus on these two prominent factors in the regulation of
pr, the synaptic Ca

2+-binding kinetics of Syt proteins and their
topographical relationships to Cavs. We will put an emphasis to
more recent findings at small synapses in cortical structures of
the mammalian brain.

PROPERTIES OF RELEASE SENSORS FOR
SYNCHRONOUS RELEASE

Synaptotagmin–1,−2, and −9 (Syt1, 2, 9) are the known
Ca2+ sensors for fast, synchronous transmitter release in the
millisecond time window following an AP (Südhof, 2014). Syt1
and Syt2 are the dominating Syt isoforms for synchronous
release in the mammalian brain while Syt9 expression appears
to be restricted to the limbic system and the striatum (Berton
et al., 1997; Fox and Sanes, 2007; Xu et al., 2007). In addition
to fast synchronous release, a second, slow and asynchronous
component of transmitter release has been described (Geppert
et al., 1994; Goda and Stevens, 1994). Asynchronous release is
primarily activated during and following repetitive stimulation
and operates via sensors different from those for synchronous
release (Sun et al., 2007; Kochubey et al., 2011). Due to their
dominating role for rapid neuronal communication, we will focus
here on Syt1 and Syt2 triggered release processes. Molecular
and structural aspects of Syt1, 2 proteins and their interactions
with SNARE- and scaffold proteins were covered by several
comprehensive recent reviews (Südhof and Rothman, 2009;
Südhof, 2012, 2013; Kaeser and Regehr, 2014; Brunger et al., 2018;
Park and Ryu, 2018).

Briefly, a synaptic vesicle bears approximately 15 copies of
Syt on its surface (Takamori et al., 2006). Each Syt has two C2
domains that constitute Ca2+-binding and in addition might
mediate protein-protein interactions with SNAREs and other
Syt proteins or interactions with the membrane. One of the C2
domains is a C2A domain that binds three Ca2+ ions, while the
other one is a C2B domain that binds two Ca2+ ions (Südhof,
2013). Upon Ca2+ binding Syt triggers rapid synchronous vesicle
fusion but the detailed molecular mechanisms are complex and
still controversial (Brunger et al., 2018; Park and Ryu, 2018).
Some of the proposed models discuss the role of Syt in at
least two processes: First, prior to Ca2+ influx spontaneous
fusion of synaptic vesicles has to be prevented by inhibiting the
constititively active SNARE complex from full zippering (SNARE
clamping). Second, upon Ca2+ influx fusion is triggered by
relieving SNAREs from the clamp (SNARE unclamping). Among
the proposed models it is under debate if SNARE clamping is
mediated directly by Syt or if and in as much it involves a
second protein called Complexin (Cpx), which is discussed to
also have a SNARE clamping function (Südhof, 2013; Trimbuch
and Rosenmund, 2016), and can form a protein complex with
SNAREs and Syt (Zhou et al., 2017). Hence, according to these
models, Syt either has a dual function by first clamping SNARE
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zippering and an uncalmping function by relieving the clamp
upon Ca2+ binding or only by relieving a Cpx-mediated
SNARE clamp upon Ca2+ binding. Other models emphasize the
membrane binding properties of Syt and suggest that membrane
insertion of Ca2+-bound Syt could cross-link vesicle and plasma
membrane or lower the energy barrier for fusion by either
regulating the vesicle to plasma membrane distance or by locally
curving the plasma membrane. In addition, there is evidence that
Syt also directly binds to Ca2+ channels (Sheng et al., 1997). Since
a detailed discussion of the molecular mechanisms of the fusion
process is beyond the scope of this review, we refer the reader to
most recent reviews (Trimbuch and Rosenmund, 2016; Brunger
et al., 2018; Park and Ryu, 2018).We will focus here on the kinetic
aspects of the interaction between Ca2+ ions and Syt1, 2.

FIGURE 1 | Dependency of release rates on the intracellular Ca2+

concentration. Release rates were calculated for different [Ca2+]i using the

sensor models developed for Syt2 at the calyx of Held (black;

Schneggenburger and Neher, 2000) and for Syt1 at chromaffin cells (blue;

Voets, 2000). Peak release rates per vesicle were plotted against the

corresponding [Ca2+]i. Insets show the kinetic binding schemes for the

reaction between vesicular sensor (V) and Ca2+.

Synaptic Ca2+-Binding Kinetics of
Synaptotagmins
It has been known for half a century that transmitter release has
a non-linear, approximately power of 4 dependency on [Ca2+]e
(Dodge and Rahamimoff, 1967). However, a quantification of
the intracellular presynaptic Ca2+-binding kinetics of a CNS
release process became available only more recently (Bollmann
et al., 2000; Schneggenburger and Neher, 2000), resulting in a
detailed kinetic model of Ca2+-binding and release for the young
calyx of Held synapse in the auditory brainstem (Figure 1),
which expresses the Syt2 isoform as prime release sensor
(Kochubey et al., 2016). The model was established based on
an elegant combination of presynaptic Ca2+ uncaging and Ca2+

imaging with pre- and postsynaptic patch-clamp recordings
(Box 1). The established model covers five cooperative, low-
affinity Ca2+-binding sites with fast kinetic rate constants
for Ca2+-binding and -unbinding (kon ∼108 M−1s−1, koff
∼5000 s−1, respectively) and accounted for the experimental,
cooperative power of 4 dependency of the release rate onto
the intracellular Ca2+ concentration ([Ca2+]i) as well as brief
synaptic delays (Figure 1, Table 1). It should be noted that this
model does not reflect the Ca2+-binding kinetics of Syt2 alone
but rather the kinetics of Syt2 embedded in its natural synaptic
environment. For simplicity we will refer to it as the Syt2
model.

In following work the Syt2 model has been extended
(Scheme 1) to also account for release at low [Ca2+]i (Lou
et al., 2005), for phasic and tonic release (Millar et al., 2005;
Pan and Zucker, 2009), for asynchronous release (Sun et al.,
2007), and to address mechanisms of synaptic plasticity (Felmy
et al., 2003; Sakaba, 2008; Pan and Zucker, 2009; Bornschein
et al., 2013; Brachtendorf et al., 2015). In addition, it has been
shown that the intracellular Ca2+ sensitivity of Syt2-driven
release is slightly reduced between postnatal day (P) 8-9 and
P12-15 at the calyx of Held (Wang et al., 2008; Kochubey et al.,
2009). Currently, the established Syt2 models are widely used in

BOX 1 | Quanti�cation of the Ca2+-binding kinetics of Syt in presynaptic terminals via Ca2+ uncaging.

