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a b s t r a c t

A joint design for sampling functional data is proposed to achieve optimal prediction of
both functional data and a scalar outcome. The motivating application is fetal growth,
where the objective is to determine the optimal times to collect ultrasoundmeasurements
in order to recover fetal growth trajectories and to predict child birth outcomes. The joint
design is formulated using an optimization criterion and implemented in a pilot study.
Performance of the proposed design is evaluated via simulation study and application to
fetal ultrasound data.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Functional data analysis has been a popular statistical research area for the last two decades and has found application
in many fields such as brain imaging (Jiang et al., 2009; Greven et al., 2010; Reiss and Ogden, 2010; Lindquist, 2012; Lu
and Marron, 2014; Park and Staicu, 2015), biosignals (Crainiceanu et al., 2012; Randolph et al., 2012; Goldsmith and Kitago,
2016), genetics (Tang and Müller, 2009; Reimherr and Nicolae, 2014) and wearable computing (Morris et al., 2006; Li et al.,
2014; Xiao et al., 2015). For a comprehensive treatment of functional data analysis see Ramsay and Silverman (2002, 2005)
and Horváth and Kokoszka (2012).

This paper considers sampling design for noisy growth data. The motivation arises from the study of fetal growth,
where measurements of fetal size may be obtained during pregnancy using ultrasound. And the particular question to be
addressed is: when a fixed number of ultrasound scans will be taken during pregnancy, what are the optimal time points
for data collection? Optimality can be defined either in terms of recovering individual fetal growth trajectories or in terms
of predicting a birth outcome, such as birth weight. However, in practice it may be important to predict both individual
growth trajectories and birth outcomes, and in such cases a joint optimality criterion must be formulated. We also consider
the closely related question of the number of ultrasound scans required to achieve a desired level of optimality.

We address this question within the functional data framework. Design for functional data has received some interest
recently. For example, Ferraty et al. (2010) considered a nonparametric model with a scalar response and a functional
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predictor and Delaigle et al. (2012) studied a similar problem for classifying and clustering functional data. Bothmethods are
restricted to densely sampled functional data and focus on dimensionality reduction for a dense functional predictor. And
for spatially correlated functional data, Rasekhi et al. (2014) and Bohorquez et al. (2015) considered the problem of selecting
spatial sampling points.

Design for functional data has also been extended to longitudinal data. Ji and Müller (2017) proposed prediction-based
criteria for sampling functional data with the target of either recovering individual functions or predicting a scalar outcome.
Wu et al. (2017) exploited the mixed effects model representation of functional data and proposed a design criterion based
on Fisher’s informationmatrix of eigenvalues of the covariance function. There are several limitationswith these approaches.
Wu et al. (2017) focused on recovering individual functions, while Ji and Müller (2017) were limited to the study of design
separately and did not consider a joint design, which is the focus of our data application. In addition, in these works the
number of design points was pre-fixed and no data-driven method was developed. Finally, Ji and Müller (2017) did not
compare functional data models versus parametric mixed effects models for prediction-based designs. Our work addresses
these gaps.

Following early work on design, such as Ylvisaker (1987) and the references therein and recent work by Ji and Müller
(2017), we consider prediction-based designs and propose a unified design criterion for both recovering individual functions
as well as predicting scalar outcomes from a functional predictor. We also propose a practical data-driven method for
selecting the number of design points, building on the result that the larger the number of design points, the better the
prediction will be (see Theorem 1). Finally we conduct a comprehensive simulation study to evaluate the performance of
functional data models as compared to parametric mixed effects models, and demonstrate numerically that functional data
models might be preferred over parametric mixed effects models for prediction-based optimal designs for longitudinal data.

The rest of the paper is organized as follows. In Section 2 we introduce functional data models and propose a unified
prediction-based design criterion for sampling functional data. In Section 3we study the theoretic properties of the proposed
design. In Section 4 we discuss implementation of the design and propose a data-driven method for selecting the number of
design points. In Section 5 we illustrate the proposed method using a fetal ultrasound data. In Section 6, we investigate the
performance of the design via simulation studies.

2. Optimal design for functional data

In this section, we first describe functional data models and then formulate two optimal design problems for sampling
functional data: one design targets accurate prediction of individual functionswhile the other targets accurate prediction of a
scalar outcome. Then, we propose a unified design criterion that targets both recovering individual functions and predicting
a scalar outcome. In particular, the unified design contains the previous two designs as special cases.

2.1. Statistical models

Consider a random function X(t)(t ∈ T ) defined over a continuous and compact time domain T . Suppose that X(·) is a
Gaussian process with mean function µ(t) = E{X(t)} and covariance function r(s, t) = Cov{X(s), X(t)}. We assume that X(·)
is square integrable in T and without loss of generality we let T = [0, 1].

In practice, X(·) is observed at a finite number of time points and contaminated with noise. Hence, for a random function
Xi(·) with a subject index i observed at p time points (t1, . . . , tp)′ ∈ T p, the observations are

Wij = Xi(tj) + ϵij, 1 ≤ j ≤ p, (1)

where the ϵij are i.i.d. N (0, σ 2
ϵ ) and independent of Xi(·).

Let Y be a scalar outcome with a functional predictor X(·). And consider the functional linear model

Y = α +

∫
T
X̄(t)β(t)dt + e, (2)

where α is an intercept, X̄(t) = X(t) − µ(t), β(t) is a smooth coefficient function, and e is white noise independent of X(·)
with mean zero and variance σ 2

e .
The fundamental element in functional data analysis is the covariance function r(s, t). By Mercer’s theorem, r(s, t) can

be written as
∑

∞

l=1λℓφℓ(s)φℓ(t), where λ1 ≥ λ2 ≥ · · · ≥ 0 is the collection of eigenvalues and the φℓ(·) are the associated
eigenfunctionswhich satisfy

∫
T φℓ(t)φℓ′ (t)dt = 1{ℓ=ℓ′}. Here 1{·} is 1 if the condition inside the bracket holds and 0 otherwise.

