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Abstract: Inherited or acquired photoreceptor degenerations, one of the leading causes of irreversible
blindness in the world, are a group of retinal disorders that initially affect rods and cones, situated
in the outer retina. For many years it was assumed that these diseases did not spread to the inner
retina. However, it is now known that photoreceptor loss leads to an unavoidable chain of events that
cause neurovascular changes in the retina including migration of retinal pigment epithelium cells,
formation of “subretinal vascular complexes”, vessel displacement, retinal ganglion cell (RGC) axonal
strangulation by retinal vessels, axonal transport alteration and, ultimately, RGC death. These events
are common to all photoreceptor degenerations regardless of the initial trigger and thus threaten
the outcome of photoreceptor substitution as a therapeutic approach, because with a degenerating
inner retina, the photoreceptor signal will not reach the brain. In conclusion, therapies should be
applied early in the course of photoreceptor degeneration, before the remodeling process reaches the
inner retina.

Keywords: cones; retinal degeneration; retinal remodeling; retinal ganglion cells; axonal compression;
neurovascular alterations

1. Introduction

Retinal remodeling is a term used to describe the events initiated by photoreceptor stress and
death in retinal degenerations of different etiologies [1,2]. These events occur post-photoreceptor
degeneration and include changes in gene expression, neuronal neuritogenesis and death, migration of
retinal cells, vessel displacement and rewiring of some circuitries [1,3–15]. It is believed that remodeling
is a negative plasticity of the retina because it impedes possible rescue strategies [2].

Many inherited, acquired or induced retinal diseases cause photoreceptor degeneration and
therefore, photoreceptor degenerations are at present one of the leading causes of irreversible blindness
in the world [16,17]. The most frequent acquired cause of photoreceptor degeneration is age-related
macular degeneration (AMD), characterized by photoreceptor and retinal pigment epithelium (RPE)
cell degeneration in the central retina [17]. This disease is becoming a major health concern due to the
increase in life expectancy [17]. Inherited photoreceptor degenerations are not as frequent as AMD
but are important because they cause irreversible blindness at working ages [18] and thus represent a
worldwide health problem as well [19]. The most common form of inherited retinal degeneration is
retinitis pigmentosa (RP) with a prevalence of around 1 in 4000 individuals [20]. This disease is the
consequence of gene defects that generally affect the photoreceptors and the RPE [20–24]. Most forms
of RP present primarily with rod loss, which causes night blindness at the onset of the disease, but

Int. J. Mol. Sci. 2019, 20, 4649; doi:10.3390/ijms20184649 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-7639-5366
https://orcid.org/0000-0002-9216-1615
https://orcid.org/0000-0002-5734-482X
http://www.mdpi.com/1422-0067/20/18/4649?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20184649
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 4649 2 of 16

later in the disease there is secondary cone loss, and therefore blindness [20,24]. The reasons why rod
degeneration causes cone degeneration are poorly understood and have been interpreted by various
authors [24–27]. However, there are other forms of RP that present primarily with cone and rod loss,
as there are forms affecting both rods and cones or the RPE [27].

For many years, it was thought that the diseases that caused photoreceptor loss affected only the
external retina, leaving the internal retina relatively intact. It was not until very recently that research
has shown that photoreceptor loss initiates a unavoidable chain of events, known as retinal remodeling,
that cause alterations of the inner retina [2–4,6,9,10,13,28], which, in its final state, and after a complete
loss of photoreceptors, causes retinal ganglion cell (RGC) loss. Although the main objective of retinal
degeneration research has been to develop therapies that slow or prevent photoreceptor death or that
replace photoreceptors to restore vision [21,29–31], it also seems important, from a therapeutic point
of view, to know what the effect of retinal remodeling is on the RGCs, the neurons that transmit the
information to the brain [4,6,9,10,13]. In fact, severe retinal remodeling could threaten the outcome
of the treatments aimed to replace the dead photoreceptors, since the presence of functional RGCs is
essential for the transmission of the visual information to higher brain centers.