Syt is integrated in the supra-molecular protein complex of the release machinery, which will influence its Ca2+-binding kinetics in a non-predictable manner similar to

other Ca2+ sensor proteins (Xia and Storm, 2005). Consequently, Syt2 has been analyzed in Syt2 expressing synapses (cf. above). Toward this end, it was required

to first define the local [Ca2+]i at the release sensor and second, to quantify corresponding release rates.

At present it is difficult or even impossible to directly quantify the local [Ca2+]i at the release sensor. Even if it were possible to measure [Ca2+]i at areas as small as

∼0.5 µm2 as performed at squid giant synapses (Llinás et al., 1992), the local [Ca2+]i at the sensor would remain rather ill-defined due to the steep spatial gradient

of synaptic [Ca2+]i elevations, the unknown distance to the sensor and uncertainties about endogenous Ca2+ buffers (Neher, 1998a; Bucurenciu et al., 2008, 2010;

Bornschein et al., 2013; Schmidt et al., 2013).

Ca2+ uncaging has been shown to be a useful method to resolve this problem (Heidelberger et al., 1994). Ca2+ uncaging elevates [Ca2+]i uniformly in a presynaptic

terminal. Due to this uniform [Ca2+]i elevation throughout the terminal, local [Ca2+]i will be identical to global [Ca2+]i, which in turn is quantified by concomitant Ca2+

imaging. Uniform elevations of synaptic [Ca2+]i to different levels by flash photolysis of caged Ca2+ have been employed for establishing the relationship between

[Ca2+]i and release and permitted the construction of the above described Syt2-based release models. This method was applied at the giant calyx of Held (Bollmann

et al., 2000; Schneggenburger and Neher, 2000; Lou et al., 2005; Sun et al., 2007; Kochubey and Schneggenburger, 2011), which permits direct whole-cell patch-

clamp equilibration with caged Ca2+ compounds and Ca2+ indicator dyes, Ca2+ uncaging at the presynaptic terminal and concomitant patch-clamp recordings

from the postsynaptic site. Thus, differences in PSC amplitudes and synaptic delays recorded at the postsynaptic site can be directly correlated to differences in

[Ca2+]i at the presynaptic release sensor. Finally, recording of quantal PSCs (“minis”) allows for calculating the release rates by deconvolution analysis (Van der Kloot,

1988; Diamond and Jahr, 1995; Bollmann et al., 2000; Schneggenburger and Neher, 2000; Neher and Sakaba, 2001). Deconvolution decomposes the PSC into

the times of release of individual quanta, thereby, giving the release rate in quanta/s during the PSC. The recorded mini serves as elementary quantal event for the

deconvolution. Deconvolution assumes that there are no quantal interactions at the synapse, i.e., the PSC arises from linearly summing minis.
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TABLE 1 | Parameters of release sensors.

Model No. /Parameter 1 2 3 4 5 young 5 mature 6 Unit

kon 1 0.9 0.9 3 1.21 1.15 0.044 ×10−8 M−1s−1

koff 4000 9500 3000 3000 6500 7900 56 s−1

b, cooperativity factor 0.5 0.25 0.25 – 0.26 0.26 1

I+, basal fusion rate 2 – – – – – – ×10−4 s−1

f, increase upon Ca2+ binding 31.3 – – – – – –

γ , release rate - 6000 5000 40000 6960 6960 1450 s−1

γ2, forward isomerization – – – 30000 – – – s−1

δ, backward isomerization – – – 8000 – – – s−1

kpriming – – 0.05 – – – – ×10−8 M−1s−1

kunpriming – – 50 – – – – s−1

kfilling – – 8 – – – – s−1

kunfilling – – 12 – – – – s−1

kbasal – – 2 – – – – s−1

quantitative descriptions of transmitter release (Eggermann et al.,
2012; Stanley, 2016).

For mammalian CNS synapses, the Syt2-based models were
originally constructed at the young (1–2 weeks old) calyx
of Held but subsequently also at a small CNS synapse, the
immature cerebellar basket cell to Purkinje cell (PC) synapse
(Sakaba, 2008), at which Syt2 also represents the dominant Syt
isoform (Chen et al., 2017). Notably, Syt2 is the dominating fast
release sensor in hindbrain structures, while in most forebrain
structures, including the neocortex, Syt1 is the sensor mediating
fast synchronous release (Berton et al., 1997; Fox and Sanes, 2007;
Xu et al., 2007). Importantly, a detailed kinetic model similar
to that of Syt2 is at present not available for Ca2+-binding to
Syt1 in mammalian CNS synapses. At very young, P5-6 pre-calyx
synapses in the brainstem a fast release component has been
reported to be mediated via Syt1 but no kinetic model has been
constructed (Kochubey et al., 2016). This Syt1 triggered release
process had a less than power of 2 dependency on [Ca2+]i, i.e., its
[Ca2+]i dependency was substantially shallower than that of Syt2
triggered release at the young calyx of Held. A kinetic model for
Syt1-mediated release has been constructed for fusion of dense
core vesicles at chromaffin cells of the adrenal gland (Voets, 2000;
Sørensen et al., 2003). In this model three to four Ca2+-binding
sites with rate constants of about two orders of magnitude
smaller than those for the synaptic Syt2 model were found to
be suitable to describe secretion from chromaffin cells, which is
much slower than rapid synaptic release (Table 1). Consequently,
the resulting dependency of the release rate onto [Ca2+]i was
again much shallower than for synaptic Syt2 (Figure 1). Also, a
quantitative comparison of the dependency on [Ca2+]e of release
processes mediated by Sy1 and Syt2 in cultured neurons revealed
differences between the two proteins. Finally, differences were
found for the kinetics of Syt1 and Syt2 mediated postsynaptic
currents (PSCs), indicating differences in the kinetics of Syt1
vs. Syt2 triggered release. Consequently, it has been suggested
that the expression of a particular Syt isoform dictates the
properties of release at its synapse (Xu et al., 2007). Thus, it will
be interesting to see, whether Syt1-triggered release at mature

synapses in the mammalian brain indeed has a dependency on
[Ca2+]i different from Syt2-triggered release.