To ensure that β(t) is identifiable, we assume that the coefficient function β(t) can be written as
∑K

ℓ=1βℓφℓ(t), where the
βℓ are scalars and, a possibly infinite K represents the number of non-zero eigenvalues.

2.2. Optimal design for predicting functions

Fix p ≥ 1 and assume that p observations will be collected from a new subject. The goal is to select the p optimal sampling
points in T for predicting the new subject’s curve with the smallest possible error.
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Let t = (t1, . . . , tp)′ ∈ T p be the vector of sampling points andWi∗ (t) =
{
Wi∗ (t1), . . . ,Wi∗ (tp)

}′ be the noisy observations
for a new subject i∗. Under model (1), the best predictor of Xi∗ (t) conditional on Wi∗ (t) is the best linear unbiased predictor
(BLUP) of Xi∗ (t),

E {Xi∗ (t)|Wi∗ (t)} = µ(t) + r(t, t)′ΣW(t)−1Wi∗ (t), (3)

where r(t, t) = {r(t, t1), . . . , r(t, tp)}′ ∈ Rp and ΣW(t) = Cov{Wi∗ (t)} ∈ Rp×p. For simplicity, we suppress the notation t
fromΣW(t) and useΣW. The optimal sampling points t can be selected by minimizing the mean integrated squared error of
the BLUP,

M1(t) := E
∫
T
[Xi∗ (t) − E {Xi∗ (t)|Wi∗ (t)}]2dt. (4)

The optimal design is then defined as topt := argmint∈T pM1(t). And we simplify M1(t) as

M1(t) = E
∫ {

X̄i∗ (t)
}2

dt − E
∫ [

E{X̄i∗ (t)|Wi∗ (t)}
]2
dt

=

∫
r(t, t)dt −

∫
r(t, t)′Σ−1

W r(t, t)dt

=

∫
r(t, t)dt − tr(RΣ−1

W ),

where tr(·) is the trace operator and R =
∫
r(t, t)′r(t, t)dt ∈ Rp×p whose (j1, j2) element is given by

∫
r(t, tj1 )r(t, tj2 )dt =∑K

ℓ=1λ
2
ℓφℓ(tj1 )φℓ(tj2 ). We write R = Φ(t)Λ2Φ(t)′, where Φ(t) = [φℓ(tj1 )]1≤j1≤p, 1≤ℓ≤K ∈ Rp×K and Λ = diag(λ1, . . . , λK ) ∈

RK×K . Note that
∫
r(t, t)dt =

∑K
ℓ=1λℓ = tr(Λ). It is also easy to show that ΣW = Φ(t)ΛΦ(t)′ + σ 2

ϵ Ip. Therefore,

M1(t) = tr(Λ) − tr
[
Φ(t)Λ2Φ(t)′

{
Φ(t)ΛΦ(t)′ + σ 2

ϵ Ip
}−1

]
.

And if we let S(t) = ΛΦ(t)′
{
Φ(t)ΛΦ(t)′ + σ 2

ϵ Ip
}−1

Φ(t)Λ, then we obtain the simplified form

M1(t) = tr(Λ) − tr {S(t)} . (5)

2.3. Optimal design for predicting an outcome

Similar to Section 2.2, assume that p observations will be collected from a new subject indexed by i∗. But let the goal now
be to select the p optimal sampling points in T for predicting the new subject’s scalar outcome with the smallest possible
error.

Using the same notation as in Section 2.2, let t = (t1, . . . , tp)′ ∈ T p be the vector of sampling points and Wi∗ (t) ={
Wi∗ (t1), . . . ,Wi∗ (tp)

}′ be the noisy observations for subject i∗. Under the functional linear model (2), E(Yi∗|Xi∗ ) = α +∫
T X̄i∗ (t)β(t)dt , where X̄i∗ (t) = Xi∗ (t) − µ(t). Then under the functional data model (1), the best predictor of Yi∗ conditional

onWi∗ (t) is the best linear unbiased predictor of Yi∗ ,

E{E(Yi∗ |Xi∗ )|Wi∗ (t)} = α +

∫
T
E
{
X̄i∗ (t)|Wi∗ (t)

}
β(t)dt.

And the mean squared error for predicting E(Yi∗ |Xi∗ ) is

M2(t) = E
[∫

T
X̄i∗ (t)β(t)dt −

∫
T
E
{
X̄i∗ (t)|Wi∗ (t)

}
β(t)dt

]2

.

Then the optimal design is topt := argmint∈T pM2(t). Note that the mean squared error for predicting Yi∗ is M2(t) + σ 2
e ,

which results in the same design. This design was studied in earlier work including Ritter (1996), and more recently Ji and
Müller (2017).

By Eq. (3),
∫
E{X̄i∗ (t)|Wi∗ (t)}β(t)dt =

{∫
β(t)r(t, t)dt

}′
Σ

−1
W Wi∗ (t). Thus,

M2(t) = E
{∫

X̄i∗ (t)β(t)dt
}2

− E
[{∫

β(t)r(t, t)dt
}′

Σ
−1
W Wi∗ (t)

]2

=

∫∫
r(s, t)β(s)β(t)dsdt −

{∫
β(t)r(t, t)dt

}′

Σ
−1
W

{∫
β(t)r(t, t)dt

}
.

Then,
∫∫

r(s, t)β(s)β(t)dsdt =
∑K

ℓ=1λℓβ
2
ℓ = tr(ββ′

Λ), where β is a K -dimensional vector with β = (β1, . . . , βK )′. We also
obtain

∫
β(t)r(t, tj)dt =

∑K
ℓ=1λℓβℓφℓ(tj) which leads to

∫
β(t)r(t, t)dt = Φ(t)Λβ. Therefore, we obtain the simplified form

M2(t) = tr(ββ′
Λ) − tr

{
ββ′S(t)

}
. (6)
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2.4. A joint design for functional data

In practice, there might be multiple goals in design with each goal resulting in one optimal design. Depending on the
goal, the corresponding optimal designmay vary andmay not be optimal for alternative goals. Indeed, the optimal sampling
points for predicting functions may not be the optimal sampling points for predicting a scalar outcome, and vice versa. It
may thus be useful to consider a joint design to balance between the different goals. Note that joint designs may also be
referred to as compound designs in the statistical design literature (Atkinson et al., 2007, Chapter 21).