The general features of retinal changes following photoreceptor loss have been widely studied and
seem to be common to all photoreceptor degenerations, independently of the strain or the etiology of the
degeneration [2,4,6,9–11,13,15,28] and have also been described in human retinal degenerations [32,33].
The process of retinal degeneration comprises four different phases: (i) primary photoreceptor stress
and loss; (ii) secondary photoreceptor degeneration and involvement of microglia, Müller and RPE
cells; (iii) tissue remodeling, including neuronal rewiring, neuronal death and disorganization of the
retina [1]; and (iv) progressive neurodegeneration [34]. Remodeling is considered negative, because it
culminates with the death of further retinal neurons [9,10,13,34]. In the next section, we will briefly
review the most important events of retinal remodeling for the later affectation of RGCs.

2. A Quick Look at the Early Stages of Retinal Remodeling

All photoreceptor degenerations seem to evolve similarly independently of the initial
event [1,13,15,34]. They cause photoreceptor death by apoptosis [10,35], morphological and
topographical changes in the surviving photoreceptors [27,36–41], deafferentation of bipolar cell
populations [28], and retinal glial cell activation [27,35,41,42].

Among all the events that occur in the early phases of retinal remodeling, glial activation may play
an essential role in the subsequent affectation of RGCs. During the course of photoreceptor degeneration,
glial cells are mobilized to the outer retinal layers [22,27,35,41–43]; microglial cells become activated and
migrate to phagocytose dying photoreceptors [27,35] (Figure 1) and Müller cells become hypertrophic,
fill the space left by dead photoreceptors and form a gliotic seal [32,35,41–47] (Figure 2). Specifically,
it has been documented that glial activation is a common theme in photoreceptor degenerations
regardless of their aetiology [35,41,48,49], and that treatments that inhibit microglia [27,43,49] or
macroglia [50] can influence the course of the disease. This is probably one of the principal hallmarks
of the evolution of photoreceptor degenerations [28,51] and will be important for RGC affectation,
because if the gliotic seal is not complete, there might be gaps through which RPE cells invade the
retina [4,9,10,28]. Moreover, the gliotic seal or glial scar may have detrimental effects by impeding
regenerative processes and thus contributing to neurodegeneration and further retinal remodeling [52].
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Figure 1. Rod degeneration and microglial cell responses. Microphotographs of representative retinal 
cross sections from a naïve SD rat (A) showing a normal retina, a retina from a P23H-1 rat (B) and a 
retina from an RCS rat (C) in the early stages of retinal degeneration. Rod outer segments appear in 
red and microglial cells in green. In the P23H-1 rat retina, rhodopsin expression was clearly affected; 
however, in the RCS rat, rhodopsin expression is not altered since the retinal pigment epithelium 
(RPE) cells are not phagocytising the rod outer segment debris. In both experimental retinas, 
microglial cells were activated and migrated from the inner to the outer retinal layers. 

The end-stage of retinal remodeling induces changes in the inner retina that include neuronal 
cell death, cell migration, and rewiring with abundant new synaptic connections resulting in corrupt 
visual circuitry [1,28,34]. This rewiring could be an attempt from the remaining neurons to survive. 
This is supported by the hypothesis that excitatory inputs are imperative for neuronal survival [28]. 
At this point, retinal rescue is not possible. 

There are two main types of neurons in the inner retina: amacrine cells and RGCs. Amacrine 
cells remain relatively stable but can undergo molecular changes and connect to a new network of 
aberrant synaptic connections. However, RGCs are undoubtedly the most relevant neurons in the 
inner retina since their axons form the optic nerve and send the visual information to the visual cortex 
in the brain in a process that is essential for being able to see. 

 

Figure 2. Cone degeneration and macroglial cell response. Microphotographs of representative retinal 
cross sections from a naïve SD rat (A) showing a normal retina, a retina from a P23H-1 rat (B) and a 
retina from an RCS rat (C) in the early stages of retinal degeneration. Cone outer segments appear in 
green and macroglial cells (GFAP) in red. In both P23H-1 rats and RCS rats, cones degenerate and 
lose their typically elongated morphology. Moreover, GFAP overexpression in astrocyte and Müller 
cells could be seen. 