Kinetics of Ca2+-Unbinding From Syt,
Active Ca2+, and Facilitation Sensors
Paired pulse facilitation (PPF) is a form of short-term
synaptic plasticity important for synaptic computation (Abbott
and Regehr, 2004). PPF is a use-dependent enhancement of
transmitter release following the second of two successive APs
separated by a millisecond time interval. Although PPF was
discovered more than 70 years ago, its mechanisms remain
controversial and may differ between synapses (Zucker and
Regehr, 2002). Originally, it has been suggested that “Ca2+

remaining attached to specific sites on the inner axonmembrane”
causes facilitation. For this Ca2+ the term “active Ca2+” was
coined (Katz andMiledi, 1968). In a simpler form of the “residual
Ca2+ hypothesis” a residue of free Ca2+ ([Ca2+]res) from the
first AP summates with free Ca2+ ([Ca2+]i) from the second
AP, thereby, causing amplified release. However, it has been
recognized early that the decay of [Ca2+]res deviates from the
time course of facilitation, such that [Ca2+]res cannot fully
account for facilitation (Blundon et al., 1993). Additionally, due
to the large amplitude difference between [Ca2+]res (∼100 nM)
and nano- or microdomain [Ca2+]i at the release site during the
second AP (∼20–100µM) simple Ca2+ summation is unlikely
to be the exclusive source of facilitation (Zucker and Regehr,
2002). Consequently, at different synapses different conceptions
were developed to account for facilitation. These include slow
Ca2+ relaxation of the bound sensor (Yamada and Zucker,
1992; Bertram et al., 1996; Matveev et al., 2002), separate sites
for release and facilitation (Atluri and Regehr, 1996), elevated
release site [Ca2+]i during the second pulse (Geiger and Jonas,
2000; Felmy et al., 2003; Bollmann and Sakmann, 2005), buffer
effects (Neher, 1998a; Rozov et al., 2001), or activity dependent
recruitment of additional release sites (Valera et al., 2012; Miki
et al., 2016; Doussau et al., 2017). For a recent comprehensive
review on mechanisms of PPF (see Jackman and Regehr, 2017).

Frontiers in Molecular Neuroscience | www.frontiersin.org 4 January 2019 | Volume 11 | Article 494

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Bornschein and Schmidt Synaptotagmins and Coupling

SCHEME 1 | Release sensor models.

Here, we focus on Syt-related mechanisms of PPF. Ca2+-
unbinding from the release sensor has been suggested as one
mechanism of PPF (Yamada and Zucker, 1992; Bertram et al.,
1996; Matveev et al., 2002). Young cerebellar PCs are connected
among each other via recurrent GABAergic synapses that show
PPF during high-frequency activation. Although PCs strongly
express the “slow” and “fast” native Ca2+ buffers Parvalbumin
(PV) and Calbindin-D28k (CB), respectively, PPF was not
affected by loss of either of the buffers (Bornschein et al., 2013).

Rather the results indicated that a residue of Ca2+ remaining
bound to the release sensor Syt2 (Schneggenburger and Neher,
2000; Sakaba, 2008) after the first AP is the probable main cause
of PPF at PC to PC synapses, a mechanism highly reminiscent of
the original “active Ca2+” mechanism (Katz and Miledi, 1968).

Another suggested mechanism reminding on the original
“active Ca2+” mechanism was that a facilitation sensor separate
from the release sensor could exist (Atluri and Regehr, 1996). The
molecular identity of the facilitation sensor, however, remained
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elusive until recently Syt7 has been identified to operate as a
facilitation sensor (Jackman et al., 2016). Syt7 is abundantly
found in presynaptic plasma membranes (Li et al., 2017), while
Syt1 and Syt2 rather locate to SV membranes. The intrinsic Ca2+

affinities of Syt1 and Syt7 are comparably low in solution (KD

≥ 100µM; Radhakrishnan et al., 2009; Voleti et al., 2017). In
the presence of lipids the apparent Ca2+ affinity of both proteins
increases, albeit for Syt7 stronger than for Syt1, such that the
apparent Ca2+ affinity of Syt7 is ∼10fold higher than that of
Syt1 (Sugita et al., 2002). The apparent Ca2+-sensing properties
of Syt1 and Syt7 correlate with their specific functions, such
that Syt1 is activated only by high Ca2+ concentrations (∼10–
100µM) typical for AP-evoked [Ca2+]i elevations in the vicinity
of Ca2+ channels, while Syt7 can also operate during longer
lasting increases in residual Ca2+ in the low micromolar range
(Volynski and Krishnakumar, 2018). These characteristics made
Syt7 a promising candidate for the proposed facilitation sensor.
Indeed, it was found that Syt7 contributes to PPF at different
types of facilitating synapses in the hippocampus and at cortico-
thalamic synapses. Mechanistically, Ca2+-binding to the C2A
domain of Syt7 was required for facilitation (Jackman et al., 2016;
Jackman and Regehr, 2017; Turecek et al., 2017).

For Syt7 at least two other functions were reported (Volynski
and Krishnakumar, 2018): It was found to act as a Ca2+ sensor
for SV replenishment (Liu et al., 2014) and to mediate slow,
asynchronous transmitter release (Bacaj et al., 2013; Luo and
Südhof, 2017). Interestingly, the different proposed functions of
Syt7 need not be mutually exclusive (Chen and Jonas, 2017).
Consistently, it was found at cerebellar PF to PC synapses that
Syt7 is involved inmediating both, PPF and asynchronous release
(Turecek and Regehr, 2018). PPF at PF synapses has further been
reported to depend on rapid SV replenishment with recruitment
of additional release sites that resulted in an activity dependent,
transient increase in the RRP (Valera et al., 2012; Brachtendorf
et al., 2015; Miki et al., 2016; Doussau et al., 2017). It is tempting
to speculate that the “overfilling” of an RRP by additional release
sites could involve Syt7.

SPATIAL COUPLING BETWEEN
SYNAPTOTAGMIN AND CAVS

Besides the Ca2+-binding kinetics of Syt, its spatial relationship
to the presynaptic Cavs is crucial for setting fundamental synaptic
properties, including pr, synchronicity of release and synaptic
delays (Bucurenciu et al., 2008). The distance between Syt and
the Cavs is frequently referred to as the coupling distance. In
general it may be asserted that for AP evoked release a tight
coupling favors high pr (Bucurenciu et al., 2008; Baur et al.,
2015; Kusch et al., 2018), short synaptic delays (Bucurenciu et al.,
2008), energy efficacy (Eggermann et al., 2012; Lu et al., 2016)
and renders the release process less modifiable by Ca2+ buffers
(Adler et al., 1991; Eggermann and Jonas, 2012; Bornschein
et al., 2013; Schmidt et al., 2013; Brachtendorf et al., 2015).
Loose coupling, on the other hand, offers more options for
regulation and plasticity (Nadkarni et al., 2012; Vyleta and Jonas,
2014). There has been a comprehensive review on influx-release
coupling at mammalian synapses of the peripheral NS (PNS) and

the CNS (Eggermann et al., 2012). However, since then, a large
body of work at AZs focused directly or indirectly on coupling
distances and greatly advanced our knowledge about coupling
and its regulation at different synapses. Some of these insights
stem from classical model synapses, like the calyx of Held in the
auditory brainstem, the frog neuromuscular junction, the squid
giant synapse, or chick ciliary ganglion cells, which offer favorable
conditions for electrophysiological analysis, in particular due to
their large size. Insights from these synapses were covered by
two recent comprehensive reviews (Wang and Augustine, 2015;
Stanley, 2016) to which we refer the reader here. We will review
advances in understanding AP-mediated Ca2+ influx-evoked
transmitter release coupling at mammalian cortical AZs as well
as their regulation during postnatal development and emerging
roles of specific proteins in this regulatory process.