Before formulating a joint design, consider first the design objective function

MB(t) = tr(BΛ) − tr {BS(t)} , (7)

where B is an arbitrary positive semidefinite matrix and we will call it a ‘‘linear design criterion matrix’’ as the objective
function depends linearly on elements of B. The form in (7) is general with different B leading to different designs. In
particular, it includes as special cases, the objective functions for the design for predicting functions (5) and for the design for
predicting an outcome (6). Indeed, for predicting the growth curve of a new subject,B is the identitymatrix and for predicting
a scalar outcome of a new subject, B = ββ′. Additionally, if it is more important to predict a curve more accurately at some
time points than others, onemay consider a weightedmean integrated squared error E

∫
T w(t)[Xi∗ (t) − E {Xi∗ (t)|Wi∗ (t)}]2dt

for some known weight function 0 ≤ w(t) ≤ 1. It can be shown that the objective function to be minimized still takes the
form in (7) with a particular design criterion matrix. Specifically, [B]ℓ,ℓ′ =

∫
w(t)φℓ(t)φℓ′ (t)dt and is positive semidefinite

with a finite operator norm by Lemma 1 in Appendix A.
Now consider a bivariate continuous function f (·, ·) on [0, ∞) × [0, ∞) and the objective function M(t) = f (M1(t),

M2(t)). Suppose the joint design is to minimize the objective function M(t). It is reasonable to impose the following
assumption on f (·, ·):

Assumption 1. f (x, y) is nondecreasing along both x and y and f (0, 0) = 0. Moreover, limx→0,y→0f (x, y) = 0.

Let w1 and w2 be two fixed non-negative constants. Two sensible forms of f are: f1(x, y) = w1x + w2y and f2(x, y) =

max(w1x, w2y). The former is a joint design that minimizes a linear combination of two prediction errors while the latter
means that the joint design aims to minimize the maximum of the two prediction errors (up to multiplicative weights).
In particular, f1 (M1(t),M2(t)) = MB(t) with B = w1I + w2ββ′. It is straightforward to show that both forms satisfy
Assumption 1. The two constants w1 and w2 are used to control the weights of the two different design objective functions.
One reasonable choice ofw1 andw2 is to balance the two design objective functions such that one design does not dominate
the other. In view of (7) and Theorem 2 from the following section, we may let w1 = 1/tr(Λ) and w2 = 1/tr(ββ′

Λ), and it
can then be shown that 0 ≤ w1M1(t) ≤ 1 and 0 ≤ w2M2(t) ≤ 1.

3. Properties of M(t)

In this section we study the properties of M(t) for any function f (·, ·) that satisfies Assumption 1. We assume that
the random functions, X(t), are square integrable (i.e., E

{∫
T X(t)2dt

}
< ∞) and the coefficient function β(t) in the

functional linear regression model (2) is also square integrable (i.e.,
∫
T β2(t)dt < ∞). Proofs of the theorems are provided

in Appendix A.

Theorem 1. Suppose t ∈ [0, 1]p, t̃ ∈ [0, 1]p+c for some fixed integer c > 0 and t ⊂ t̃, then M
(̃
t
)

≤ M(t).

Theorem 1 implies that more observations (i.e., larger p) do not increase the value of the objective function M(t).
We also study the deterministic bound of M(t) as p diverges to infinity according to a fixed design.

Theorem 2. Suppose that the assumptions stated in Appendix A hold. For the fixed design where tp = {0, 1/p, 2/p, . . . , (p −

1)/p}′, we have limp→∞M(tp) = 0.

Theorem 2 provides the rationale that a dense set of time points in T is sufficient as the candidate sampling points. In
practice, because of the cost for data collection and other considerations, a small number of sampling points with reasonable
prediction power might be preferred. In Section 4.2, we propose a data-driven method for selecting the number of optimal
time points.

4. Implementation

4.1. Model estimation using pilot data

To implement the proposed optimal design, we need to estimate the covariance function r(s, t), error variance σ 2
ϵ and

coefficient function β(t) using pilot data. Manymethods exist for covariance function estimation including local polynomial
regression (Yao et al., 2005), mixed effects models (James et al., 2000) and geometric PCA (Peng and Paul, 2009). We use the
fast covariance estimation method (FACEs) from Xiao et al. (2017), which uses a penalized tensor product of cubic B-splines
for approximating the true covariance function. The error variance σ 2

ϵ can also be estimated by FACEs. As for estimating β(t),
we select K , the number of eigenfunctions, by the percentage of variance explained (PVE) with a value of 0.95.
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4.2. Optimization algorithm and selection of number of design points

In practice, the optimal sampling points are selected from a pre-determined set of candidate time points, denoted by s.
Theorem 2 suggests that equally spaced sampling points can form a reasonable set of candidate points. If the number of
selected design points is small, then we use a full search algorithm (i.e., we evaluate M for every combination of p points
from s). If the number of selected design points is large, a full search becomes computationally difficult and one may use a
Monte Carlo sampling method in Wu et al. (2017) or a sequential search method in Ji and Müller (2017). In this paper we
focus on the full search algorithm.