3. Retinal Remodeling and Retinal Ganglion Cells 

Even though it has been documented that RGCs remain stable during retinal remodeling [15,53–
55], most of these studies have evaluated RGC morphology [53–56]. However, little is known to date 
about the possible consequences of retinal remodeling in RGC axonal transport or in RGC survival 
through a detailed study of the RGC population. For that, a reliable method is needed to identify (i.e. 
retrograde labeling, phenotypic markers) and quantify (i.e. retinal sections, whole mounts) RGCs. It 

Figure 1. Rod degeneration and microglial cell responses. Microphotographs of representative retinal
cross sections from a naïve SD rat (A) showing a normal retina, a retina from a P23H-1 rat (B) and a
retina from an RCS rat (C) in the early stages of retinal degeneration. Rod outer segments appear in
red and microglial cells in green. In the P23H-1 rat retina, rhodopsin expression was clearly affected;
however, in the RCS rat, rhodopsin expression is not altered since the retinal pigment epithelium (RPE)
cells are not phagocytising the rod outer segment debris. In both experimental retinas, microglial cells
were activated and migrated from the inner to the outer retinal layers.
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Figure 2. Cone degeneration and macroglial cell response. Microphotographs of representative retinal
cross sections from a naïve SD rat (A) showing a normal retina, a retina from a P23H-1 rat (B) and a
retina from an RCS rat (C) in the early stages of retinal degeneration. Cone outer segments appear in
green and macroglial cells (GFAP) in red. In both P23H-1 rats and RCS rats, cones degenerate and lose
their typically elongated morphology. Moreover, GFAP overexpression in astrocyte and Müller cells
could be seen.

The end-stage of retinal remodeling induces changes in the inner retina that include neuronal
cell death, cell migration, and rewiring with abundant new synaptic connections resulting in corrupt
visual circuitry [1,28,34]. This rewiring could be an attempt from the remaining neurons to survive.
This is supported by the hypothesis that excitatory inputs are imperative for neuronal survival [28].
At this point, retinal rescue is not possible.

There are two main types of neurons in the inner retina: amacrine cells and RGCs. Amacrine cells
remain relatively stable but can undergo molecular changes and connect to a new network of aberrant
synaptic connections. However, RGCs are undoubtedly the most relevant neurons in the inner retina
since their axons form the optic nerve and send the visual information to the visual cortex in the brain
in a process that is essential for being able to see.

3. Retinal Remodeling and Retinal Ganglion Cells

Even though it has been documented that RGCs remain stable during retinal remodeling [15,53–55],
most of these studies have evaluated RGC morphology [53–56]. However, little is known to date
about the possible consequences of retinal remodeling in RGC axonal transport or in RGC survival
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through a detailed study of the RGC population. For that, a reliable method is needed to identify (i.e.
retrograde labeling, phenotypic markers) and quantify (i.e. retinal sections, whole mounts) RGCs. It is
important that the method of identification leaves no doubts that it is specifically labelling RGCs and
not amacrine cells [57–60] and that the counting technique can quantify every single RGC present in
the retina [57–63].

Several techniques have been used to identify RGCs, but not all have been shown to specifically
and accurately identify RGCs. For example, βIII tubulin, γ-synuclein and islet-1 identify both RGC
and amacrine cells [60,64], and whilst Thy-1 has been proposed to specifically label RGCs, it is
downregulated after injury and therefore it is not a good marker for studies assessing RGC death
and neuroprotection [59,60]. RNA-binding protein with multiple splicing (RBPMS) is suggested to
specifically label RGCs, however, there are few studies using it and it is important to study its suitability,
specially under RGC degeneration [60].

Our group has broad experience in the study of the RGC population (reviewed in [65]) and
we have used different methodological techniques to study the consequences of remodeling on
RGCs in inherited and induced rat models of photoreceptor degeneration. We favor the use of the
retrograde tracer fluorogold (FG; [57]) and the detection of the transcription factor Brn3a [58]. FG
is an actively retrogradely transported tracer that, when applied onto both superior colliculi, labels
approximately 98% of RGCs in the rat retina [57,63]. Brn3a is a transcription factor specifically expressed
in RGCs and therefore can be immunodetected as a nuclear marker [58]. It labels approximately
96% of RGCs [58] and has been proposed as an indirect indicator of the functional status of the
RGCs [66–68]. We have developed specific cell counting subroutines that we have shown to be
reliable and reproducible methods to quantify whole populations of FG labeled RGCs and Brn3a
immunodetected RGCs [57,58,62,63].