Coupling Topographies
We will start this chapter with a brief note on nomenclature.
The border between “tight” and “loose” coupling is not clearly
defined (Box 2). A border line in the range of 70–100 nm
has been suggested previously to distinguish between the two
coupling regimes (Eggermann et al., 2012; Vyleta and Jonas,
2014). In light of the most recent quantitative estimates of
coupling distances and domain topographies at mammalian
CNS synapses (Table 2), we suggest an even narrower line of
demarcation of no larger than 50 nm. At this coupling distance
a given open Cav will be essentially ineffective in triggering
release of a SV (Figure 3). Throughout this review we will use
“loose coupling” if the coupling distance is ≥ 50 nm and “tight
coupling” otherwise. In addition, we will use “single domain
topography” (SDT) if only a single open Cav triggers release,
and “domain overlap topography” (DOT) if a cluster of open
Cavs with overlapping Ca2+ signaling domains controls release.
Finally, we will use “nanodomain” as synonym for tight coupling
plus SDT and “microdomain” as synonym for loose coupling plus
DOT (Fedchyshyn and Wang, 2005; Table 3; Box 3).

Tight influx-release coupling has been reported for giant
synapses specialized for escape reflexes in the squid (Adler
et al., 1991), bipolar cells in the goldfish retina (von Gersdorff
and Matthews, 1994; Burrone et al., 2002) and for the
frog neuromuscular junction (Harlow et al., 2001). The first
descriptions of nanodomain coupling came from the squid
giant synapse and chick ciliary ganglia cells (Adler et al., 1991;
Stanley, 1993). In the mammalian CNS, inhibitory synapses
in the hippocampus and cerebellum were found to operate
at tight coupling and at least in part with SDT, i.e., with
nanodomains (Bucurenciu et al., 2008, 2010; Eggermann and
Jonas, 2012; Bornschein et al., 2013). Surprisingly, cortical
glutamatergic synapses seemed to forgo the benefits of tight
coupling. Experimental studies performed on young pyramidal
neurons (PNs; Ohana and Sakmann, 1998; Rozov et al., 2001) and
in hippocampal cell cultures (Ermolyuk et al., 2013) as well as
computational models of hippocampal CA3 – CA1 PN synapses
(Nadkarni et al., 2012) showed loose coupling and established the
view that small glutamatergic synapses in the brain, in particular
excitatory cortical synapses, operate at microdomain coupling
(Eggermann et al., 2012).
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BOX 2 | Deriving quantitative estimates of coupling distances.

We are not aware of any report of a direct quantification of the coupling distance between Syt and Cavs at AZs by microscopic techniques. In particular this appears

to be due to the non-availability of appropriately sized labels. Hence, information about the average coupling distance is classically obtained by dialyzing a presynaptic

terminus with exogenous Ca2+ chelators of similar affinity (KD) but different Ca
2+-binding kinetics, i.e., different on-rates (kon; Adler et al., 1991; Augustine et al.,

1991; Neher, 1998b; Eggermann et al., 2012). Typically the Ca2+ chelators EGTA (ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid; KD = 70 nM,

kon = 107 M−1s−1; Nägerl et al., 2000) and BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid; KD = 220 nM, kon = 4∗108 M−1s−1; Naraghi and

Neher, 1997) are used for this approach since they have similar KD values but BAPTA is ∼40 times faster than EGTA. Ca2+ chelators suppress synaptic transmission

by reducing the amount of Ca2+ that binds to Syt (Figure 2). The exact amount of interference depends on four factors: the average coupling distance, the mobility

of the chelator, its kon, and its concentration. If influx-release coupling is tight, only a chelator with a rapid kon like BAPTA is able to capture Ca2+ in the nanodomain

in the immediate vicinity of the channel before it reaches Syt, while chelators with slow kon like EGTA fail to influence the nanodomain Ca2+. Thus, at moderate

concentrations only the fast BAPTA will reduce the amount of transmitter released in a tight coupling regime. In a loose coupling regime, on the other hand, both,

BAPTA and EGTA will interfere with transmitter release since Ca2+ has to diffuse a larger distance from the Cavs to reach the sensor. This allows also the slower EGTA

to capture Ca2+ in the microdomain before the ions reach the release sensor. Using this exogenous chelator dialysis approach, most of the estimates of coupling

distances reviewed here were derived. It should be noted that the degree of interference actually not only depends on the kon but also on the concentration of the

buffer, i.e., a large concentration of EGTA interferes with release similar to a much smaller concentration of BAPTA (Figure 3). In order to obtain quantitative values of

the coupling distance, additional information about the magnitude and duration of the Ca2+ influx and potential Ca2+ sensor saturation is required (e.g., Bucurenciu

et al., 2008; Schmidt et al., 2013; Nakamura et al., 2015, 2018; Kusch et al., 2018). Finally, by combining all results in experimentally constrained computer simulations

quantitative estimates of the average coupling distance can be obtained (Bucurenciu et al., 2008; Bornschein et al., 2013; Schmidt et al., 2013; Vyleta and Jonas,

2014; Nakamura et al., 2015; Kusch et al., 2018).

The exogenous chelator dialysis approach was applied to large synapses that can be directly infused with chelator containing solution (Adler et al., 1991; Borst

and Sakmann, 1996) and to large neurons that permit dialyzing the distant presynaptic sites by prolonged somatic whole-cell patch-clamp recordings (Ohana and

Sakmann, 1998; Bucurenciu et al., 2008; Bornschein et al., 2013). The advantage of this approach is that the intracellular concentrations of the Ca2+ chelators are

well-defined.