In many applications, the number of optimal time points p may not be known a priori. One approach is to choose
the smallest p such that the expected error is smaller than some pre-determined tolerance error. Alternatively, similar to
Ferraty et al. (2010), one may incorporate the cost of collecting more sampling points into consideration. Here we propose
a new method for selecting p. First, when t = ∅, an empty set, we define M1(∅) = tr(Λ), M2(∅) = tr(ββ′

Λ), and
M(∅) = f (M1(∅),M2(∅)). Note that M1(∅) is the total variation of the functional predictor while M2(∅) is the total
variation of the response that can be explained by the functional predictor. Then it can be easily verified by the definitions
in (5) and (6) and the assumptions on f that M(t) ≤ M(∅) for any t of any dimension. Let t⋆p = argmint⊆s, t∈T pM(t). Then,

p∗
:= min

p∈N

{
M(t⋆p)/M(∅) + δp

}
, (8)

where 0 < δ < 1 is a fixed constant corresponding to the maximum percent reduction in expected squared error gained by
augmenting the design with an additional design point.

By Theorem1 in Section 3, for any p,M(t⋆p+1) ≤ M(t⋆p) ≤ M(∅). Thus, the relative error levelM(t⋆p)/M(∅) is a decreasing
function of p and converges to 0 by Theorem2. This implies that for any fixed δ > 0, p∗ is finite. In practice, we plug estimated
model components (see Section 4.1) into M to obtain M̂. Then we let t̂⋆p = argmint⊆s, t∈RpM̂(t) and define

p̂∗
:= min

p∈N

{
M̂(̂t⋆p)/M̂(∅) + δp

}
. (9)

Small values of δ seem preferable and we use δ = 0.05 in both the data application and simulations. This implies that we
select a p̂ such that the addition of a new design point will result in no more than 5% of reduction in expected squared error
with respect to the error reduced by using the fully observed functional predictor.

4.3. Software and shiny interactive graphic

The proposed optimal design method has been implemented as an R package (R Core Team, 2016) FDAdesign that
includes interactive graphics using shiny (Chang et al., 2016)which can be used to evaluate design objectives corresponding
to different sampling designs. The interface of the graphic is illustrated in the data application. Details about using the
FDAdesign package and the interactive graphics can be found in Section S.1 of the Supplementary materials.

5. Application to fetal ultrasound

We apply the proposed methodology to fetal growth data, where ultrasound scans were performed at different weeks of
gestational age (GA). For this analysis, we model measurements of abdominal circumference by ultrasound (scaled within
the range of 0 and 1) to estimate individual fetal growth trajectories and use newborn birth weight as the scalar outcome.

The fetal growth dataset contains between 1 and 6 ultrasound scans for each of 2388 subjects, with most subjects having
5 scans. The spaghetti plot for the ultrasoundmeasurements is shown in Fig. 1, with data from 3 subjects highlighted. While
the 3 subjects do show some degree of curvilinearity, the overall pattern of trajectories raises the question of whether a
linear mixed effects model would suffice for this data.

Thus, we compare the functional model and the linear mixed effects model using 10-fold cross validation. We find that
the linear mixed effects model has twice the prediction error of the functional model. Figure S.2 in the Supplementary
materials illustrates the prediction performance of the twomodels for one particular case, where 90% data are used formodel
estimation and the remaining 10% data are used for evaluation. Therefore, using functional model seems more appropriate
for this application.

Fig. 2 displays the fPCA fit. The top panels of Fig. 2 show that both the estimated mean function and variance function
are increasing with gestational age. The bottom left panel of Fig. 2 indicates high positive correlations (>0.8) when both
gestational ages are smaller than 32 weeks. The top three estimated eigenvalues are 8.7× 10−4, 1.0× 10−4 and 0.3× 10−5,
respectively, with the corresponding estimated eigenfunctions shown in the bottom right panel of Fig. 2. The estimated error
variance is 2.2 × 10−4.

When we predict subject birth weight using the functional linear model (2) with abdominal circumference as the
functional covariate, it turns out that about 99% of the variation in the birth weight is explained by the functional covariate.
For the estimated coefficient function; see Figure S.3 of the Supplementary materials.

Finally we consider a linear joint design with the target of accurately recovering the ultrasound measurements of fetal
abdominal circumference and predicting the newborn outcome of birth weight. The objective function for the joint design
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Fig. 1. Spaghetti plot of the fetal ultrasound data.

Fig. 2. fPCA fit to the ultrasound measurements.

is w1M̂1(t) + w2M̂2(t), where M̂1(t) is the estimated objective function for recovering individual functions while M̂2(t)
is the estimated objective function for predicting a scalar outcome; see Section 2.4 for more details. To balance the two
objective functions, we let w1 = (

∑3
ℓ=1λ̂ℓ)−1 and w2 = (

∑3
ℓ=1λ̂ℓβ̂

2
ℓ )

−1, where the λ̂ℓ and the β̂ℓ are estimated from the
fetal data and the top 3 eigenvalues are selected using a PVE of 0.95. The above weights ensure that 0 ≤ w1M̂1(t) ≤ 1 and
0 ≤ w2M̂2(t) ≤ 1. As a result, one objective function will not dominate the other.
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Fig. 3. Optimal sampling points and the corresponding relative error levels. The dashed gray vertical lines in the top left, top right and bottom left panels
are the candidate sampling points. The relative error levels are M̂(t̂p)/M̂(∅), where t̂p is the vector of p optimal sampling points determined by M̂.

We let the set of candidate time points s be the collection of half weeks between 13 and 41 weeks gestational age. Using
the proposed method, we determine the optimal sampling points when the number of sampling points p is fixed at 1, 2 and
3.We also calculate the relative error M̂/M̂(∅) and Fig. 3 displays the results. The top left panel of Fig. 3 shows that if only 1
sampling point is selected, then 37weeks is the optimal timepoint for collecting the ultrasoundmeasurement and its relative
error is about 0.20 (bottom right panel of Fig. 3). If 2 sampling points are desired, then 32 and 38 weeks are the optimal time
points for collecting ultrasound measurements. With 2 optimal sampling points, the relative error is 0.13, which is smaller
than the relative error with only 1 optimal sampling point. The bottom right panel of Fig. 3 displays the relative error with
several values of p. As expected, the relative error decreases as p increases. Using the selection criterion (9) with δ = 0.05,
we determine that optimally, 2 sampling points would be selected.