We have used these self-developed techniques to analyse the late effects of photoreceptor
degenerations in the retina [69,70] using two well-known models of inherited retinal degeneration:
the P23H-1 rat and the Royal College of Surgeons (RCS) rat, and a model of light-induced retinal
degeneration in albino and pigmented rats. The inherited models faithfully represent the human
disease, because P23H rats suffer from one of the most frequent mutations observed in human
retinal degeneration [71] and RCS rats suffer from a mutation in the MERKT gene (also observed in
some RP patients) which impairs the ability of RPE cells to phagocytose [71]. Light-induced retinal
degeneration models were first described by Noell [72] and have been used for years to replicate human
retinal degeneration. Different light-induced retinal degeneration models have been devised, and
we have developed our own method using cold white light, which has been previously described in
detail [6,10,38,39]. Light-induced retinal degeneration models have been shown to mimic degenerative
retinal diseases [70], especially the late stages of age-related macular degeneration [8]. There are still
significant gaps in the available animal models of retinal degeneration; in particular, better models of
AMD are needed. However, these animal models are useful for studying the pathophysiology of retinal
degeneration [71], as well as the efficacy and safety of different present and future treatments [23,71,73].

Our studies show that long after the occurrence of photoreceptor degeneration, there is a decrease
in the mean number of RGCs in both inherited and induced retinal degenerations [3,4,6,9,10,12,13,37,38].
So, the question arises: what is the cause of the RGC death during retinal remodeling? We also
have extensive experience in the study of the retinal nerve fiber layer (RNFL) by immunodetecting
the phosphorylated high-molecular-weight subunit of the neurofilament triplet (pNFH), which in
homeostasis is expressed in the intra-retinal RGC axons [71,72,74,75]. Changes in the expression pattern
of pNFH is an early hallmark of RGC degeneration, and thus this immunodetection is a very good tool
to analyze the course of RGC pathological responses to photoreceptor diseases [9,10,74,76,77].

The classic findings in the funduscopic imaging of human RP patients seen in advanced stages of
the disease are bone spicules [2] and optic nerve pallor [78]. Optic nerve pallor is believed to be the
result of RGC death [78,79], and bone spicules are formed by migration of RPE cells associated with
retinal vessels [2,78]. This RPE invasion of the retina may be permitted by gaps in the glial seal [28], and
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we have proposed that these cells migrate in response to the proximity of the retinal vessels that come
in contact with the RPE [4,5,28,80]. The migration of the RPE cells on the retinal vessels causes vessel
displacement, formation of “subretinal vascular complexes” and axonal strangulation by the inner
displaced retinal vessels which is ultimately responsible for RGC death [4,5,9,10]. It is important to
note that vascular changes will not occur until severe photoreceptor death has occurred [4,5,9–11,13,81]
and is prevented if a significant number of photoreceptors remain alive [82].

Thus, to understand the causes of RGC death during retinal remodeling, it is important to know
the progressive sequence of changes in the vascular supply to the retina that occurs secondary to
photoreceptor loss [81]. As a consequence of photoreceptor loss, there are various changes that will
precipitate the vascular changes: (i) an increase in retinal hyperoxia, which presumably suppresses the
expression of different growth factors such as vascular endothelial growth factor (VEGF) [24,82,83]; (ii)
a breakdown of the blood–retinal barrier [6,10]; (iii) the outer vascular plexus approaches the RPE cell
layer [5]. These events presumably stimulate the migration of the RPE cells that envelop the retinal
vessels to form “subretinal vascular complexes” composed of tortuous displaced vessels [6,10] (Figure 3).
Although some authors have proposed that these complexes are the result of neovascularization from
the choroid, we have proposed that these vessels belong to the outer retinal plexus and that their
change in phenotype is due to the influence of the RPE [5,6], and this idea is supported by the fact that
Bruch´s membrane is intact in these retinas [4].
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proteinopathies observed in the abovementioned CNS diseases [34]. The location of the retina in the 
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advantages for conducting studies targeting neurodegeneration and neuroprotection. This excitable 
tissue is consequently excellent for studying and understanding these neurovascular alterations and, 
therefore, the progression of various CNS diseases. 

