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Abstract

Functional connectivity (FC) and resting-state network (RSN) analyses using functional magnetic 

resonance imaging (fMRI) have evolved into a growing field of research and have provided useful 

biomarkers for the assessment of brain function in neurological disorders. However, the underlying 

mechanisms of the blood oxygen level-dependant (BOLD) signal are not fully resolved due to its 

inherent complexity. In contrast, [18F]fluorodeoxyglucose positron emission tomography 

([18F]FDG-PET) has been shown to provide a more direct measure of local synaptic activity and 

may have additional value for the readout and interpretation of brain connectivity. We performed 

an RSN analysis from simultaneously acquired PET/fMRI data on a single-subject level to directly 

compare fMRI and [18F]FDG-PET-derived networks during the resting state. Simultaneous 

[18F]FDG-PET/fMRI scans were performed in 30 rats. Pairwise correlation analysis, as well as 

independent component analysis (ICA), were used to compare the readouts of both methods. We 

identified three RSNs with a high degree of similarity between PET and fMRI-derived readouts: 

the default-mode-like network (DMN), the basal ganglia network and the cerebellar-midbrain 

network. Overall, [18F]FDG connectivity indicated increased integration between different, often 

distant, brain areas compared to the results indicated by the more segregated fMRI-derived FC. 

Additionally, several networks exclusive to either modality were observed using ICA. These 
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networks included mainly bilateral cortical networks of a limited spatial extent for fMRI and more 

spatially widespread networks for [18F]FDG-PET, often involving several subcortical areas.

This is the first study using simultaneous PET/fMRI to report RSNs subject-wise from dynamic 

[18F]FDG tracer delivery and BOLD fluctuations with both independent component analysis 

(ICA) and pairwise correlation analysis in small animals. Our findings support previous studies, 

which show a close link between local synaptic glucose consumption and BOLD-fMRI-derived 

FC. However, several brain regions were exclusively attributed to either [18F]FDG or BOLD-

derived networks underlining the complementarity of this hybrid imaging approach, which may 

contribute to the understanding of brain functional organization and could be of interest for future 

clinical applications.
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1. Introduction

Although the understanding of brain function has taken major leaps over the past several 

decades due to the development of novel imaging and computational modelling techniques, 

functional brain organization and its dysfunctions continue to be incompletely understood. 

Functional connectivity (FC) describes synchronous oscillations of brain activity in different 

parts of the brain and can be used to study its functional organization. Ogawa et al. 

introduced functional magnetic resonance imaging (fMRI), making use of the blood 

oxygenation level dependant (BOLD) signal to derive neural activity (Ogawa et al., 1990). 

This technique opened the possibility of acquiring FC using MRI (Biswal et al., 1995). 

FMRI-derived FC studies focus on characterizing functional resting-state networks (RSN) 

through temporal correlations of the BOLD signal between different brain regions (Fox et 

al., 2005; Greicius et al., 2003).

The default-mode network (DMN) is the most widely reported resting-state network 

(Raichle et al., 2001). The DMN is composed of a number of medial and lateral cortical 

regions characterized by decreased connectivity during tasks compared to the resting state. 

Hence, the DMN appears to be related to a certain default state of the brain during rest. The 

DMN is believed to play an essential role in brain organization, recollection, self-awareness 

and imagination (Raichle et al., 2001). The function of the DMN has been shown to be 

disrupted in several clinical populations, including Alzheimer’s disease and schizophrenia 

(Badhwar et al., 2017; Bluhm et al., 2007; Greicius et al., 2004; Mwansisya et al., 2017). In 

addition to the DMN, several other RSNs have been reported to involve other cortical areas 

(Damoiseaux et al., 2006). Additionally, RSNs have been identified in other brain regions, 

including the cerebellum and brainstem and subcortical areas such as the basal ganglia (Joel 

and Weiner, 1994). These networks encompass a variety of different structures and are 

therefore thought to be involved in a number of integrative processes, including perception, 

memory, attention, seizure suppression, executive control and emotion (Becerra et al., 2011; 
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Cole et al., 2010). Due to their manifold roles, such networks are of interest for various 

clinical and research applications, such as diagnostics or drug development.

Although networks such as the DMN were initially assumed to be exclusive to the human 

brain, analogues of human RSNs have been observed in other species, including rats 

(Hutchison et al., 2010; Lu et al., 2012; Majeed et al., 2011; Zhang et al., 2010). The 

interpretation of the significance of the RSN continues to be a topic of scientific interest. 

However, it is widely established that numerous such networks are not only reproducible 

across species, individuals and ages but can also play a role as biomarkers, as they are 

disrupted in neurological disorders or by certain drugs (Barkhof et al., 2014). The field of 

research investigating disruptions of whole-brain or network-level FC has profited from the 

emergence of connectomics, which focus on defining the properties of the brain as a network 

(Bullmore and Sporns, 2009; Sporns et al., 2005). The framework of connectomics includes 

measures defining the functional organization of the brain to enable the analysis and 

detection of alterations to brain functionality (Sporns, 2010).

Although better established through BOLD-fMRI studies, the concept of functional 

connectivity between different brain regions first emerged using [18F]fluorodeoxyglucose 

positron emission tomography ([18]FDG-PET). Horwitz et al. showed relationships between 

the metabolism of different brain regions by computing correlations between regional 

subject series derived from static [18F]FDG-PET scans (Horwitz et al., 1984). Compared to 

the BOLD signal, which is driven by a still incompletely understood convolution of cerebral 

blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen 

(CMRO2) (Buxton, 2012), [18F]FDG-PET may represent a more direct reflection of neural 

activity (Hahn et al., 2016; Lanzenberger et al., 2012). By operating on a different 

neurophysiological level, [18F]FDG correlations could potentially provide complementary 

information to BOLD-derived FC and thereby further help decipher the substrate of brain 

connectivity.

More recent studies focusing on [18F]FDG correlations have derived networks similar to 

those revealed by BOLD-fMRI (Di and Biswal, 2012). Upon further investigation by other 

groups, these networks acquired using [18F]FDG-PET have been shown to exhibit 

comparable organizational properties to BOLD-derived RSNs (Sanabria-Diaz et al., 2013; 

Seo et al., 2013b). Importantly, Savio and colleagues described several similar networks 

from simultaneously acquired FC and [18F]FDG-PET-derived connectivity in humans, 

suggesting the presence of a common substrate between both outputs (Savio et al., 2017). 

Recently, the same group has applied a similar methodology to investigate the effects of 

Alzheimer’s Disease on both metabolic and hemodynamic RSNs (Ripp et al., 2020). The 

authors showed that connectivity acquired using [18F]FDG-PET not only depicted partly 

complementary aspects of RSNs, but also exhibited increased specificity for Alzheimer’s 

Disease compared to FC derived from simultaneously acquired BOLD-fMRI, thereby 

emphasizing the value of [18F]FDG correlation analysis for diagnostics of neurodegenerative 

diseases.

All the studies mentioned above derived [18F]FDG correlations at inter-subject level from 

static PET scans. To enable subject-level computation of connectivity from [18F]FDG scans, 
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dynamic PET acquisitions are employed to compute correlations between dynamic regional 

[18F]FDG tracer delivery fluctuations. Studies computing correlations between regional 

[18F]FDG dynamic PET time-courses are however few and the majority did not acquire PET 

simultaneously to BOLD-fMRI (Passow et al., 2015a; Tomasi et al., 2017). To the best of 

our knowledge, only two studies have reported the simultaneous acquisition of dynamic PET 

scans and fMRI to investigate correlations of dynamic [18F]FDG tracer delivery and BOLD 

fluctuations (Amend et al., 2019; Wehrl et al., 2013). These studies indicated a significant 

amount of complementary data by the two methods for both rest and task conditions.