To evaluate the uncertainty in the estimated optimal sampling points,webootstrap the fetal ultrasounddata at the subject
level and select the optimal sampling points for 1000 bootstrapped datasets. Fig. 4 gives the histograms of the selected
optimal sampling points, which show small variability of the estimated optimal sampling points. For example, for p = 1,
week 37 is selected about 60% of the times.

Finally, we plot in Fig. 5 screenshots of the Shiny interface for the fetal ultrasound. The top panel displays the heat map
of the objective function/prediction errors as a bivariate function of two scan weeks. The optimal weeks are highlighted.
The heat map indicates that at least one sampling point needs to be no early than 33 weeks in order to obtain a relatively
small prediction error. As these plots evaluate the prediction error of any combination of candidate sampling points, they
can be used to find all candidate sampling points that give a prediction error smaller than certain fixed error. The interface
is interactive as users can select the first scan weeks and then the application will find the optimal second scan weeks.
Moreover, users can go further by selecting the second scan weeks and compare the results with the optimal scan weeks.
For example, as illustrated in the bottom panel, 13 weeks is selected for the first scan, then the 37 weeks is found to be
optimal second scan weeks (left plot in the bottom panel). If 16 weeks is also selected for the second scan, then the result
can be compared with several different choices including the optimal scan weeks (right plot in the bottom panel). A similar
screenshot with the goal of selecting just one scan is presented in Figure S.4 of the Supplementary materials.
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Fig. 4. Histograms of selected optimal scan weeks from 1000 bootstrapped datasets for p = 1 and p = 2. The blue dashed lines are the estimated optimal
scan weeks using the original fetal ultrasound data.

6. A simulation study

We conduct a simulation study to investigate the performance of the proposed design for (a) estimating optimal sampling
points and for (b) selecting the number of optimal sampling points. We also compare functional data models against a
parametric mixed effects model in terms of estimating optimal sampling points, when data is generated from either a
functional data model or a parametric mixed effects model. We focus on the linear joint design where the goal is to best
predict both an underlying true curve and a scalar outcome andwe use the same design criterionmatrix in the data example
with weights w1 = (

∑
ℓλℓ)−1 and w2 = (

∑
ℓλℓβ

2
ℓ )

−1.

6.1. Simulation settings

For each simulation scenario, we use 200 Monte Carlo samples from the model in (1). For simplicity, we let the mean
function µ(t) be zero for all t . We generate Xi(t) by Xi(t) =

∑5
ℓ=1ξiℓφℓ(t), where {φ1(t), . . . , φ5(t)} is a set of orthonormal

eigenfunctions (to be specified later) and ξiℓ is sampled from a normal distributionwithmean zero and variance λℓ = 10/2ℓ.
Random errors ϵij are sampled independently from a normal distribution with mean zero and variance σ 2

ϵ = 9.6875, which
implies that the signal to noise ratio σ−2

ϵ

∑5
ℓ=1λℓ equals one. The number of observations per subject varies across subjects

and the sampling time points are drawn from the uniform distribution in the unit interval.
We consider a factorial design with three experimental factors:

E1. Covariance function r(s, t):
(a) Periodic covariance r(s, t) induced by five Fourier bases: φℓ(t) =

√
2 sin((ℓ + 1)π t) for odd ℓ and φℓ(t) =√

2 cos(ℓπ t) for even ℓ. The covariance function is periodic because r(s, t) = r(1 − s, t).
(b) Non-periodic covariance r(s, t) induced by five eigenfunctions shown in Figure S.6 of the Supplementary materials
and the eigenfunctions do not have analytical forms.

E2. Number of observations per subject:
(a) mi ∼ Uniform{3, 4, 5} and (b)mi ∼ Uniform{7, . . . , 10}.

E3. Number of subjects: (a) n = 400; (b) n = 800; and (b) n = 1500.

Thus, in total there are 12 model conditions to examine.
Then the scalar outcomes, Y , are generated from the functional linear model in (2). For simplicity, we let intercept α = 0.

We use four different coefficient functions β(t) (see Figure S.7 of the Supplementary materials):

FLM-Case1 β(t) =
∑5

ℓ=1βℓφℓ(t), with βℓ = 4, 2.5, 1.5, 1, and 0.5.
FLM-Case2 β(t) = 12t2.
FLM-Case3 β(t) = 4(t − 0.5)2 + 4sin(2π t) + 2cos(6π t).

Note that in FLM-Case1 the coefficient function β(t) depends on the eigenfunctions φℓ(t) and is different for the periodic and
non-periodic covariances (see Figure S.7 of the Supplementarymaterials). Randomerrors in (2)were sampled independently
from a normal distribution with mean zero and variance σ 2

e = 4.
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(a) Heat map of the objective function M̂(t) evaluated with two scans.

(b) Objective function M̂(t) evaluated with two scans while one fixed at 16 weeks.

Fig. 5. Screenshots of the interface of the Shiny application for the fetal ultrasound.

6.2. Results for estimation of optimal sampling points

We consider estimation of optimal sampling points when the number of optimal points p is fixed at either 3, 4 or 5. Let t∗p
be the p optimal sampling points that minimize the true objective functionM(·) and let t̂p be the p selected sampling points
that minimize the estimated objective function M̂(·). We evaluate the accuracy of the estimated optimal sampling points
using the following evaluation criterion:

AREp,isim =

⏐⏐M(t∗p) − M
(̂
tp,isim

)⏐⏐
M(t∗p)

. (10)

The absolute relative error, AREp,isim , measures how close the expected (integrated) squared error using observations
collected at the p estimated optimal sampling points is to the expected (integrated) squared error using the p true optimal
points. We compare betweenM(t∗p) andM

(̂
tp,isim

)
, rather than between t̂p and t∗p , for the following reasons. First, when the

covariance function r(s, t) is periodic as the one shown in the top left panel of Figure S.6 of the Supplementarymaterials, t∗p is
not identifiable. This is becausewith a periodic covariance function, data (excluding randomerrors) collected at any sampling
point in the left half of the domain is the same as data collected at one sampling point in the right half. The identifiability
issue is illustrated in Section S.3.2 of the Supplementary materials. Second, as our ultimate goal is to minimize M(·), the
expected (integrated) squared error, we consider that the measure AREp,isim is more appropriate.