Neurovascular alterations in the degenerated retina following photoreceptor loss are first 
observed because the normal linear trajectory of the RGC axons (Figure 4), which normally diverge 
from the optic nerve, is disturbed at the axon–vasculature crossing points. At these points, RGC axons 
show distorted non-linear trajectories (Figure 4) caused by the dragging and compression of the 

Figure 3. Retinal remodeling causes axonal and vascular changes. Microphotographs of retinal cross
sections from a naïve SD rat showing a normal retinal structure (A), the retinal structure of a P23H-1 rat
(B) and the retinal structure of a light-exposed SD rat (C) after the complete loss of photoreceptors.
Retinal ganglion cell (RGC) axons appear in green labelled with anti-neurofilament antibodies (pNFH),
the blood vessels in red labelled with anti-rat endothelial cell antigen (RECA) and the nuclei in blue
labelled with DAPI. In B and C, blood vessels are running vertically in the retina (white arrow) because
they are dragged to the subretinal vascular complexes that appear between the RPE and Bruch’s
membrane (yellow arrow) with the inner retinal vascular plexus. RGC axons are displaced by the
vessels, which will eventually cause RGC death.

The above-mentioned vascular complexes are in communication with the vessels of the inner
vascular plexus of the retina [4–6,9,10,81,84] (Figure 3). The migration of RPE cells along the retinal
vessels drag the inner retinal vessels which, in turn, compress the RGC axons [4–6,9–11] and cause
RGC axonal interruption and death [5,6,9,10] (Figures 3 and 4). Neurovascular alterations have
also been described in some of the most devastating diseases of the CNS affecting humans, such
as Alzheimer´s disease and other age-related diseases [85–88]. Interestingly, it has been recently
proposed that in the end-stage of retinal remodeling, progressive neurodegeneration resembles the
proteinopathies observed in the abovementioned CNS diseases [34]. The location of the retina in the
posterior pole of the eye makes it an easily accessible portion of the CNS with some unique advantages
for conducting studies targeting neurodegeneration and neuroprotection. This excitable tissue is
consequently excellent for studying and understanding these neurovascular alterations and, therefore,
the progression of various CNS diseases.
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Figure 4. RGC axonal alterations. Magnifications from flat mounted retinas from a naïve SD rat (A), a
P23H-1 rat (B), an RCS rat (C) and a light-exposed SD rat (D) after a complete loss of photoreceptors.
RGC axons appear in green labelled with anti-neurofilament antibodies (pNFH). In the degenerating
retina, the linear trajectory of RGC axons is disrupted and, in addition, some RGC bodies and their
proximal dendrites appear labelled with pNFH, indicating RCG degeneration.

Neurovascular alterations in the degenerated retina following photoreceptor loss are first observed
because the normal linear trajectory of the RGC axons (Figure 4), which normally diverge from the optic
nerve, is disturbed at the axon–vasculature crossing points. At these points, RGC axons show distorted
non-linear trajectories (Figure 4) caused by the dragging and compression of the axons by retinal
vessels [3–6,9–11,13,89] (Figures 1 and 4). These strangulations are first seen in the ventral retina in the
P23H-1 and RCS rats [9] and in the dorsal retina after light exposure [10]. These areas coincide with the
regions in which photoreceptors are first lost [9,10,39]. As degeneration progresses, this phenomenon
becomes more severe and these degenerating areas are seen all over the retina and in all of the studied
models [9–11,39]. At the oldest ages analyzed, signals of axonal transport interruption and axonal
transection such as axonal bulbs and wandering axons are seen [9–11,39] (Figure 4). Interestingly, in
long-term post-photoreceptor degeneration, some RGC bodies and dendrites became pNFH+ [9–11,39]
(Figure 4).

Similar alterations in the pNFH expression pattern have been observed following other retinal
degenerations such as optic nerve transection [71,72], crush [74,76,90], elevation of intraocular
pressure [91,92] or taurine depletion [75]. These interesting events, and specifically pNFH expression
in the RGC bodies and their dendrites, have been proposed as a feature of RGC degeneration [62],
particularly with pathological processes associated with axonal damage and RGC stress [74–76].