The aim of the present study was to compare the resting-state outputs of dynamic [18F]FDG-

PET and BOLD-fMRI by analysing different RSNs derived from [18F]FDG correlations and 

FC at the single-subject level using both pairwise correlation analysis and independent 

component analysis (ICA). This study builds on our prior work focused on analysing and 

comparing the effects indicated by BOLD-fMRI and [18F]FDG-PET following brain 

stimulation (Wehrl et al., 2013) and on defining the dynamics of tracer delivery driving 

[18F]FDG correlations (Amend et al., 2019) by elucidating the complementarity of the 

[18F]FDG correlations and FC readouts on a physiological level. We hypothesized that the 

common substrate of both outputs will enable the observation of similar organizational 

properties; however, we also expect a complementary input to be provided by [18F]FDG 

correlations. To the best of our knowledge, this is the first study investigating RSNs of both 

FC and subject-wise [18F]FDG correlations using simultaneous PET/MRI and employing 

both independent component analysis (ICA) and pairwise correlation analysis in small 

animals.

2. Materials and methods

2.1. Animals

Healthy male Lewis rats (n = 30) were ordered from Charles Rivers Laboratories (Sulzfeld, 

Germany). The animals used in the experiments had bodyweights of 292.2 ± 22.1 g, 

corresponding to an age of approximately 11 weeks. Rats were kept on a 12 h day-night 

cycle at a room temperature of 22 °C and 40–60% humidity. The rats received a standard 

diet and tap water ad libitum before and during the experimental period. All animals were 

fasted for 6 h prior to the scans. A separate cohort of three rats was used for determining 

physiological parameters over the course of the scans using pulse oximetry (please refer to 

Supplementary Information for details). All experiments were performed in accordance with 

the German federal regulations regarding the use and care of experimental animals and 

under approval by the local research administration.

Fifteen of the datasets were used in our previous study on the methodology of acquiring 

[18F]FDG and BOLD-fMRI resting-state functional connectivity using simultaneous 

acquisitions in rats (Amend et al., 2019).

2.2. Simultaneous PET/MRI experiments

The rats were placed into a knock-out box and 3% isoflurane in regular air was delivered to 

induce anaesthesia. The isoflurane concentration was then reduced to 2% for all subsequent 
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preparation steps. First, the baseline capillary blood glucose levels were measured by 

puncturing the tail vein and the weights of the animals were examined. Subsequently, an 

intravenous catheter was placed into a tail vein using a 30 G needle for [18F]FDG 

administration. Finally, the animals were positioned onto a dedicated small-animal bed and 

introduced inside a PET/MRI scanner. The temperature was monitored and maintained at 

36.5 °C using a rectal temperature probe and a feedback-controlled system, and the 

respiration rate was observed during the experiments. For the resting-state measurements, 

the isoflurane concentration was reduced to 1.3% in regular air over the course of the scan. 

At the end of each scan, the capillary blood glucose concentrations were re-evaluated. For 

additional data on the physiology of the animals under these experimental conditions, 

including heart rate, breathing rate and blood oxygenation, please refer to Supplementary 

Information.

Simultaneous PET/MRI measurements were performed over the course of 60 min. Magnetic 

resonance imaging was performed using a small-animal 7 T ClinScan system (Bruker 

BioSpin MRI, Ettlingen, Germany). A linearly polarized RF coil (Bruker) with a diameter of 

72 cm was employed for transmission and a four-channel rat brain coil (Bruker) was used 

for reception. First, localizer scans were acquired to adjust the position of the rat brains to 

the centre of the PET/MRI field of view (FoV). Before performing further sequences, local 

field maps were acquired to optimize the local magnetic field homogeneity. Subsequently, 

T2 sequences were acquired as anatomical references (TR: 1800 ms, TE: 67.11 ms, 0.25 

mm3 isotropic resolution, FoV: 40 × 32 × 32 mm, image size: 160 × 128 × 128 px, Rare 

factor: 28, averages: 1). Functional MRI scans were performed using a T2 * -weighted 

gradient echo EPI sequence (TE: 18 ms, TR: 2500 ms, 0.27 mm isotropic resolution, FoV 25 

× 23 mm, image size: 92 × 85 × 20 px, slice thickness: 0.8 mm, 20 slices, 0.2 mm separation 

between slices). The fMRI scans were performed over the same 60 min time interval as the 

PET scans described below.

[18F]FDG-PET acquisitions were performed using a small-animal PET insert developed in 

cooperation with Bruker, a second generation with similar performance parameters as our in-

house developed PET insert (Wehrl et al., 2013). Additionally, 31.6 ± 0.9 MBq of [18F]FDG 

diluted in NaCl was administered over a period of 30 s as a bolus shortly after the start of the 

PET/MRI acquisition. PET data were stored as list-mode files and reconstructed in 60 1-

minute frames employing an in-house written ordered-subsets expectation maximization 2 

(OSEM-2D) algorithm including random, decay, time-delay corrections and normalization. 

For a detailed description of [18F]FDG production, see the Supplementary Information.

The original raw dataset will be made available on Mendeley.

2.3. Data processing and analysis

Both the PET scans and the anatomical and functional MRI data were first realigned using 

Statistical Parametric Mapping 12 (SPM 12, Wellcome Trust Centre for Neuroimaging, 

University College London, London, United Kingdom) and checked for motion. The motion 

parameters were stored for fMRI denoising. Mean images of each data set were created and 

used to generate binary brain masks for the fMRI and PET scans using Analysis of 

Functional NeuroImages (AFNI, National Institute of Mental Health (NIMH), Bethesda, 

Ionescu et al. Page 5

Neuroimage. Author manuscript; available in PMC 2021 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Maryland, USA). Additionally, brain masks were generated for the T2-weighted anatomical 

MRI scans. The respective masks were used to remove outer-cerebral tissues from all the 

PET, fMRI and T2-weighted anatomical MRI datasets. The remaining pre-processing steps 

were performed using SPM 12. First, all the realigned and skull-stripped fMRI and PET 

datasets were co-registered to their respective anatomical reference scans. Subsequently, 

using the anatomical images as a reference, all the datasets were normalized to the Schiffer 

rat brain atlas (Schiffer et al., 2006). Motion regression was applied to the normalized 

datasets using an in-house written script by regressing out the motion parameters acquired 

during the realignment step at the beginning of the pre-processing pipeline. Additionally, 

fMRI signal drifts were removed voxel-wise using linear and quadratic fits. Following 

motion regression, both the fMRI and PET datasets were smoothed using a 1.5 × 1.5 × 1.5 

mm3 full-width-half-maximum (FWHM) Gaussian kernel as described previously (Wehrl et 

al., 2013), which is equivalent to the physical spatial resolution of the PET system used.

Fifty-two regions of the Schiffer rat brain atlas were selected for region of interest (ROI)-

based analysis (Schiffer et al., 2006) (for a list of regions of the Schiffer rat brain atlas, see 

the Supplementary Methods). The fMRI and [18F]FDG-PET time courses from these ROIs 

were extracted using the SPM toolbox Marseille Boîte À Région d’Intérêt (MarsBaR) 

(Matthew Brett, June 2–6, 2002). Prior to analysis, the extracted time courses underwent 

whole-brain normalization to account for global effects. Therefore, the values of each ROI at 

every time-point were divided by the whole-brain mean of the signal at the respective time-

points. For each dataset, Pearson’s r correlation coefficients were computed between the 

normalized time courses of each pair of regions, resulting in correlation matrices of 52 × 52 

entries for each dataset. Since the 52 self-correlations were set to zero, 2652 correlation 

coefficients were computed for each individual scan. Due to the findings in our previous 

study (Amend et al., 2019) on the inability to ensure temporal stability of the [18F]FDG 

correlation readout when applying a bolus protocol and the lack of a gold standard to 

determine the most suited period for the analysis, correlations were performed over the 

course of the entire scan to avoid potential bias by choosing a specific period.

For group-level analysis, Pearson’s r values were transformed into Fischer’s z-scores, and 

mean correlation matrices were generated for both fMRI and PET datasets (for a detailed 

description, please refer to the Supplementary Methods). Additionally, a second-level 

analysis was performed to test every edge for significance (one-sample t-test, p ≤ 0.05, 

corrected for multiple comparisons). All multiple comparison corrections presented in the 

manuscript were performed using Bonferroni-Holm.