In additional to functional datamethods,we consider the following linearmixed effects (LME)model,Wij = bi0+bi1tij+ϵij,

for estimating the covariance function r(s, t), where bi0 and bi1 are subject-specific random intercept and slope, respectively.
The above model leads to a quadratic covariance function. In the following tables we use the labels, non-parametric and
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Table 1
Median of absolute relative errors, {AREp,isim : isim = 1, . . . , 200} and the corresponding interquartile ranges (IQR) in parentheses for the case of the
periodic covariance.

Joint-Case1 Joint-Case2 Joint-Case3
Non-parametric Parametric Non-parametric Parametric Non-parametric Parametric

p = 3

n = 400 mi ∼ {3, 4, 5} 0.019 (0.019) 1.292 (0.032) 0.018 (0.033) 1.507 (0.284) 0.055 (0.053) 1.598 (0.006)
mi ∼ {7, . . . , 10} 0.011 (0.016) 1.537 (0.264) 0.010 (0.015) 1.507 (0.284) 0.024 (0.026) 1.598 (0.006)

n = 800 mi ∼ {3, 4, 5} 0.011 (0.016) 1.537 (0.000) 0.010 (0.023) 1.507 (0.000) 0.030 (0.037) 1.598 (0.006)
mi ∼ {7, . . . , 10} 0.005 (0.011) 1.537 (0.264) 0.009 (0.007) 1.507 (0.284) 0.012 (0.014) 1.598 (0.006)

n = 1500 mi ∼ {3, 4, 5} 0.011 (0.014) 1.537 (0.000) 0.010 (0.014) 1.507 (0.000) 0.026 (0.024) 1.601 (0.006)
mi ∼ {7, . . . , 10} 0.005 (0.007) 1.537 (0.264) 0.005 (0.007) 1.507 (0.284) 0.012 (0.010) 1.598 (0.006)

p = 4

n = 400 mi ∼ {3, 4, 5} 0.047 (0.030) 1.585 (0.175) 0.046 (0.037) 1.612 (0.286) 0.070 (0.054) 1.983 (0.099)
mi ∼ {7, . . . , 10} 0.015 (0.023) 1.676 (0.000) 0.016 (0.023) 1.612 (0.000) 0.027 (0.035) 1.983 (0.000)

n = 800 mi ∼ {3, 4, 5} 0.031 (0.040) 1.676 (0.264) 0.029 (0.043) 1.612 (0.286) 0.045 (0.041) 1.983 (0.025)
mi ∼ {7, . . . , 10} 0.012 (0.013) 1.676 (0.000) 0.011 (0.011) 1.612 (0.000) 0.02 (0.022) 1.983 (0.000)

n = 1500 mi ∼ {3, 4, 5} 0.018 (0.024) 1.676 (0.000) 0.018 (0.026) 1.612 (0.000) 0.033 (0.032) 1.983 (0.000)
mi ∼ {7, . . . , 10} 0.007 (0.010) 1.676 (0.000) 0.007 (0.010) 1.612 (0.000) 0.008 (0.016) 1.983 (0.000)

p = 5

n = 400 mi ∼ {3, 4, 5} 0.059 (0.051) 1.713 (0.050) 0.051 (0.044) 1.929 (0.342) 0.063 (0.070) 2.167 (0.020)
mi ∼ {7, . . . , 10} 0.027 (0.027) 1.695 (0.321) 0.022 (0.027) 1.587 (0.342) 0.026 (0.028) 2.167 (0.020)

n = 800 mi ∼ {3, 4, 5} 0.039 (0.037) 2.016 (0.321) 0.039 (0.037) 1.929 (0.342) 0.043 (0.041) 2.167 (0.020)
mi ∼ {7, . . . , 10} 0.020 (0.022) 1.695 (0.321) 0.013 (0.020) 1.587 (0.342) 0.016 (0.016) 2.167 (0.020)

n = 1500 mi ∼ {3, 4, 5} 0.029 (0.027) 2.016 (0.321) 0.029 (0.031) 1.929 (0.342) 0.032 (0.036) 2.167 (0.020)
mi ∼ {7, . . . , 10} 0.009 (0.017) 1.695 (0.000) 0.007 (0.009) 1.587 (0.000) 0.010 (0.015) 2.167 (0.020)

Note: Joint-Case1 indicates that the scalar responses are generated using β(t) in FLM-Case1; similarly, Joint-Case2 corresponds to FLM-Case2 and Joint-
Case3 to FLM-Case3. non-parametric and Parametric refer to the covariance estimation using the fPCA and LME models, respectively.

parametric, to indicate covariance estimation using the functional data model and using the linear mixed effects model,
respectively.

The results with the periodic covariance function are summarized in Table 1. The proposed design works well and the
ARE decreases as a function of number of subjects n and number of observations per subjectmi. The improved performance
is due to improved estimation accuracy of the covariance function (and associated eigenfunctions and eigenvalues) as well
as of the error variance of the random errors (results not shown). The results with the non-periodic covariance function are
similar and are shown in Section S.3.3 of the Supplementary materials.

In addition to the ARE measure, we study the behavior of the objective function M for different choices of p by
investigating the median and interquartile range (IQR) of the M

(̂
tp,isim

)
. The statistics for the periodic and non-periodic

covariance cases are presented in Tables S.1 and S.2 of the Supplementarymaterials, respectively. The true objective function
M(·) depends on the true covariance function r(s, t), n, mi, and β(t). Thus M

(̂
tp,isim

)
can only be compared across different

p, but not across different simulation settings with different n ormi.
As expectedM

(̂
tp

)
decreaseswithmore number of optimal sampling points. The same holdswhenwe use the parametric

covariance estimation, estimating r(s, t) using the LME model. Because the LME model is misspecified for modeling func-
tional data, selecting more optimal points by the parametric estimation has only a slight effect on improving the prediction
accuracy. In all cases the proposed method with the non-parametric covariance estimation gives a smaller prediction error
than the parametric estimation. When data are generated from the LMEmodel, the proposed method performs equally well
with both the non-parametric and parametric covariance estimation; see Section S.3.4 of the Supplementary materials. In
conclusion, the proposed method with non-parametric covariance estimation using the fPCA model performs well on data
with both simple and complex covariance structures.