Another way of loading neurons with exogenous chelators is by application of membrane permeant acetoxymethyl ester variants of the Ca2+ chelators (EGTA-AM

or BAPTA-AM) to the extracellular bath solution (Atluri and Regehr, 1996; Matsui and Jahr, 2003; Hefft and Jonas, 2005). The AM-chelator compound passes the

lipophilic plasma membrane and enters the presynaptic cytosol. There, the ester group is cleaved by enzymes, which makes the chelator membrane-impermeable.

Depending on loading time, its intracellular concentration can substantially exceed its bath concentration due to continuous intracellular accumulation of the chelator

as long as its AM-form is present in the bath. The advantage of this approach is its relative experimental ease and that it is well-tolerated also by small neurons. It has

the disadvantage that the intracellular chelator concentration remains rather ill defined. Thus, it permits a rapid initial assessment of relative differences in coupling

e.g., between age groups, if differently aged synapses are compared under otherwise identical experimental conditions (Matsui and Jahr, 2003; Hefft and Jonas,

2005; Baur et al., 2015).

Neurons express endogenous Ca2+ buffers with quantified Ca2+-binding kinetics (Lee et al., 2000; Faas et al., 2007). Knowledge about the expression of

specific native Ca2+ buffers and there Ca2+-binding kinetics offers an alternative route to deriving quantitative estimates of coupling distances by comparing

transmitter-release from wild-type terminals to release from mutant terminals lacking a specific native buffer (Bornschein et al., 2013; Schmidt et al., 2013).

Initial experimental evidence against the generality of this
view was available from the CA3 – CA1 PN synapse (Scimemi
and Diamond, 2012), showing SDT and results that were more
consistent with a tighter coupling at this synapse rather than
with DOT and a very large number of Cavs loosely coupled to
the release sensor as suggested by the above mentioned study of
Nadkarni et al. (2012). In the cerebellar cortex of 3 to 4 weeks
old mice, subsequent work quantified the coupling distance at
the parallel fiber (PF) to PC synapse, an excitatory, glutamatergic
synapse in the cerebellar cortex and probably the most abundant
synapse in the mammalian brain. It was found that this synapse
operates at tight coupling of ∼24 nm (Schmidt et al., 2013). In
successional work it was found that at this age coupling is not
only tight but that these synapses operate with a nanodomain
topography (Baur et al., 2015; Kusch et al., 2018) and that
also further excitatory synapses in the cerebellar cortex operate
with tight coupling (Ritzau-Jost et al., 2014; Delvendahl et al.,
2015). Together these studies clearly contradicted the generality
of microdomain coupling at excitatory synapses in mammalian
cortical structures.

Regulation of Coupling
An interesting difference between the experiments suggesting
microdomain coupling in glutamatergic cortical synapses

(Ohana and Sakmann, 1998; Rozov et al., 2001) and the
experiments showing nanodomain coupling (Schmidt et al.,
2013; Ritzau-Jost et al., 2014) was the age of the experimental
animals: While the former studies were performed in young rats
(∼2 weeks old), in the latter studies, the coupling distance was
assessed in more matured mice (>3 weeks old). Considering
that the postnatal development of rats likely proceeds slower
than that of mice, the age difference most likely corresponds
to an even larger difference in brain maturation. This raised
the possibility that the coupling distance could be regulated
developmentally.

Support for the idea of a developmental regulation of
coupling came from experiments performed at the calyx of Held.
Experiments performed on young (∼10 days old) and matured
(∼3 weeks old) calyces indicated a substantial developmental
tightening of the coupling distance during postnatal development
(Taschenberger et al., 2002; Fedchyshyn and Wang, 2005; Wang
et al., 2008; Kochubey et al., 2009). Simulations quantified that the
experimental results are explained by a developmental tightening
of the spatial coupling between Ca2+ channels and Syt from∼60
to∼20 nm at the calyx of Held (Wang et al., 2009).

Coupling distances and domain topographies were quantified
more recently in a developmental context (Table 2), again at
the calyx of Held (Nakamura et al., 2015) and at the PF to PC
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synapse (Baur et al., 2015). At the calyx of Held, a moderate
developmental tightening of the coupling distance between Syt
and the closest Cav of a cluster from∼30 nm to∼20 nm between
P7 and P14 was found, while the number of Cavs within a cluster
controlling a given release site remained relatively constant with
an average in the range of 25 to 30 (Nakamura et al., 2015). Thus,
although a developmental shortening of the coupling distance
was found at the calyx of Held, it operated at fairly tight coupling
with DOT, independent of age in the range of P7 to P14. By
contrast, at the PF to PC synapse a switch from DOT to SDT
was found. At ∼P9, PF terminals operated with a DOT with a
distance of ∼60 nm between the closest Cav within a cluster and
Syt, while at ∼P23 a coupling distance of ∼20 nm and SDT were

FIGURE 2 | Ca2+ signaling domains. (A) General Ca2+ dynamics: Ca2+

enters a presynaptic terminal through a voltage-gated Ca2+ channel. Due to

rapid diffusion (indicated by red gradient and the arrows) Ca2+ forms a steep,

short-lived spatio-temporal gradient around the mouth of the open channel. It

binds to mobile or fix Ca2+-binding proteins (CaBPs); some CaBP are pure

buffers, others have an additional Ca2+ sensor function. Ultimately Ca2+ is

cleared from the cytosol via Ca2+-ATPases (white circles with arrows) that

either pump Ca2+ into the extracellular space or sequester it into organelles.

(B) In a tight coupling regime a Syt bearing SV is located very close to the site

of Ca2+ entry (<50 nm). If coupling is tight, at moderate concentrations only a

buffer with rapid Ca2+ binding kinetics like BAPTA (red) can interfere with

Ca2+ binding to Syt and prevent release. In a loose coupling regime, on the

other hand, the SV is further away from the site of Ca2+ entry and also a slow

buffer like EGTA (blue) can bind Ca2+ before it reaches the release sensor.

FIGURE 3 | (A) Simulated [Ca2+]i transients at increasing distances between

5 and 50 nm (5 nm increments) from a single Cav2.1 channel (inset; Li et al.,

2007) opening during an AP in the absence of Ca2+ buffers. (B) Release rates

were simulated at increasing distances from the Cav2.1 channel (1 nm

increments) using the Syt2 sensor model from Figure 1. Release probabilities

were calculated by integrating the release rates over time and plotted against

the corresponding sensor-to-Cav coupling distances. Note the steep decline

in pr between 6 and 20 nm coupling distance and that pr at 50 nm is almost 0.

(C) Simulated relative reduction of pr for different concentrations of EGTA

(blue) and BAPTA (red). Moderate concentrations of EGTA are not very

effective in blocking release close to a channel, while moderate concentrations

of BAPTA are highly effective already at coupling distances of 10–20 nm.