To investigate the whole-brain organization of FC and [18F]FDG connectivity, three network 

measures were applied to the PET and fMRI-derived correlation matrices of each subject 

using the Brain Connectivity Toolbox (Rubinov and Sporns, 2010). First, for each individual 

correlation matrix, 500 randomized matrices with the same average degree were generated 

by rewiring each of the edges of the respective matrix. Ideal modularity (Reichardt and 

Bornholdt, 2006) and clustering coefficients (Onnela et al., 2005) were then computed for 

both the individual correlation matrices and all randomized matrices. To derive values 

representative of a null distribution the network metrics of the random matrices were 

averaged over the 500 iterations. Finally, small-world coefficients were derived for each 
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matrix using the averaged randomized network metrics (for detailed descriptions of these 

methods, see the Supplementary Methods). As described previously, networks were defined 

as exhibiting small-world properties when the small-world coefficients were higher than 1 

(Humphries and Gurney, 2008). To define the nodes and edges of the generated correlation 

matrices for further network analysis, a threshold was applied to achieve a sparsity value of 

20%. Di et al. investigated metabolic connectivity matrices using thresholds between 4% and 

18% sparsity (Di et al., 2017). For this application, a slightly more liberal threshold was 

chosen to avoid missing relevant edges since the data were acquired from anaesthetized 

animals, as opposed to humans in the mentioned study. Elsewhere, thresholds up to 40% 

sparsity have been reported for metabolic connectivity studies (Seo et al., 2013a).

To assess the similarity between group-averaged [18F]FDG correlations and FC readouts on 

whole-brain and RSN levels the correlation coefficients between the respective outputs were 

computed (Di et al., 2017). Therefore the Pearson’s correlation coefficient between the two 

sets of connectivity values was employed. The same calculations were also repeated for 

[18F]FDG correlations and FC readouts of each subject at whole-brain level, as well as and 

for the DMN, basal ganglia network and cerebellar-midbrain network. To report group-level 

mean correlation values between the [18F]FDG connectivity and FC of single subjects, the 

correlation coefficients were transformed to Fischer’s z-scores before averaging over all 

subjects.

Independent component analysis (ICA) was performed using Group ICA of the fMRI 

Toolbox (GIFT, MIALAB, University of New Mexico, Albuquerque, NM, USA). As 

described previously for small-animal datasets, 20 components were chosen for the ICA 

algorithm (Wehrl et al., 2013). The maps of the generated components were thresholded (z ≥ 

1.96, corresponding to p ≤ 0.05) (Di et al., 2012). Voxel-wise Dice-Sörensen coefficients 

(DSCs) were computed between the components generated from the fMRI and PET datasets. 

Furthermore, DSCs were computed between each component and the 52 regions under 

consideration from the Schiffer brain atlas to determine the voxel-wise percentage 

contribution of each region to the respective components. By combining these measures with 

a visual inspection, similar components of the fMRI and PET datasets, as well as 

components exclusive to either one of the two datasets, were determined and quantified.

For the defined networks common to both BOLD-fMRI and [18F]FDG-PET, specific sets of 

nodes were isolated based on previous rat FC studies describing the regions contributing to 

each of these RSNs (Becerra et al., 2011). Using these nodes, unthresholded and thresholded 

(20%) mean correlation matrices were generated. The similarity of these RSNs for 

[18F]FDG and BOLD-fMRI using ROI-based methods was visualized through scatter plots 

and quantified using Pearson’s r. Additionally, common edges between FC and [18F]FDG 

correlations were derived from the thresholded matrices and illustrated using the BrainNet 

Viewer toolbox (Xia et al., 2013). For information on the regions included in each network, 

please refer to the Supplementary Methods. For the thresholded correlation matrices of each 

RSN, please refer to the Supplementary Results.
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3. Results

3.1. Whole-brain connectivity assessment

First, the properties of the whole-brain [18F]FDG correlations and FC were assessed (Fig. 1). 

The analysis of an exemplary single subject is first depicted (Fig. 1A–F). The [18F]FDG and 

BOLD-fMRI correlation matrices were compared by computing their similarity using 

Pearson’s r. Additionally, clustering, modularity and small-worldness were quantified to 

derive the network properties of the investigated matrices. In the second part of the figure 

(Fig. 1G–L), the same analysis measures on the group level are shown.

The whole-brain correlation matrix of the exemplary single-subject analysis (Fig. 1A) 

indicates its PET-derived interregional [18F]FDG correlations (upper half above the 

diagonal) and its fMRI-derived FC (lower half below the diagonal). This matrix was 

thresholded at 20% (Fig. 1B) to depict the common areas of [18F]FDG correlations and FC. 

The correlation between [18F]FDG connectivity and FC was also calculated and is shown as 

a scatter plot (Fig. 1C). For this exemplary subject, the correlation between the [18F]FDG 

and BOLD-fMRI readouts on the whole-brain level was r = 0.38 (p ≤ 0.001), and thus, it was 

highly significant (p ≤ 0.001). In addition, graph theory measures, including modularity 

(Fig. 1D), clustering (Fig. 1E) and small-worldness (Fig. 1F), were calculated for the 

exemplary subject, as well as for all other subjects. For this subject, both [18F]FDG 

correlations (small-world coefficient = 1.73) and FC (small-world coefficient = 1.91) 

exhibited small-world properties.

The whole-brain connectivity matrix (Fig. 1G) reveals the connectivity patterns of 

[18F]FDG-PET (above diagonal) and BOLD-fMRI (below diagonal) data on the group-mean 

level. All correlations were tested on group level for significance using multiple comparison 

correction (p ≤ 0.05, Bonferroni-Holm) and significant edges are indicated by asterisks. For 

an additional comparison between [18F]FDG correlations and FC involving only significant 

edges, please refer to Supplementary Figure 9. Here, a sparsity threshold of 20% was 

applied across all correlations to further compare the distribution of the strongest edges 

between [18F]FDG connectivity and FC (Fig. 1H). A number of similarities could be 

assessed visually from the whole-brain connectivity matrices. First, two large clusters with 

high densities of connections could be observed for both [18F]FDG connectivity and FC. 

The first cluster (indicated by green box (1) in Fig. 1I) was mainly composed of cortical 

regions, such as the auditory (Au), cingulate (Cg), entorhinal (Ent), motor (M1), 

orbitofrontal (OFC), parietal (PaC), retrosplenial (RS), primary sensory (S1) or visual (V1) 

cortices. Other regions included in this cluster were anterior subcortical areas, such as the 

nucleus accumbens (NAc), amygdala (Amyg) or caudate putamen (CPu). The remaining 

regions in the subcortical and posterior brain areas, including the superior and inferior 

colliculi (SC and IC, respectively), the midbrain (MB), the cerebellum white and grey matter 

(CW and CG), the thalamus (Th), the hypothalamus (Hyp), the periaquaeductal grey (PAG) 

and the septum (Sep), formed a separate cluster (indicated by the blue box (2) in Fig. 1H) 

with sparse connections to the anterior cluster mentioned above. The anterodorsal and 

posterior hippocampus (CA1 and CA1-p) exhibited connectivity to both clusters in the FC 

matrix; however, they were much less connected in the [18F]FDG readout. Observing the 
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two separate clusters in more detail, further smaller clusters of dense and intense 

correlations could be observed for both outputs, including one composed of posterior 

cortical regions (RS, PaC, S1 and V1) and another of the cerebellum (CG and CW).