6.3. Results for selection of number of optimal sampling points

Now we evaluate the performance of the proposed method in (9) for selecting the number of optimal sampling points p.
We use δ = 0.05 and the true number of optimal points p∗ determined by (8) is 3. The performance of the proposedmethod is
assessed in terms of the proportion of selecting the correct number of optimal sampling points, N−1

sim
∑Nsim

isim=11
{̂
p∗
isim

=3
}, where

1{·} is an indicator function and p̂∗

isim
is the number of optimal sampling points determined by (9) using the ith simulated

data.
The simulation results are presented in Table 2. We see that the performance of the proposed method is excellent for

all cases. The results for the non-periodic function are similarly good and presented in Table S.4 of the Supplementary
materials.
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Table 2
Proportion of selected number of points being equal to 3 for the case of the periodic covariance.

Joint-Case1 Joint-Case2 Joint-Case3
n = 400 mi ∼ {3, 4, 5} 0.94 0.97 0.94

mi ∼ {7, . . . , 10} 0.98 0.99 0.95
n = 800 mi ∼ {3, 4, 5} 0.98 0.99 0.95

mi ∼ {7, . . . , 10} 0.99 1.00 0.98
n = 1500 mi ∼ {3, 4, 5} 0.99 0.99 0.96

mi ∼ {7, . . . , 10} 1.00 1.00 0.99

Note: Joint-Case1 indicates that the scalar responses are generated using β(t) in FLM-Case1; similarly, Joint-Case2 corresponds to FLM-Case2 and Joint-
Case3 to FLM-Case3.

6.4. Uncertainty of estimated optimal sampling points

To assess the uncertainty of the optimal sampling points estimated from the proposed method, we use a bootstrap
approach as in the data application. For each simulated data, we bootstrap at the subject level, select optimal sampling points
from the model estimation based on the bootstrapped data, and calculate the third quartile and 90% percentile of absolute
relative errors in (10). The medians of the percentiles are presented in Tables S.7 and S.8 of the Supplementary materials.
The results show good stability of the estimated optimal sampling points, which gets better when either the sample size or
the number of observations per subject increases.
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Appendix A. Assumptions and proofs

Assumptions for Theorem 2. Similar to Bunea and Xiao (2015), we make the following assumptions on the covariance
function r(s, t):

Assumption A. r(s, t) is continuous and a positive semi-definite kernel.
Assumption B. supksups∈T |φk(s)| is bounded by a constant.
Assumption C. ∂r(t,t)

∂t is continuous in T . Moreover,
∫ ⏐⏐ ∂r(t,t)

∂t

⏐⏐ dt is finite.
Assumption D. For all k, sups∈T

⏐⏐⏐φ(1)
k (s)

⏐⏐⏐ ≤ Ckγ1 , where φ
(1)
k (s) is the derivative of φk and C, γ1 are positive constants.

Assumption E. There exist constants C1, C2 and β2 ≥ β1 > max(γ1, 1) such that C2k−β2 ≤ λk ≤ C1k−β1 , for all k. Moreover,
there exist constants C3 and β3 > β2 such that λk − λk+1 ≥ C3k−β3 , for all k.

Finally, we assume that the linear design matrix B is positive semidefinite with a finite operator norm.

Lemma 1. If 0 ≤ w(t) ≤ 1 for t ∈ T for a bounded interval T . Then B = [bℓ,ℓ′ ]1≤ℓ,ℓ′≤∞ with bℓ,ℓ′ =
∫

w(t)φℓ(t)φℓ′ (t)dt is
positive semidefinite with a finite operator norm.

Proof. It suffices to prove that x′Bx is non-negative and finite for any x = (x1, x2 . . . , xK )′ with
∑

ℓx
2
ℓ = 1. Indeed,

x′Bx =

∑
ℓ

∑
ℓ′

xℓxℓ′

∫
w(t)φℓ(t)φℓ′ (t)dt =

∫
w(t)

∑
ℓ

∑
ℓ′

xℓxℓ′φℓ(t)φℓ′ (t)dt

=

∫
w(t)

{∑
ℓ

xℓφℓ(t)

}2

dt ≥ 0,

and furthermore

x′Bx =

∫
w(t)

{∑
ℓ

xℓφℓ(t)

}2

dt ≤

∫ {∑
ℓ

xℓφℓ(t)

}2

dt

≤

∑
ℓ

∑
ℓ′

xℓxℓ′

∫
φℓ(t)φℓ′ (t)dt ≤

∑
ℓ

x2ℓ = 1. □

Proof of Theorem 1. In light of Assumption 1 and Eq. (7), it suffices to prove the theorem for the design objective function
in (7) with an arbitrary positive semidefinite matrix B. Define the symmetric matrix F(t) as in Lemma 2, then F

(̃
t
)
− F(t) is
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positive semidefinite and S(t) = Λ1/2F(t)Λ1/2 and S
(̃
t
)

= Λ1/2F
(̃
t
)
Λ1/2. For simplicity we denote F(t) by F and F

(̃
t
)
by F̃.

Since F̃ − F is positive semidefinite, there exists a matrix (̃F − F)1/2 such that F̃ − F = (̃F − F)1/2 (̃F − F)1/2. Then

M
(̃
t
)
− M(t) = tr

(
BΛ1/2̃FΛ1/2

− BΛ1/2FΛ1/2)
= tr

{
BΛ1/2 (̃

F − F
)
Λ1/2}

=

(̃
F − F

)1/2
Λ1/2B1/2

2

F
≥ 0.