Higher concentration of EGTA mimic the effects of lower concentrations of

BAPTA (concentrations are indicated). Note that in native boutons the

concentrations of EGTA and BAPTA that yield corresponding effects on pr will

be different due to the presence of native Ca2+-binding proteins, which were

not included in the simulations.
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TABLE 2 | Quantitative estimates of coupling topographies at mammalian CNS synapses.

Synapse, age Brain region, preparation,

species

Average coupling

distance (nm)*

No of Cavs controlling a release

site, Cav subtypes

References

BC – GC, P18-21 Hippocampus, Slice, Rat 10–20 ≤ 3, Cav2.1 (STD – DOT) Bucurenciu et al., 2008, 2010

MF – CA3 PN, P20-23 Hippocampus, Slice, Rat ∼75 n.d. Vyleta and Jonas, 2014

CA3 – CA1 PN Hippocampus, in silico 300 ∼70 (DOT) Nadkarni et al., 2012

CA3 – CA1 PN, P14-21 Hippocampus, Slice, Mouse ≤30 1, Cav2.1, Cav 2.2, (SDT) Scimemi and Diamond, 2012

Hippocampal synapses Hippocampus, Cell culture 25–70 2–14, Cav2.1, Cav 2.2, Cav 2.3 (DOT) Ermolyuk et al., 2013

PC – PC, P7-12 Cerebellum, Slice, Mouse 20–35 n.d. Bornschein et al., 2013

PF – PC, P21-21 Cerebellum, Slice, Mouse 10–24 1, Cav2.1 (SDT) Schmidt et al., 2013; Baur et al.,

2015; Kusch et al., 2018

PF – PC,P8-10 Cerebellum, Slice, Mouse ∼60 ≥3, Cav2.1, Cav2.2 (DOT) Baur et al., 2015; Kusch et al., 2018

BC – PC, P14-16 Cerebellum, Slice, Mouse, 10–20 n.d., Cav2.1 Arai and Jonas, 2014

MF – GC, P21-61 Cerebellum, Slice, Mouse ∼7–20 Cav2.1 (SDT) Ritzau-Jost et al., 2014, 2018;

Delvendahl et al., 2015

CH, P8-12 Brainstem, Slice, Mouse ∼23 Cav2.1, Cav2.2 (DOT) Fedchyshyn and Wang, 2005; Wang

et al., 2009

CH, P16-18 Brainstem, Slice, Mouse ∼63 Cav2.1 (SDT) Fedchyshyn and Wang, 2005; Wang

et al., 2009

CH, P7 Brainstem, Slice, Rat ∼20 ∼29, Cav2.1 (DOT) Nakamura et al., 2015

CH, P14 (21) Brainstem, Slice, Rat ∼30 ∼26, Cav2.1 (DOT) Nakamura et al., 2015

*Coupling distances need not be homogeneous (Scimemi and Diamond, 2012; Ermolyuk et al., 2013; Ritzau-Jost et al., 2018).

BC, basket cell; CH, calyx of Held; GC, granule cell; MF, mossy fiber; P, postnatal day; PN, pyramidal neuron; PC, Purkinje cell; PF, parallel fiber; n.d., not determined.

BOX 3 | Estimating the functional domain topography.

How many Cavs open during an AP and do their Ca2+ signaling domains overlap? Immunolabelling techniques combined with electron microscopy provide highly

valuable insights into the structural organization of Cav clusters and Cav subtypes at the AZ. Yet, in order to answer the above question for functional SDT or DOT

they need to be combined with physiological studies at the synapse (Holderith et al., 2012; Baur et al., 2015; Nakamura et al., 2015; Kusch et al., 2018). Specifically,

the use of the unspecific Cav blocker Cd2+ and/or a combination of Cav subtype specific blockers were shown to yield valuable insights into the functional domain

topography (Table 3; Augustine et al., 1991; Mintz et al., 1995; Scimemi and Diamond, 2012).

At physiological temperature Cd2+ dissociates slowly from a Cav (Chow, 1991), thus, blocking a channel in an all-or-none fashion on the time-scale of an AP. The

shape of Cd2+ dose-effect curves onto EPSC amplitudes as read-out for release will depend on the domain topography. If a presynaptic terminal harbors release

sites with DOT, the curve will be non-linear whereas it will be linear if the release sites operate with SDT (Augustine et al., 1991). The construction of full dose-effect

curves may be circumvented by analyzing the effects of a subsaturating concentration of Cd2+ onto the PPR (Scimemi and Diamond, 2012).

Application of a subsaturating concentration of Cd2+ reduces the amplitude of the first postsynaptic current (PSC) of a paired pulse experiment irrespective of the

domain topography. However, its impact on the PPR markedly depends on whether the release sites operate with SDT or DOT. At a subsaturating concentration of

Cd2+ some but not all Cavs will be blocked during an AP. In a DOT, blocking some of the Cavs controlling a synaptic vesicle will have effects similar to reducing

[Ca2+]e, i.e., the initial pr will be reduced while the PPR will increase. On the other hand, if a release site is controlled by a single Cav (SDT), release of synaptic vesicles

encountering no Ca2+ would be blocked while release or facilitation of vesicles encountering Ca2+ would be the same as in the absence of Cd2+. In consequence,

application of Cd2+ will increase PPR in a DOT but leave it unaltered in a SDT (Scimemi and Diamond, 2012).

These results can further be substantiated by using Cav subtype specific blockers, if more than one channel subtype contributes to release. For a SDT in which a

given vesicle is linked to either of the Cav subtypes, the sum of the toxin-sensitive release fractions will not exceed release measured in the absence of toxin, i.e., the

toxin sensitive release fractions will sum linearly. Contrariwise, for an AZ at which release of a vesicle is controlled in a DOT composed of different Cav subtypes, the

sum of the blocked release fractions can exceed the control value (“supralinear” summation) because of the non-linear dependency of release on Ca2+ (Mintz et al.,

1995; Scimemi and Diamond, 2012).

found (Baur et al., 2015; Kusch et al., 2018). The DOT at young
PF terminals was composed of Cav2.1 (P/Q-type) and Cav2.2 (N-
type) concomitantly controlling a release site, with likely 2 Cav2.1
and 1 Cav2.2 triggering release during an AP. The nanodomain
at more matured PF terminals comprised only a Cav2.1 (Kusch
et al., 2018).