Quantitatively, the observed similarities translated into a Pearson’s r coefficient of 0.45 (p ≤ 

0.001, Fig. 1I). The visual observations regarding modularity and clustering were quantified 

by computing afferent network measures (Fig. 1J–L). The ideal modularity Q differed 

significantly (p ≤ 0.001, paired t-tests) from the respective randomized groups of matrices 

for both [18F]FDG correlations (0.46 ± 0.02 for subject matrices and 0.22 ± 0.02 for 

randomized matrices) and FC (0.47 ± 0.05 for subject matrices and 0.25 ± 0.02 for 

randomized matrices). Similarly, clustering was significantly higher (p ≤ 0.001, paired t-

tests) for [18F]FDG connectivity from the respective randomized groups (0.27 ± 0.09 for 

subject matrices and 0.14 ± 0.05 for randomized matrices), as well as for FC (0.27 ± 0.09 for 

subject matrices and 0.11 ± 0.04 for randomized matrices). Finally, the small-world 

properties of the outputs were computed using the small-world coefficient. For [18F]FDG 

connectivity, a mean value of 1.42 ± 0.39 was found. For FC, the mean small-world 

coefficient was 1.73 ± 0.34. Both datasets were significantly higher than 1 (p ≤ 0.001, one-

sample t-test). On the individual level, one subject exhibited small-world coefficients lower 

than 1 for both [18F]FDG connectivity and FC, and three other subjects had small-world 

coefficients lower than 1 for [18F]FDG-PET.

3.2. Network-level connectivity analysis shows similar components for both readouts

Fig. 2 shows the analysis of a DMN-like network obtained for both modalities. The 

correlation matrices of [18F]FDG connectivity and FC and the respective edges obtained 

from applying a 20% sparsity threshold are depicted, and Pearson’s r correlation between 

both outputs is revealed. For ICA, the two similar components associated with the DMN are 

illustrated.

The correlation matrices obtained from pairwise analysis of dynamic [18F]FDG tracer 

delivery fluctuations and FC of regions associated with the DMN revealed two clusters for 

both outputs (Fig. 2A). The first cluster included regions belonging to the anterior DMN, 

centred around the Cg. Other regions in this cluster were the mPFC, OFC and M1. The 

second cluster comprised posterior cortical regions, with lateral areas such as the PaC, S1 

and V1, while the RS featured as a medial cortical region. The depiction of the common 

edges between both outputs yielded the observation that many edges were situated within 

the two respective clusters and fewer edges were situated between them. However, this 

observation was less pronounced for the [18F]FDG-PET readout. A Pearson’s r correlation 

coefficient of 0.55 (p ≤ 0.001) between [18F]FDG connectivity and FC within the DMN-like 

network was higher than that at the whole-brain level (Fig. 2B). Two components derived 

from the ICA of the two datasets were located around the posterior area of the DMN (Fig. 

2C). The two cortical regions with the highest contributions to these components were the 

widely reported DMN hubs: the RS (11% in PET and 21% in fMRI) and Cg (3% in PET and 

5% in fMRI). Other cortical regions contributed less than two percent of the signal in either 

component. However, large implications were observed from more posterior regions, such as 

the midbrain (32% in PET and 16% in fMRI) and the cerebellum (14% in PET and 57% in 
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fMRI). Furthermore, CA1 (28%) and Th (11%) contributed to the signal in the PET-derived 

component.

Fig. 3 focuses on the connectivity within the basal ganglia network. The mean connectivity 

matrices for [18F]FDG and BOLD-fMRI are depicted, along with the edges derived from 

applying a 20% whole-brain sparsity threshold. To assess similar information for both 

outputs, the common edges are shown and Pearson’s r is calculated for the unthresholded 

outputs. Second, two components exhibiting a significant spatial distribution along the 

striatum are presented along with the quantification of the contributions of different regions 

to the respective components.

The mean connectivity matrices of the basal ganglia network revealed more widely 

distributed connectivity patterns for FC than for [18F]FDG correlations (Fig. 3A). The 

similarities of both outputs included pronounced connectivity between the CPu, Ins, CA1 

and CA1-p. The quantification of similarity between both outputs using Pearson’s r had a 

value of 0.3 (p ≤ 0.001, Fig. 3B). Similar to the pairwise correlation approach, the ICA-

derived components indicated an overlap in the anterior subcortical regions, especially in the 

striatum (Fig. 3C). The quantification of regional contributions confirmed that the CPu 

contributes extensively to the signal in both components (43% in PET and 60% in fMRI). 

Additionally, the second-highest contribution to both components was provided by the Th 

(17% for PET and 11% for fMRI). Other areas, such as the NAc, Ins and CA1, contributed 

to the signal in both components, while the Amyg and Hyp only featured in the fMRI 

output, and the MB exclusively featured in the PET-derived output.

Fig. 4 illustrates the connectivity in the cerebellar-midbrain network. First, the FC and 

[18F]FDG connectivity derived using the pairwise correlation approach are shown, and the 

respective outputs compared. Second, two components derived from both PET and fMRI are 

presented and the regional contributions to the signal of each component are quantified 

voxel-wise.

The connectivity in the cerebellar and midbrain areas of the brain revealed increased spatial 

distribution for [18F]FDG correlations (Fig. 4A). While both [18F]FDG correlations and FC 

could be found within the cerebellum (CG and CW) and the midbrain areas (MB, SC, IC, 

VTA), in contrast to [18F]FDG connectivity, no FC was detected between the midbrain 

regions and cerebellar regions. Nonetheless, a relatively high correlation of 0.65 (p ≤ 0.001) 

between the two unthresholded outputs of [18F]FDG-PET and BOLD-fMRI was quantified 

using Pearson’s r (Fig. 4B). Two separate components for the two areas were assessed using 

ICA. The cerebellar components (Fig. 4C) showed significant overlap, both having high 

contributions from the CG (65% in PET and 65% in fMRI) and the CW (32% in PET and 

35% in fMRI). A further pair of components (Fig. 4D) was derived from both the midbrain 

and cerebellar areas. While the cerebellum provided the largest proportion of signal for both 

PET and fMRI, the MB also contributed to both components (9% in PET and 3% in fMRI) 

along with the IC (9% in PET and 19% in fMRI) and the SC (3% in PET and 2% in fMRI).
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3.3. Single-subject correlations between hemodynamic and [18F]FDG-PET-derived RSNs

We calculated correlations between the single-subject readouts of the three reported RSNs. 

The values are presented in Fig. 5.

On whole-brain level, all subjects correlated significantly (p ≤ 0.05) and all respective p-

values survived multiple comparison correction using Bonferroni-Holm. The correlations 

ranged from 0.08 to 0.42 with a mean value of 0.22 ± 0.07. In the DMN, the correlations 

ranged from 0.08 to 0.42 with a mean value of 0.29 ± 0.10. 28 out of 30 subjects correlated 

significantly (p ≤ 0.05, uncorrected) and 26 out of the 30 p-values survived multiple 

comparison correction. In the basal ganglia network, correlations between [18F]FDG-PET 

and BOLD-fMRI connectivities on single-subject level were in the range of −0.1 and 0.49, 

the mean value being 0.11 ± 0.13. [18F]FDG connectivity and BOLD-derived FC correlated 

significantly for 12 out of 30 subjects before multiple comparison correction and for 3 out of 

30 subjects after Bonferroni-Holm correction was applied. Finally, in the cerebellar-

midbrain network the subject-level correlations of [18F]FDG connectivity and FC were in 

the range between 0.14 and 0.65 with an average of 0.35 ± 0.18. 24 out of 30 single-subject 

[18F]FDG correlation readouts and respective BOLD-fMRI outputs correlated significantly 

(p ≤ 0.05) before multiple comparison correction and 12 out of 30 survived Bonferroni-

Holm correction.

3.4. Complementary networks can be found in fMRI and PET-derived connectivity outputs

Fig. 4 focuses on the components found exclusively in the fMRI-derived ICA. Here, four 

cortical components and one subcortical component are presented from the anterior to 

posterior areas of the brain. For a list of all 20 components found in the fMRI-derived ICA, 

see the Supplementary Results.

In the component comprising the anterior DMN, the Cg acted as a main hub, contributing 

36% of the signal (Fig. 6A). Further anterior cortical areas with implications in this 

component were the mPFC (15%), M1 (14%) and OFC (10%). Subcortically, a significant 

signal could be found in the CPu (10%). Posteriorly, another main DMN hub, the RS, 

contributed 7% of the total signal, while 4% of the signal was derived from the S1 cortex.