In the above, ∥ · ∥F is the Frobenius norm of a matrix. □

Lemma 2. Suppose t ∈ T p, t̃ ∈ T p+c for some fixed integer c > 0 and T is a bounded interval. Define F(t) =

Λ1/2Φ(t)′
{
Φ(t)ΛΦ(t)′ + σ 2

ϵ Ip
}−1

Φ(t)Λ1/2. Then if t ⊆ t̃, F
(̃
t
)
− F(t) is positive semidefinite.

Proof. Without of loss of generalitywe assume that σ 2
ϵ = 1. LetA = Φ

(̃
t
)
Λ1/2 andA1 = Φ(t)Λ1/2. ThenA can be partitioned

as A =
(
A′

1,A
′

2

)′ (after some proper permutation of the index in t̃), where A1 and A2 are of dimensions p × K and c × K ,
respectively. It follows that

AA′
+ Ip =

(
A1A′

1 + Ip A1A′

2
A2A′

1 A2A′

2 + Ic

)
.

Now let A11 = A1A′

1 + Ip, A12 = A′

21 = A1A′

2 and A22 = A2A′

2 + Ic . Then(
AA′

+ Ip
)−1

=

(
A−1
11 + A−1

11 A
−1
11 A12A−1

22·1A21A−1
11 −A−1

11 A12A−1
22·1

−A−1
22·1A12A−1

11 A−1
22·1

)
,

where A22·1 = A22 − A21A−1
11 A12. Note that (i) F(t) = A′

1A
−1
11 A1 and

(ii) F
(̃
t
)

= A′(AA′
+ Ip)−1A =

(
A′

1, A′

2
)
(AA′

+ Ip)−1(A′

1, A′

2
)′

= A′

1

(
A−1
11 + A−1

11 A12A−1
22·1A21A−1

11

)
A1 − A′

1A
−1
11 A12A−1

22·1A2−(
A′

1A
−1
11 A12A−1

22·1A2
)′

+ A′

2A
−1
22·1A2.

It follows that

F
(̃
t
)
− F(t) = A′

1A
−1
11 A12A−1

22·1A21A−1
11 A1 − A′

1A
−1
11 A12A−1

22·1A2−(
A′

1A
−1
11 A12A−1

22·1A2
)′

+ A′

2A
−1
22·1A2

= B′

1B1 − B′

1B2 − B′

2B1 + B2B′

2

= (B1 − B2)′(B1 − B2),

where B1 = A−1/2
22·1 A21A−1

11 A1 and B2 = A−1/2
22·1 A2. Therefore, we derive that

F
(̃
t
)
− F(t) = (B1 − B2)′(B1 − B2),

which is always positive semidefinite. □

Proof of Theorem 2. In light of Assumption 1 and Eq. (7), it suffices to prove the theorem for the design objective function
in (7) with an arbitrary positive semidefinite matrix B of finite operator norm.

We first focus on the fixed design. Without of loss of generality we assume that σ 2
ϵ = 1. Let UDU′ be the eigendecom-

position of Φ(tp)ΛΦ(tp)′. Let V = U′Φ(tp)Λ1/2. Note that we drop the dependence of U and V on p for simplicity. We also
simply denote Φ(tp) by Φ. Then VV′

= D and Φ(tp)Λ1/2
= UV. It follows that

Λ1/2Φ′Σ−1ΦΛ1/2
= (UV)′

(
UDU′

+ Ip
)−1(UV) = V′(D + I)−1V.

Then we derive that

M(t) = tr
[
Λ1/2BΛ1/2

{I − V′(D + I)−1V}
]

≤ ∥B∥optr
[
Λ{I − V′(D + I)−1V}

]
,

where ∥B∥op denotes the operator norm of B. Therefore, it suffices to prove that as p → ∞, tr
[
Λ{I − V′(D + I)−1V}

]
→ 0.

Denote the jth diagonal of D by dj. Let V = (vjk) and U = [u1, . . . ,up]. Since V = U′Φ(tp)Λ1/2, we obtain vjk = u′

jφkλ
1/2
k ,

where φk = {φk(t1), φk(t2), . . . , φk(tp)}′. Fix an arbitrary small ϵ with 0 < ϵ < 1/2. Then there exists an integer K0
such that

∑
k>K0

λk < ϵ. By Proposition 5.1 in Bunea and Xiao (2015), for any sufficiently large p (depending on ϵ),
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|v2
kk/(pλk) − 1| ≤ ϵ, |dk − pλk| ≤ ϵ for all k ≤ K0. It follows that

tr
[
Λ{I − V′(D + I)−1V}

]
=

∑
k≥1

λk

⎛⎝1 −

∑
j≥1

v2
jk

dj + 1

⎞⎠
≤

∑
1≤k≤K0

λk

(
1 −

v2
kk

pλk

pλk

dk + 1

)
+

∑
k>K0

λk

≤

∑
1≤k≤K0

λk

{
1 −

pλk

pλk + ϵ + 1
(1 − ϵ)

}
+ ϵ

≤

∑
1≤k≤K0

λk

(
1 − ϵ2

pλk + ϵ + 1
+ ϵ

)
+ ϵ

≤ϵ
∑

1≤k≤K0

λk +

∑
1≤k≤K0

λk

pλk + 1 + ϵ
+ ϵ

≤ϵ
∑

1≤k≤K0

λk + K0/p + ϵ.

Therefore, with a sufficient large p, we can make tr
[
Λ{I − V′(D + I)−1V}

]
smaller than ϵ, up to a finite multiplicative

constant. We have proved that limp→∞M(tp) = 0 for the fixed design.
For the random design, the key is to establish that

|v2
kk/(pλk) − 1| = oP(1), |dk − pλk| = oP(1) for all k ≤ K0,

which holds by a proposition (similar to Proposition 5.1 in Bunea and Xiao (2015)) in the Supplementary materials. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.csda.2018.01.009.
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