These results may suggest that developmental tightening
of the coupling distance is a common phenomenon in the
mammalian brain, which could be accompanied by a switch
from DOT to SDT in small, but not in large synapses. However,

an alternative is that coupling distances, domain topographies
and their regulation are synapse specific properties. At the
glutamatergic MF to CA3 PN synapse a loose coupling distance
of ∼75 nm has been quantified in the matured hippocampus
(Table 2; Vyleta and Jonas, 2014). However, this finding does not
necessarily exclude a developmental tightening of the coupling
distance at the MF to CA3 synapse. It remains possible that
the young synapse operates at an even larger coupling distance.
Thus, while developmental tightening and loose coupling in
mature brain are not mutually exclusive, the finding of loose
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TABLE 3 | Active zone topographies.

AZ topgraphy Release Chelators Submaximal

Cd2+ block

Full subtype

block

References

SINGLE-DOMAIN TOPOGRAPHY (NO DOMAIN-OVERLAP)

homog. tight coupling

all pr identical

= nanodomain

pr,avg = 1/N
∑

pr = pr

Fsyn = (1− pr )
N

Psyn = 1− F = 1− (1− pr )
N

BAPTA >> EGTA

DE: Monophasic

PPR→ RRtotal =

RRP/Q + RRN

Bucurenciu et al.,

2008; Baur et al.,

2015; Kusch et al.,

2018

homog. loose coupling

all pr identical

Ditto BAPTA ≥ EGTA

DE: Monophasic

Ditto Ditto Only simulation

heterog. coupling

heterog. pr

pr,avg =

1/(N1 + N2)
(
∑

pr,1 +
∑

pr,2
)

Fsyn = (1− pr,1)
N1(1− pr,2)

N2

Psyn = 1− F

BAPTA ≥ EGTA

DE: Biphasic

Ditto Ditto Scimemi and

Diamond, 2012;

Ritzau-Jost et al.,

2018

DOMAIN-OVERLAP TOPOGRAPHY

heterog coupling

homog. pr

Catotal = Ca1 + Ca2
Catotal → pr

BAPTA ≥ EGTA

DE: Monophasic

PPRր RRtotal <

RRP/Q + RRN

Ermolyuk et al.,

2013

homog. tight coupling

homog.pr

Catotal = nCa

Catotal → pr

BAPTA >> EGTA

DE: Monophasic

Ditto Ditto Nakamura et al.,

2015

homog. loose coupling

homog. pr

= microdomain

Ditto BAPTA ≥ EGTA

DE: Monophasic

Ditto Ditto Vyleta and Jonas,

2014; Baur et al.,

2015; Nakamura

et al., 2015; Kusch

et al., 2018

pr , release probability of a vesicle; N, number of vesicles (or release sites that can release a max. of one vesicle), pr,avg, average release probabilities across vesicles; Psyn, synaptic

release probability, Fsyn, synaptic failure rate; DE, EGTA dose effect curve; PRR, paired-pulse ratio; RR, release rate.

coupling at the mature MF – CA3 synapse clearly suggests that
the coupling distance is a synapse specific property in the context
of its developmental stage.

Are there other forms of regulation of the coupling distance
besides developmental regulation? An intriguing possibility
would be a regulation of the coupling distance depending on
the activity of a synapse, i.e., as a mechanism of synaptic
plasticity. Evidence for such use-dependent regulation of the
coupling distance came from a recent study at hippocampal
mossy fiber boutons (Midorikawa and Sakaba, 2017). It was
found that increasing the level of cAMP in the boutons, which
is a crucial step in the induction of long term potentiation,
results in increased release from the bouton, while not increasing
the number of synaptic vesicles in the RRP nor altering
the Ca2+ influx. Based on the differential action of EGTA
prior and following the induction of cAMP-mediated plasticity
the study provides evidence for a tightening of the coupling

distance following cAMP application (Midorikawa and Sakaba,
2017).

Functional Considerations
The MF – CA3 PN synapse, which was found to operate
at loose coupling in the matured hippocampus (Vyleta and
Jonas, 2014), is highly plastic and expresses several forms of
presynaptic plasticity (Salin et al., 1996). It has been suggested
that loose coupling provides a molecular framework for high
plasticity (Vyleta and Jonas, 2014). Consistent with this idea,
synapses with tight coupling are mostly fast-signaling synapses
in neuronal circuits specialized for high-frequency coding of
sensory information or in motor control (Table 2). However,
some of these synapses also show pronounced presynaptic
plasticity. For example, the PF to PC synapse exhibits low-
frequency depression and high-frequency facilitation (Doussau
et al., 2017).
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Loose coupling offers more possibilities for regulating
transmitter release and plasticity, e.g., via the action of Ca2+

buffers, since in loose coupling also slow Ca2+ buffers can
intercept sizable amounts of Ca2+ before it reaches Syt (Adler
et al., 1991). In tight coupling regimes, on the other hand,
only rapid buffers like BAPTA (Adler et al., 1991), Calretinin
(Schmidt et al., 2013; Brachtendorf et al., 2015), or Calbindin
(Bornschein et al., 2013) were found to be regulators of pr,
while the “slow” buffer Parvalbumin (PV) did not affect pr
(Bornschein et al., 2013). At high concentrations, however,
even PV becomes effective in affecting [Ca2+]i and release in
tight coupling regimes (Eggermann and Jonas, 2012). This is
because PV actually is a rapid, high-affinity Ca2+ buffer but
its Ca2+-binding sites also have a medium affinity for Mg2+

such that most binding sites are occupied by Mg2+ under
physiological resting conditions and only a small amount of
binding sites (∼5%) are metal free (Lee et al., 2000). Thus,
Ca2+-binding has to be preceded by Mg2+-unbinding, which
proceeds with slow kinetics, i.e., the slow Mg2+-unbinding
kinetics makes PV a slow Ca2+ buffer (Lee et al., 2000). However,
if PV is expressed strongly in a synapse the small relative
fraction of Mg2+-free binding sites can constitute a sufficiently
large absolute concentration of rapidly Ca2+-binding PV to
significantly affect [Ca2+]i even in the nanodomain around a
Cav channel. Metal free binding sites are then continuously
replenished efficiently from the large pool of Mg2+-bound sites
(Eggermann and Jonas, 2012). It should be noted that this
action of PV is different from the effects of large concentrations
of EGTA in tight coupling regimes. PV was already effective
at concentrations ∼500µM due to rapid Ca2+-binding and
replenishment via Mg2+-unbinding, while slow buffering by
EGTA requires concentrations >10mM to intercept [Ca2+]i in
the nanodomain.