Fifty-seven percent of a component representing the motor network (Fig. 6B) was found to 

be composed of M1, with further contributions from the Cg (24.%) and S1 (14%). The 

somatosensory network was derived to a proportion of 69% from S1 and 19% from M1 (Fig. 

6C). The hippocampal network was mainly driven by CA1 (37%), while further signals 

could be found in cortical areas such as the S1, V1 and RS, as well as the Th (Fig. 6D). 

Finally, the visual network (Fig. 6E) was predominantly composed of V1 contributions 

(71%). Further contributions were provided by the RS (24%) and the Par (4%).

Three components found exclusively in the PET-derived ICA are depicted in Fig. 7. A list of 

all 20 components derived from the ICA applied to the PET data can be seen in the 

Supplementary Results.

The first component found exclusively in the PET-derived ICA (Fig. 7A) had the largest 

signal contributions from the Hyp (47%) and the RS (23%). Further signals could be 
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detected in the OC (10%) and in anterior subcortical areas such as the NAc (6%) and the 

Amyg (2%). A smaller proportion of the signal was found posteriorly in the cerebellar and 

midbrain areas. A further component (Fig. 7B) was derived mainly from the Th (27%) and 

Hyp (22%). Smaller contributions were provided by other subcortical areas ranging from the 

anterior areas, including the CPu, NAc and Amyg, to the cerebellum. Finally, another 

spatially widely distributed subcortical component revealed the connectivity between the 

basal ganglia and the midbrain and the cerebellum (Fig. 7C). The majority of the signals 

stemmed from the CPu (39%), Th (15%), MB (15%) and CA1 (11%), with smaller 

implications from the CG, CA1-p, VTA, Ins and NAc.

4. Discussion

Resting-state FC studies have been derived primarily from MRI data due to the high spatial 

and temporal resolution and relative ease of access to MR systems. The analysis of BOLD-

fMRI RSN has become more streamlined in recent years, providing reliable quantitative 

measures of brain function. However, fMRI has some disadvantages, relying on the 

convoluted BOLD signal as an indirect reflection of neural activity via hemodynamic 

changes (Buxton, 2012), as well as a high sensitivity to artefacts such as the spin-history 

artefact already occurring at millimetre-range movements (Yancey et al., 2011). Recent 

advances in PET scanner technology with an improved temporal resolution allow functional 

PET imaging using [18F]FDG on the single-subject level (Villien et al., 2014). While 

[18F]FDG-PET directly measures the glucose consumption of cells, the BOLD signal is 

convoluted and weighted towards larger blood vessels (Wehrl et al., 2013). The recent 

advances in correlation analyses of [18F]FDG-PET data (Amend et al., 2019; Wehrl et al., 

2013) performed in the same way as fMRI-derived FC using pairwise correlations or ICA 

have provided the opportunity to gain functional information using PET and enhance the 

understanding on functional connectivity. In this context, the availability of small-animal 

hybrid PET/MR systems provides the opportunity to simultaneously study functional RSNs 

with both modalities. Preclinical studies exhibit several advantages, including high subject 

cohort homogeneity and improved control over the experimental and living conditions of the 

cohort. Here, we present for the first time a comparison of subject-wise derived RSNs 

through the simultaneous acquisition of dynamic [18F]FDG-PET and fMRI data in rats.

In rats, fMRI-derived RSNs similar to those observed in humans have been reported by 

various groups (Becerra et al., 2011; Hutchison et al., 2010; Lu et al., 2012). Here, we report 

a DMN-like network, a basal ganglia network and a cerebellar-midbrain network observed 

using both BOLD-fMRI and [18F]FDG-PET, highlighting the common substrate of the two 

outputs. However, these networks were characterized by differences in the extent of their 

connectivity patterns, emphasizing the complementarity of the two methods. This aspect is 

further supported by a number of RSNs exclusive to either of the two outputs, indicated by 

ICA components associated with the anterior DMN, the motor network, the sensory 

network, the hippocampal network and the visual network for the fMRI dataset and a 

network comprising the retrosplenial cortex and several subcortical regions, one driven 

mainly by the hypothalamus and thalamus and one across several subcortical regions for the 

[18F]FDG-PET dataset.
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4.1. Common RSNs for [18F]FDG-PET and BOLD-fMRI reveal differences regarding spatial 
extents

The DMN is one of the most widely reported RSNs in humans (Raichle et al., 2001). In rats, 

the DMN has been reported as being composed of an anterior and a posterior sub-

component (Lu et al., 2012). This observation is confirmed by the present study. For FC, the 

pairwise correlation approach indicated an anterior cluster around the cingulate cortex and a 

posterior one anchored by the retrosplenial cortex with sparser connectivity between the two 

groups of regions. [18F]FDG correlations revealed a higher density of edges between the 

anterior and posterior parts of the DMN. ICA supported these findings: for fMRI, two 

separate anterior and posterior components associated with the DMN were observed. In 

contrast, only one component associated with the DMN was derived from the [18F]FDG-

PET ICA. This component exhibited higher overlap with the posterior fMRI-derived DMN 

component than with the anterior component. Intriguingly, both the PET-derived and the 

fMRI-derived components comprised extensive contributions from cerebellar and midbrain 

areas. This finding can be explained by the fact that the midbrain and the cerebellum both 

cover a larger volume compared to the retrosplenial and cingulate cortices (see 

Supplementary Table 1). Additionally, recent reports in the literature indicated involvements 

of these areas in the DMN. In a human study, Habas et al. (Habas et al., 2009) found 

cerebellar, thalamic and midbrain contributions to the DMN, as indicated by our data. Other 

reports appear to converge towards the hypothesis that the cerebellum may contribute 

extensively to the DMN (Castellazzi et al., 2018; Savini et al., 2019), although its role has 

not been fully resolved. Studies have indicated its potential involvement in the elaboration of 

the past and future together with the retrosplenial cortex (Addis et al., 2007). The absence of 

the cerebellum from most reports could be a result of its exclusion due to a number of 

challenges it poses in fMRI, such as the risk of susceptibility artefacts (T2* effects) induced 

by nearby air-tissue interface in the ears (Batson et al., 2015; Becerra et al., 2011; Habas et 

al., 2009). In this respect, PET acquisitions are superior since they are not influenced by 

such artefacts. Nonetheless, both cerebellar and midbrain contributions to the DMN were 

also reported in rodents using fMRI (Becerra et al., 2011; Upadhyay et al., 2011). Our PET/

fMRI data support the involvements of cerebellum and midbrain in the posterior DMN.

The second large-scale network featuring in the outputs of both modalities involved 

subcortical regions commonly termed the basal ganglia. The circuitry of this network is of 

particular interest since the basal ganglia have been shown to be chronologically amongst 

the first areas affected in several diseases, such as Parkinson’s disease, Huntington’s disease 

or dystonia (DeLong and Wichmann, 2007). Reports of this network in rats provide 

contrasting information regarding the integration of separate regions into a single network. 

Becerra et al. reported two components involving the basal ganglia in awake rats (Becerra et 

al., 2011). Other groups have observed different components separately involving the 

striatum, hippocampus or thalamic areas with no apparent connection between them 

(Hutchison et al., 2010; Majeed et al., 2011). For fMRI we found similar ICA components 

including separate hippocampal and thalamic circuitry (see component 7 in Supplementary 

Figure 3). Using the pairwise correlation approach, a more pronounced connectivity between 

the different structures could be observed for FC. For [18F]FDG, the pairwise correlation 

analysis showed decreased integration of the basal ganglia with pronounced connectivity 
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predominantly in the anterior area around the striatum. This observation was forced by the 

ICA applied to the [18F]FDG-PET data. The highest overlap in regions associated with the 

basal ganglia network occurred between two components predominantly situated in the 

striatum.