Surprisingly, when studying the population of RGCs, we found that the P23H-1 rat had fewer
RGCs than their homologous Sprague–Dawley (SD) counterparts [9] (Figure 5). Since P23H-1 rats are
derived from the SD strain, we expected to find similar numbers between both strains. So, the question
arose: would the rhodopsin mutation suffered by these rats affect the development of the inner retina?
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According to a previous study that evaluated retinal blood vessel formation during development in
two different animal models of retinal degeneration, photoreceptor loss during vascular development
affects the formation of the deep vascular plexus, which supplies the inner retina [82]. In our opinion,
it may be the cause of the lower number of RGCs found in this strain [9].
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It has been shown in detail that the consequence of the above-described axonal damage is RGC
death [6,9–11], and that in the RCS rat, this is accompanied by axonal transport impairment [11,93,94].
It has also been shown that RGC death is a late event in retinal degeneration, because it does not occur
in the early stages of photoreceptor loss (not until nine months of age in the P23H-1 rat [9], six months
of age in the RCS rat [3,4,11] or until 90 days after light exposure in the albino rat [10]). However, it has
been shown that following photoreceptor degeneration, there is a progressive loss of RGCs. It has been
documented that at post-natal day (P) 365, P23H-1 rats have lost 14% of the RGCs [9] (Figure 5). One
year after light exposure, albino rats have lost 18% of their RGCs [10] (Figure 5), and 17–19 months
after light exposure, pigmented rats have lost 31% of RGCs. At P540, RCS rats have lost 29% of their
RGCs [11] (Figure 5).

In order to assess whether RGC loss in these models was due to axonal transport impairment
and/or due to RGC death, tracing and immunodetection were combined. RGCs were traced one
week before sacrifice with FG, a molecule that is retrogradely transported from the superior colliculi
to the RGC somas. In these traced retinas, Brn3a, a marker of RGC viability, was immunodetected
(Brn3a+RGCs). Thus, a decrease in traced RGCs (FG+RGCs) but not of Brn3a+RGCs, would indicate an
axonal transport impairment. The loss of Brn3a+RGCs (RGC death) was similar to the loss of FG+RGCs
(axonal impairment or RGC death) in the P23H-1 rat [9] and long term (270 days or more) after light
exposure [10], amounting to a loss of 13% and 19% of their total population, respectively (Figure 5).
However, in 540 day old RCS rats, the total number of Brn3a+RGC (loss of 12%) was higher than the
number of FG+RGCs (loss of 29%), suggesting an axonal transport alteration also in this strain [11]
(Figure 5; data not available for light exposure or RCS rats). Unfortunately, combining both methods,
we only have data up to 365 days of life for P23H-1 rats or after light exposure, respectively [9,10] and
from 365 days of life for RCS rats [11]. In spite of this fact, we observed that in the three models, there
was a linear decrease in RGCs with a negative slope at older ages. The slope of regression lines for
Brn3a+ and FG+ RGCs loss was similar in the P23H-1 rats (Table 1; Figure 5) and after light exposure
(Table 1; Figure 5), with a calculated daily loss of 35 and 41 FG+RGCs, respectively, and of 37 and 38
Brn3a+RGCs, respectively, up to day 365 (the last time analyzed). However, in very old RCS rats (450
to 540 days) the loss of FG+RGCs was greater than the loss of Brn3a+RGCs RGCs (Table 1; Figure 5),
with a daily loss of 91 and 32 RGCs, respectively. Thus, it appears that in the RCS rat, RGC loss seems
to be preceded and/or accompanied by an impairment of axonal transport. However, these results do
not allow us to ascertain whether retinal degeneration in the other studied models (P23H-1 and light
exposure) may also be accompanied by an axonal transport impairment at older ages such as those
analyzed for RCS rats.

Table 1. Slope and correlation coefficients (R2) of each straight line from Figure 5.