Tight coupling increases speed and efficacy of synaptic
transmission (Eggermann et al., 2012). In addition, it can
provide an energy efficient design compared to loose coupling.
To obtain a certain [Ca2+]i level at the release sensor less
Cavs have to open in a tight than in a loose coupling regime
(Eggermann et al., 2012). As the ATP cost of Ca2+ removal is
a significant post of the presynaptic energy consumption (Kim
et al., 2005), tight coupling can save energy. This, however,
requires that Ca2+ influx would indeed be different between
terminals with tight or loose coupling. Indeed results from
the calyx of Held conform to this requirement, showing that
concomitant with developmental coupling distance tightening
the amplitudes of presynaptic Ca2+ transients decreased
(Nakamura et al., 2015). On the other hand, at the PF
– PC synapse presynaptic Ca2+ transients did not change
developmentally despite the developmental switch from loose to
tight coupling (Baur et al., 2015). Several Cavs opening during
the presynaptic AP no longer contributed to driving release at
later developmental stages (Kusch et al., 2018). Their primary
function remains speculative but could be in Ca2+-driven
replenishment of synaptic vesicles into the readily releasable
pool (Brachtendorf et al., 2015; Miki et al., 2016; Doussau et al.,
2017).

Molecular Regulators of the Coupling
Distance
Ca2+ influx-transmitter release coupling is mediated via proteins
of the AZ scaffold, albeit, this process is still not well-understood
at present and a detailed review of the AZ scaffold is far
beyond the scope of this paper. We briefly focus on some
recent advances directly related to establishing influx—release
coupling. RIMs (Rab3-interacting molecules) are known as
central organizer of the AZ (Südhof, 2012). Specifically, they are
required for recruiting Cav2.1 and Cav2.2 channels to the AZ
(Kaeser et al., 2011), which can be considered as a first step in
coupling Ca2+ influx to transmitter release, in particular since
these channel subtypes are the most important ones for AP-
mediated fusion (Table 2). The protein Septin5 was identified
as a negative regulator of tight coupling during development,
i.e., its downregulation was permissive to the establishment of
tight coupling (Yang et al., 2010). Proteins involved in mediating
tight coupling were identifiedmore recently, suggesting RIM-BPs
(RIM-binding proteins; Acuna et al., 2015; Grauel et al., 2016)
and Munc13-3 (Ishiyama et al., 2014; Kusch et al., 2018), as
positive regulators of the coupling distance. Thereby, Munc13-
3 was found to be a developmental mediator of tight coupling
(Kusch et al., 2018). However, details of the interplay between
identified regulators of the coupling distance, their relationships
to other regulatory proteins at the AZ, and details of their
interaction with the exocytotic core complex remain essentially
unclear.

CONCLUDING REMARKS

More than 30 years after the steep non-linear dependency of
transmitter release onto [Ca2+]e has been established (Dodge
and Rahamimoff, 1967), detailed kinetic five-site models of
the [Ca2+]i dependency of Syt2-triggered transmitter release
were developed (Bollmann et al., 2000; Schneggenburger and
Neher, 2000) and subsequently elaborated to cover sub-modes
and subtleties of release (Lou et al., 2005; Sun et al., 2007;
Pan and Zucker, 2009) and to capture developmental aspects
(Kochubey et al., 2009). These models are widely applied in
functional quantitative studies of transmitter release and AZ
topography.

During the past decade several functional studies focused
directly or indirectly on the coupling distance between Syts and
Cavs at mammalian cortical synapses. Initially it was thought
that only GABAergic synapses in cortical structures make use
of tight coupling, while cortical glutamatergic synapses seemed
to operate with loose coupling (Ohana and Sakmann, 1998;
Rozov et al., 2001; Eggermann et al., 2012; Nadkarni et al.,
2012; Stanley, 2016). However, results from a glutamatergic
synapse in the mature cerebellar cortex falsified the generality
of this hypothesis (Schmidt et al., 2013). From subsequent
work (Table 2) it became evident that synapses in the matured
mammalian brain, including synapses in cortical structures of
hippocampus and cerebellum, indeed make widespread use
of tight coupling and, furthermore, that release of a SV was
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frequently triggered by opening of only a few or even a single
Cav. At synapses investigated in a developmental context, it was
found that tight coupling at matured synapses develops from an
initially loose coupling at younger synapses. This latter result
provides an explanation why previous studies predominantly
found microdomain coupling at glutamatergic cortical synapses.
These earlier studies were performed at synapses of very young
animals (Eggermann et al., 2012; Stanley, 2016). The concept of
nanodomain coupling was developed 20 years ago at the squid
giant synapse (Adler et al., 1991) and calyx-type synapses in
the chick ciliary ganglion (Stanley, 1993) and now experiences
a revival at matured mammalian central synapses.

However, tight coupling is not universal for synapses of the
mature mammalian brain (Vyleta and Jonas, 2014). As suggested
by Vyleta and Jonas, the present state of knowledge indicates
that coupling distances are specific adaptations to the function
of a synapse. GABAergic central synapses appear to operate at
tight coupling, most probably irrespective of age (Table 2). For
glutamatergic synapses the situation is more complex. While
excitatory synapses specialized for rapid signaling develop a tight,
nanodomain coupling topography, synapses highly adaptive via
plasticity make use of loose coupling even in matured brain. To
learn more about the rules that regulate coupling distances will
require to investigate further types of synapses in different brain
regions. For example, a particularly striking lack of quantitative
data on coupling distances and AZ topographies exists for
neocortical synapses (Eggermann et al., 2012; Stanley, 2016;
Table 2). To our knowledge, a coupling distance has never been
quantified at a neocortical synapse.

For understanding the rules regulating coupling, it will be
also required to identify the proteins that link Syt bearing
SVs to Cavs. Recent studies indicated RIM-BPs (Acuna et al.,
2015; Grauel et al., 2016) and Munc13-3 (Kusch et al., 2018)

to be involved in organizing Cav clusters at the AZ and in
narrowing the coupling distance. Munc13-3 was identified as a
specific developmental mediator of nanodomain coupling at a
glutamatergic synapse in cerebellar cortex (Kusch et al., 2018).
Interestingly, Munc13-3 protein is expressed strongly in the
cerebellar cortex, more weekly in the brainstem and is essentially
absent from the hippocampus and cerebral cortex (Augustin
et al., 1999). Does this indicate that developmental tightening of
the coupling distance is a specificity of glutamatergic synapses in
the cerebellum and brainstem? To answer this question, it will
be required to quantify coupling distances in a developmental
context also at neocortical synapses. Since coupling distances
are key parameters of synaptic function, understanding the rules
regulating this distance will advance our general understanding
of the rules regulating synaptic transmission, which is the basic
substrate of information flow in neuronal networks.
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