The final network found to be similar for [18F]FDG correlations and BOLD-fMRI FC 

involved cerebellar-midbrain circuitry. Interestingly, novel evidence suggests an integration 

of these structures into a coherent network with the basal ganglia network presented above 

(Bostan and Strick, 2018). The analysis of cerebellar-midbrain circuitry enabled similar 

observations applied to the DMN described above; while [18F]FDG correlations suggested 

integration of midbrain and cerebellar circuitry, FC was pronounced within the cerebellum 

and the midbrain individually, but not between them. The performed ICA revealed one 

cerebellar component for both readouts and a second involving both cerebellum and 

midbrain. Interestingly, the cerebellar-midbrain component derived from [18F]FDG-PET 

also suggests increased spatial integration due to the more distributed signal with stronger 

contributions from the midbrain and thalamus.

In addition to the group-mean calculations, we conducted subject-wise correlation analyses 

between [18F]FDG and BOLD-fMRI readouts at whole-brain and RSN level, leading to two 

main conclusions. First, the subject [18F]FDG-PET and BOLD-fMRI FC readouts correlated 

for all RSNs and on whole-brain level in the majority of subjects. Significance testing of the 

single-subject correlations indicated differing extents of coherence between [18F]FDG 

correlations and FC depending on the RSN. Although the correlations between [18F]FDG-

PET outputs and FC for certain subjects were as high as for the group-mean data, on average 

they were lower compared to group-mean readouts. Especially in the basal ganglia network, 

less than half of the subjects exhibited significant correlations between [18F]FDG-PET 

readouts and FC and merely three were significant following multiple comparison 

correction. These observations imply that there is a significant inter-subject variability in 

both [18F]FDG correlations and FC which is likely not entirely consistent between subjects. 

In spite of the single-subject variability, at the employed group size of 30 subjects the 

[18F]FDG-PET data and BOLD-fMRI FC converge to a higher correlation of the group-

mean readouts. While inter-subject variability is a well-reported characteristic of resting-

state fMRI (Chou et al., 2012) and appears to be similar for [18F]FDG-PET, it will be of 

interest for future studies to investigate direct relationships between the subject-level 

variance of the two readouts and to decipher their physiological significance. If the subject-

wise variance of [18F]FDG correlations is able to partially explain that of FC, it may 

enhance the prospects of using connectivity as a tool for diagnosis or treatment monitoring 

in the future, especially in indications for which PET/MRI studies are more commonly 

performed, such as epilepsy (Shang et al., 2018).

4.2. Exclusive components derived from the BOLD-fMRI and [18F]FDG-PET datasets 
respectively reveal connectivity segregation and integration

The independent components found to be exclusive to either fMRI or [18F]FDG-PET appear 

to confirm the general trend suggested above. In general, the fMRI components can be 

described as being bilateral and having a limited anterior-posterior extent. Apart from the 
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anterior DMN component, the other presented components were predominantly driven by a 

single brain area: the motor cortex, the sensory cortex, the hippocampus and the visual 

cortex. Such bilateral components were first described in rats by Hutchison et al. in 2010 

(Hutchison et al., 2010).

Bilateral spatially limited components are observed much less frequently in the [18F]FDG-

PET-derived ICA output. The first exclusive component presented principally included the 

hypothalamus, olfactory cortex and retrosplenial cortex. The retrosplenial cortex is a cortical 

region of a much larger relative extent in rodents than in humans; hence, its function in rats 

may be of increased importance. Previous studies have shown the connections of the 

hypothalamus to frontal cortical regions and the hippocampus, suggesting its role in 

cognition and decision-making (Nelson et al., 2014). Additionally, the hypothalamus it has 

been shown to be involved in spatial and mnemonic functions (Maguire, 2001; Vann et al., 

2009). Since smell, which is processed in the olfactory cortex, is one of the most dominant 

senses in rodents and because the hypothalamus is known to play a major role in 

homoeostatic behaviours (Toni et al., 2004), this network may play a role in adapting to the 

environment by collecting cues via the sense of smell along with decision-making and 

navigation using the retrosplenial cortex and appropriate homoeostatic regulation through 

the hypothalamus. The autonomic network shown in Fig. 7B has been described in earlier 

BOLD-fMRI studies in awake rats (Becerra et al., 2011; Liang et al., 2011). Though the 

observation of this circuitry in the [18F]FDG-PET dataset may point towards the robustness 

of this method regarding anaesthesia, the interpretation of this network remains elusive. 

Finally, the spatially extensive component observed in Fig. 7C, comprised of basal ganglia, 

thalamus, midbrain and cerebellum, may represent a further hint towards an increased 

integration of these structures.

Our data strongly support the hypothesis that FC largely reflects interhemispheric 

connectivity between bilateral structures, while the [18F]FDG correlation output reflects a 

more integrated model of brain connectivity, revealing more extensive modules of 

functionally connected brain areas. Since many neurological disorders, such as AD and PD, 

have been shown to affect the brain on a large scale involving several interconnected brain 

regions distal from the main pathology, the readout of [18F]FDG-PET data will be a valuable 

tool to study brain connectivity changes in such diseases at early stages or to follow 

treatment responses.

4.3. Comparison of fMRI and [18F]FDG-PET connectivity imaging

Several studies have aimed to compare FC to brain metabolism metabolic connectivity or 

[18F]FDG correlations (Aiello et al., 2015; Di et al., 2017; Passow et al., 2015b; Savio et al., 

2017; Tomasi et al., 2017; Wehrl et al., 2013). Aiello et al. compared brain metabolism to 

fMRI measures such as FC, regional homogeneity (ReHo) or fractional amplitude of low 

frequency fluctuations (fALFF) in humans and indicated correlations between the readouts 

ranging from 0.47 to 0.55 using Spearman’s ρ, which is in the same range as the correlation 

using Pearson’s r presented in our study (Aiello et al., 2015). On whole-brain level, our 

reported Pearson’s r correlation of 0.45 translates into a rank correlation of ρ = 0.44. Apart 

from the connectivity metric employed, the slightly lower values compared to those reported 
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by Aiello might stem from the fact that, compared to the study by Aiello (Aiello et al., 

2015), which only included the cortex, the present study was performed at whole-brain level. 

The overlaps between the networks we derived from BOLD-fMRI FC and [18F]FDG 

correlations are also in line with the values reported previously for a seed-based approach by 

Biswal et al. in humans (Di et al., 2017). With respect to RSNs, one study compared 

networks derived from simultaneous [18F]FDG-PET and fMRI acquisitions (Savio et al., 

2017). Similarly to our data, the authors identified common components for fMRI and PET, 

as well as exclusive components for both outputs. Interestingly, the PET-exclusive 

components were also predominantly in subcortical brain areas (Savio et al., 2017), which is 

in line with our findings. However, none of the studies mentioned above derived [18F]FDG 

correlations from dynamic [18F]FDG-PET tracer delivery fluctuations. Two studies in 

humans have previously performed dynamic [18F]FDG-PET correlation analyses (Passow et 

al., 2015b; Tomasi et al., 2017), however without acquiring the fMRI data simultaneously, 

making the comparison of the respective outputs difficult. Previously, we have shown an 

interplay between fMRI and dynamic [18F]FDG-PET and the complementary information 

they provide in task-based and resting-state experiments (Wehrl et al., 2013). In the present 

study, we further support these findings with regard to RSNs.

As a general trend, both our study and the reports described above converge towards the 

conclusion that FC and [18F]FDG correlation readouts overlap partially while also offering 

significant complementary input. This is explained by the fact that while in essence, both 

methods are an indirect reflection of neural activity, the hemodynamic and [18F]FDG tracer 

fluctuations they respectively measure occur inherently at different time-scales (Amend et 

al., 2019; Rischka et al., 2018; Tomasi et al., 2017; Wehrl et al., 2013). Simultaneous 

[18F]FDG-PET/fMRI is therefore perfectly suited to delineate these two interconnected but 

distinct physiological readouts. BOLD-fMRI is able to capture hemodynamic changes using 

its second-range resolution and is complemented by [18F]FDG-PET reflecting glucose 

consumption using minute-range time-windows. This temporal mismatch likely contributes 

to the complementarity reported using BOLD-fMRI and [18F]FDG-PET in previous brain 

stimulation studies (Wehrl et al., 2013), as well as in the resting-state data reported here and 

elsewhere (Amend et al., 2019; Passow et al., 2015b; Tomasi et al., 2017).