Experimental Model Identification Technique Slope R2

P23H-1
FG −35.45 ± 4.23 0.98

Brn3a −37.12 ± 0.69 0.99

RCS
FG −91.29 ± 46.44 0.79

Brn3a −32.09 ± 16.39 0.85

Light Exposure FG −41.45 ± 3.3 0.97

Brn3a −37.99 1

We and other authors have also found similar axonal–vascular alterations and RGC death
in another animal model of inherited photoreceptor degeneration, the rd-1 mice, long term after
photoreceptor degeneration [31,89]. In this strain, the cause of RGC death seems to also be axonal
compression by the retinal vessels [89]. However, we cannot rule out if there could be other causes for
RGC death in animal models of photoreceptor degeneration such as those observed in photoreceptor
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death, i.e. oxidative stress [95–97] or others such as cytopathologies, debris exocytosis, protein
aggregation or even autophagy [33,98,99].

However, other studies performed in RCS rats [100] and in mice have failed to show RGC
loss following photoreceptor degeneration [53,56,101]. These conflicting results may be explained
because the RGC population was analyzed too early (before a complete loss of photoreceptors had
occurred [100,101]), which is a prerequisite for axonal compression and the sensibility of the techniques
applied to identify and/or quantify the RGC population that occur in localized sectors, which could be
missed by other authors [53]. Studies performed in humans have documented RGC loss in human
patients with photoreceptor degenerations [102–108].

This fact is critical for the successful implantation of photoreceptor transplants or
protheses [80,109–111], especially in the very advanced stages of these diseases where extensive
retinal remodeling leads to RGC death. In these patients, transplants or prostheses will not succeed
because in a retina without RGCs, the visual signal will not reach the brain [3,4,6,9–11]. It could be
argued that although there is evidence for RGC loss, a significant number of them remain in the
retina. However, RGC loss is not the only drawback for these treatments to work properly; it is also
necessary that the neuronal circuit remains normal so that synaptic connections can be created [80].
In line with this, it has been documented that retinal remodeling is accompanied by neuronal circuit
corruption [31,112,113], questioning the possibility of the inner retinal neurons receiving synaptic
inputs. Interestingly, a recent study has proposed that retina exhibit plasticity to re-establish some
of the lost synaptic contacts following rod replacement [114]. However, the treatment was applied
before complete photoreceptor loss and therefore further studies are needed to clarify this fact. In
addition, the glial seal formed by Müller cells may also contribute to the failure of attempts to replace
lost photoreceptors [52,106], for example limiting the migration of transplanted cells [113] and perhaps
the creation of new synaptic connections.

In retinal degenerations, the integrity and function of photoreceptors is preserved for some
time, suggesting that if we could slow down or stop their degeneration, we might be able to prevent
secondary RGC loss. Consequently, research efforts have focused on the development of new
pharmacological therapies to decrease photoreceptor loss, and not just on therapies to replace lost
photoreceptors [23,115,116]. Many treatments such as trophic factors, anti-apoptotic drugs, antioxidant
drugs, anti-inflammatory drugs, or gene therapies, among others, have been proposed to have
beneficial effects on retinal degenerations [116–121]. For example, intravitreal (IVI) injections of
anti-VEGF antibodies have been documented to slow the progression of some forms of AMD [122].
Concretely, in rodent models, recent publications have documented that IVI of the trophic factors basic
fibroblast growth factor (FGF2) and ciliary neurotrophic factor (CNTF), and systemic administration
of minocycline decreases photoreceptor loss [27,43]. These treatments could help to increase the
time window in which therapies proposed to replace photoreceptors can be administered. However,
intravitreal delivery has some potential risks that could limit its beneficial effects [123] and other
administration routes should be explored.

4. Concluding Remarks and Future Directions

A common end for all retinal degenerations is that, with time, there is remodeling of the inner
retina that results in RGC axonal strangulation, axonal transport alteration and RGC death. However,
this fact has been missed in retinal degeneration literature for years, probably due to the lack of studies
analyzing aged animals, thus allowing retinal remodeling to reach the innermost layers of the retina,
and using techniques of RGC identification to label and quantify the RGC population. This inner
retinal remodeling and its consequence (RGC death) could threaten the potential approaches to treat
retinal degeneration using photoreceptor substitution, as only RGCs are capable of sending visual
information to the brain. Thus, it is sensible to propose that retinal degeneration therapies should
be applied in the early stages of photoreceptor degenerative diseases before the remodeling process
reaches the inner retina.
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