Regarding the two types of analysis performed, several aspects need to be pointed out. First, 

while our ICA readout of the [18F]FDG data generally mirrors the reports of previous 

studies in rats (Wehrl et al., 2013), many components indicate focal, unilateral signal. Using 

different numbers of components may contribute towards solving this issue; however, one of 

the main reasons for this observation is the relatively low signal-to-noise PET data have at 

voxel level. Therefore, voxel-wise approaches such as ICA or voxel-wise seed-based 

correlations are likely to be less suited for [18F]FDG connectivity analysis compared to FC. 

Based on the reported data, we recommend the use of pair-wise correlation analysis 

including nodes of sufficient spatial extent to avoid particularly noisy signals.

4.4. Study limitations

There are several limitations to our study. First, fasting, a standard procedure for [18F]FDG-

PET scans, has been recently shown to impact fMRI-derived FC in mice (Tsurugizawa et al., 
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2019). Future studies are required to reveal the impact of fasting on the relationship between 

FC and [18F]FDG correlations. Interestingly, the above-mentioned study reported an 

increase in retrosplenial FC being possibly associated with food-seeking. The [18F]FDG-

PET-exclusive component in our study comprising the retrosplenial cortex and 

hypothalamus may be related to this type of behaviour.

Additionally, the choice of isoflurane has been shown to influence rs-FC readouts (Paasonen 

et al., 2018; Williams et al., 2010). However, we kept isoflurane at a level previously 

indicated as feasible for FC acquisition in rodents (Hutchison et al., 2014) to minimize its 

effects. Importantly, previous studies evaluated interhemispheric FC as a measure of the 

effects of different anaesthesia regimes and dosages (Jonckers et al., 2014). The bilateral 

ICs, as well as the strong interhemispheric FC revealed by the pairwise correlation analysis 

for FC indicate isoflurane was at sufficiently low levels. Furthermore, isoflurane has been 

shown to impact [18F]FDG uptake (Spangler-Bickell et al., 2016). For fMRI studies, a 

cocktail of isoflurane and medetomidine has been shown to have the most reduced impact on 

FC readout in rodents (Paasonen et al., 2018). Unfortunately, previous reports (Wehrl et al., 

2013) have shown that the effects of medetomidine on [18F]FDG metabolism are 

significantly more pronounced than those of isoflurane. Concerning the interpretation of our 

data, previous studies have reported a regionally differentiated impact of isoflurane on brain 

metabolism, cortical and thalamic [18F]FDG uptake being most affected with more 

conserved metabolism in cerebellar and midbrain areas (Park et al., 2017; Spangler-Bickell 

et al., 2016). This may explain a certain bias of our [18F]FDG readout towards the latter 

structures compared to FC, especially in the ICA analysis. Therefore, effects on the chosen 

anaesthesia cannot be excluded on the analysis performed in this study and the described 

network architecture is valid for this type of anaesthesia. Ultimately, whether and to which 

extent the choice of anaesthesia does influence the readout remains to be elucidated in future 

studies. On a general note, due to its inherent combination of two imaging modalities, 

finding an anaesthesia protocol suited for animal PET/fMRI will be one of the major future 

challenges of similarly designed studies. For an additional analysis and brief discussion on 

the [18F]FDG uptake in the present study compared to previous reports in conscious and 

unconscious animals, please refer to Supplementary Information.

Furthermore, we discussed our findings in the context of previous studies performed in 

rodents but also in humans. While many RSNs have been shown to be reproducible and 

comparable amongst species, some differences cannot be excluded and should be kept in 

mind when directly comparing findings between species, in addition to the role played by 

the choice of anaesthesia.

Additionally, although potential benefits have been delineated (Li et al., 2019; Murphy and 

Fox, 2017), global normalization or global signal regression (GSR) is a topic of debate in rs-

fMRI due to its decrease of sensitivity and induction of artificial negative correlations 

(Chuang et al., 2019). Due to the latter, we refrained from interpreting the negative 

correlations observed in our data. Nonetheless, global normalization is a standard method in 

[18F]FDG-PET and previous studies investigating [18F]FDG correlations using dynamic 

[18F]FDG-PET reported global normalization as the method of choice (Amend et al., 2019; 

Passow et al., 2015b). Employing the same method for fMRI enabled an increased 
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coherence between the analysis pipelines of the two datasets. Previous studies focused on 

rodent fMRI preprocessing and signal cleaning have shown that many approaches which are 

considered standard for human rs-fMRI cannot be easily translated to small animals 

(Chuang et al., 2019). Nonetheless, while further studies are clearly required to elucidate the 

effects of different preprocessing pipelines on both FC and [18F]FDG correlations, to 

investigate the effect of global signal removal on the computation of FC we also employed 

an alternative approach recently described by Chuang et al. (Chuang et al., 2019) which did 

not involve global signal removal. Our comparison shows that global signal removal does 

not majorly affect our findings which could also be reproduced without applying this 

method (please refer to Supplementary Results).

Finally, as shown in our previous publication (Amend et al., 2019), one of the main 

drawbacks of inferring [18F]FDG correlations using a bolus protocol is the inherent inability 

to achieve stable tracer kinetics. Since the data in the mentioned publication (Amend et al., 

2019) indicated the importance of k1 for the readout, the analysis was performed over the 

course of the entire scan. Hence, it cannot be excluded that by choosing this approach the 

readout may be to a certain extent biased towards flow effects and when performing 

correlation analyses the resulting correlation coefficients may be higher compared to 

analyses performed over later periods of the scan. To this extent, infusion protocols may 

offer a more accurate subject-level reflection of the metabolic connectivity described on 

group level by previous studies (Horwitz et al., 1984; Ripp et al., 2020). Additionally, due to 

the potential bias of using the entire scans in bolus protocols towards tracer flow, results in 

pathological cohorts with inherent vasculature alterations should also be interpreted with 

caution when comparing them to data of healthy controls. However, major advantages of 

choosing the entire period of the scan include the straightforward implementation and the 

avoidance of user bias of choosing a specific scan period for the analysis. Although infusion 

protocols do enable a stable readout after achieving stable kinetics (Amend et al., 2019) and 

are fast becoming more widespread (Rischka et al., 2018; Villien et al., 2014), research on 

this topic is still at an incipient stage and infusion protocols are thus far still not widely 

established. Another drawback of infusion protocols is the period required to reach pseudo-

equilibrium, an aspect particularly important for scans involving the use of anaesthesia. 

Therefore, at this stage bolus protocols represent a viable option which can be easily 

implemented for similarly designed studies both in a clinical and preclinical setting.

The main advantages of the performed study were the simultaneous PET/fMRI acquisitions 

and dynamic PET analysis. Our data reveal that simultaneously acquired PET data driven by 

their sub-pico-molar sensitivity (Price, 2001) complement resting-state fMRI network 

readouts. The use of simultaneous PET/fMRI data acquisition is essential to ensure a 

temporal coherence between the observations made on both physiological levels (Judenhofer 

et al., 2008; Wehrl et al., 2013). Dynamic PET is required for inferring subject-wise 

[18F]FDG correlations from the time series of each subject, rather than on the group level 

from subject series of one single image per subject. Hence, dynamic PET acquisition is a 

prerequisite for potential future clinical applications.
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5. Conclusion

Deriving [18F]FDG correlations from dynamic [18F]FDG-PET data provides important 

complementary information to BOLD-fMRI results regarding brain connectivity. Our data 

reveal a common substrate of both outputs with similar RSNs observed using the two 

methods. However, the added value of [18F]FDG-PET was apparent both from the extent of 

the similar networks observed from both datasets and from the components exclusive to the 

[18F]FDG-PET dataset. It is also important to note that [18F]FDG reflects only one PET 

tracer amongst many; therefore, PET offers a multitude of possibilities to study different 

facets of brain metabolism and physiology. Our results indicate the potential of [18F]FDG 

correlations to reflect a model of brain connectivity with enhanced integration of different 

brain areas by revealing several large-scale networks, including the cortical, subcortical, 

midbrain and cerebellar regions. These findings may be of interest for a basic understanding 

of brain functionality, as well as for studying and developing therapies for neurodegenerative 

and psychiatric diseases.
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Fig. 1. 
Assessment of whole-brain [18F]FDG correlations and FC. Panels (A)-(F) depict an 

exemplary analysis at the single-subject level: (A) PET/fMRI correlation matrix indicating 

[18F]FDG-PET-derived correlations (upper half of the matrix above the diagonal) and fMRI-

derived FC (lower half of the matrix below the diagonal). (B) Thresholded PET/fMRI 

correlation matrix (20% sparsity) indicating similar areas of [18F]FDG connectivity and 

BOLD FC. (C) Scatter plot of all [18F]FDG correlations and FC values to assess the 

correlation of both outputs on the whole-brain level. (D) Ideal modularities of [18F]FDG 

connectivity and FC compared to the ideal modularity of respective randomized networks 
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with the same average degrees. (E) Clustering coefficients of [18F]FDG correlation matrices 

and FC compared to the clustering coefficients of respective randomized matrices with the 

same average degrees. (F) Small-world coefficients of [18F]FDG connectivity and FC. The 

dotted line indicates the threshold (SW ≥ 1) for which networks are considered to have 

small-world properties. Panels (G)-(L) depict the analysis at the group-mean level: (G) Mean 

correlation matrix revealing similar patterns between [18F]FDG correlations (above 

diagonal) and FC (below diagonal). ∗ indicate significant correlations (p ≤ 0.05, corrected 

for multiple comparisons using Bonferroni-Holm). (H) Mean positive correlation matrix 

thresholded to a sparsity of 20% to define similar clusters between [18F]FDG correlations 

and FC. (1) Cluster indicating common [18F]FDG connectivity and FC in the cortex and in 

the anterior subcortical regions. (2) Cluster indicating common subcortical, midbrain and 

cerebellar [18F]FDG connectivity and FC. (I) Scatter plot of [18F]FDG connectivity and FC 

along with Pearson’s r coefficient to assess the correlation of both outputs. (J) Mean ideal 

modularity of [18F]FDG correlations and FC of every subject compared to respective 

randomized networks with the same average degree (paired-t-tests). (K) Mean clustering 

coefficients of [18F]FDG connectivity and FC of every subject compared to the respective 

randomized networks with the same average degree (paired-t-tests). (L) Small-world 

coefficients of [18F]FDG connectivity and FC of every subject showing small-world 

properties for the majority of subjects for both outputs. Both group means were significantly 

higher than 1 (p ≤ 0.001, one-sample t-tests). (*** represents a confidence interval of p ≤ 

0.001; dotted line in (L) indicates threshold for which networks are considered to have a 

small-world organization (SW-coefficient ≥ 1) or not to exhibit such organization (SW-

coefficient < 1), while *** represents a confidence of p ≤ 0.001 for the respective dataset 

being significantly higher than 1). FC = fMRI-derived functional connectivity, SW = small-

world. For a list of abbreviations of all regions, please refer to Supplementary Table 1.
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Fig. 2. 
Pairwise correlation analysis and ICA-derived connectivity of the DMN-like network. (A) 

Mean connectivity matrix of the DMN for [18F]FDG-PET and BOLD-fMRI. The positive 

edges derived from a whole-brain sparsity threshold of 20% are depicted along with the 

common edges for both methods. * indicate significant correlations (p ≤ 0.05, corrected for 

multiple comparison using Bonferroni-Holm). (B) Correlation of [18F]FDG connectivity and 

FC within the DMN assessed using Pearson’s r. (C) ICA-derived components of [18F]FDG 

connectivity and FC comprising regions associated with the posterior DMN along with their 

overlap (z ≤ 1.96) and the respective contributions of different regions to the ICA-derived 

components. The results are reported at group-mean level (n = 30).). FC = fMRI-derived 

functional connectivity, ICA = independent component analysis, DSC = Dice-Sörensen 

coefficient. For a list of abbreviations of all regions, please refer to Supplementary Table 1.
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Fig. 3. 
Pairwise correlation analysis and ICA-derived connectivity of the basal ganglia network. (A) 

Mean connectivity matrix of the basal ganglia network for [18F]FDG and BOLD-fMRI. The 

positive edges derived from a whole-brain sparsity threshold of 20% are depicted along with 

the common edges for both methods. * indicate significant correlations (p ≤ 0.05, corrected 

for multiple comparisons using Bonferroni-Holm). (B) Correlation of [18F]FDG 

connectivity and FC within the basal ganglia assessed using Pearson’s r. (C) ICA-derived 

components of [18F]FDG connectivity and FC comprising regions associated with the basal 

ganglia network along with their overlap (z ≥ 1.96) and the percentage contribution of 

different regions to the ICA-derived components. The results are reported at group-mean 

level (n = 30). FC = fMRI-derived functional connectivity, ICA = independent component 

analysis, DSC = Dice-Sörensen coefficient. For a list of abbreviations of all regions, please 

refer to Supplementary Table 1.
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Fig. 4. 
Pairwise correlation analysis and ICA-derived connectivity of the cerebellar-midbrain 

network. (A) Mean connectivity matrix of the cerebellar-midbrain network for [18F]FDG-

PET and BOLD-fMRI. The positive edges derived from a whole-brain sparsity threshold of 

20% are depicted along with the common edges for both methods. * indicate significant 

correlations (p ≤ 0.05, corrected for multiple comparisons using Bonferroni-Holm). (B) 

Correlation of [18F]FDG connectivity and FC within the cerebellar-midbrain network 

assessed using Pearson’s r. (C) ICA-derived components [18F]FDG-PET and BOLD-fMRI 

data (z ≥ 1.96) comprising cerebellar regions along with their overlap and the contribution of 

different regions to the respective components. (D) ICA-derived components of [18F]FDG-

PET and BOLD-fMRI data (z ≥ 1.96) comprising cerebellar and midbrain regions along 

with their overlap and the contribution of different regions to the respective components. The 

results are reported at group-mean level (n = 30). FC = fMRI-derived functional 

connectivity, ICA = independent component analysis, DSC = Dice-Sörensen coefficient. For 

a list of abbreviations of all regions, please refer to Supplementary Table 1.
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Fig. 5. 
Correlations between the [18F]FDG and BOLD-fMRI readouts on single-subject level for 

every RSN. The subject-level correlations were tested for significance (A) at whole-brain 

level and in the (B) default-mode network, (C) basal ganglia network and (D) cerebellar-

midbrain network with and without multiple comparison corrections. The dotted lines 

indicate significance without multiple comparison correction (p ≤ 0.05).
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Fig. 6. 
Components found exclusively in fMRI-derived ICA. (A) Component comprising regions 

associated with the anterior DMN along with the regional quantification of the derived 

signal. (B) Component comprising the motor network along with the regional quantification 

of the derived signal. (C) Component comprising the somatosensory network along with the 

regional quantification of the derived signal. (D) Component comprising regions of the 

hippocampal network along with the regional quantification of the derived signal. (E) 

Component comprising the visual network along with the regional quantification of the 
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derived signal. The results are reported at group-mean level (n = 30). ICA = independent 

component analysis, DMN = default-mode like network. For a list of abbreviations of all 

regions, please refer to Supplementary Table 1.
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Fig. 7. 
Components found exclusively in [18F]FDG-PET-derived ICA. (A) Component comprising 

the Hyp, RS, OC and other subcortical and posterior areas along with the regional 

quantification of the derived signal. (B) Component mainly composed of Th, Hyp and other 

subcortical areas along with the regional quantification of the derived signal. (C) Component 

comprising multiple subcortical areas along with the regional quantification of the derived 
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signal. The results are reported at group-mean level (n = 30). ICA = independent component 

analysis. For a list of abbreviations of all regions, please refer to Supplementary Table 1.
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