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SUMMARY

Nucleocapsid proteins are essential for SARS-CoV-2 life cycle. Here, we describe
protocols to gather domain-specific insights about essential properties of nucle-
ocapsids. These assays include dynamic light scattering to characterize oligomer-
ization, fluorescence polarization to quantify RNA binding, hydrogen-deuterium
exchange mass spectrometry to map RNA binding regions, negative-stain elec-
tron microscopy to visualize oligomeric species, interferon reporter assay to
evaluate interferon signaling modulation, and a serology assay to reveal insights
for improved sensitivity and specificity. These assays are broadly applicable to
RNA-encapsidated nucleocapsids.
For complete details on the use and execution of this protocol, please refer toWu
et al. (2021).

BEFORE YOU BEGIN

Human samples

The collection of human plasma must be approved through Institutional Review Boards prior to any

studies. Human samples used with these protocols were approved by the Human Research Protec-

tion Office at Washington University in St. Louis and the Institutional Review Board of The Hong

Kong University and the Hong Kong Island West Cluster of Hospitals.

Construction of expression plasmid

Timing: 5 days
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1. Perform PCR to amplify desired SARS-CoV-2 N constructs with corresponding primers.

For duplicate PCR reactions, use:

Split into two PCR tubes, add into each tube:

Total reaction volume in each tube should be 50 mL.

Then initiate PCR reaction with following program:

CRITICAL: Ensure there are no restriction enzyme sites inside gene of interest. If there are,

mutate internal restriction enzyme sites before cloning constructs. Double check that there

is no stop codon within the reverse primer prior to use, as the expression vector has a

C-terminal tag. Extension time depends on size of the product amplified. Please refer to

Millipore Sigma for specific information on KOD polymerase.

2. Run DNA agarose gel (1%) for � 25 min at 80 V.

3. Cut out desired DNA bands with visual aid using UV lamp and clean up gel bands with Promega

Wizard� SV Gel and PCR Clean-Up System.

4. Perform restriction enzyme digestion of expression vector (pET28a-CterTev His6) and amplified

gene of interest.

For each digestion reaction, use:

PCR reactions before adding enzyme

Volume Reagents in PCR

62.8 mL ddH2O

10 mL 103 KOD buffer #1 or #2 depending on product size

10 mL DMSO

4 mL MgCl2 (25 mM)

2 mL dNTPs (2 mM)

1 mL gene template (� 100 ng/mL)

5 mL forward primer (50 ng/mL)

5 mL reverse primer (50 ng/mL)

Enzyme needed for each PCR reaction

Volume Reagents in PCR

0.1 mL KOD enzyme

PCR cycling conditions using KOD enzyme

Step Temperature Time Cycles

Initial Denaturation 98�C 30 s 1

Denaturation 98�C 30 s 30 cycles

Annealing 50�C 8 s

Extension 72�C 20 s

Final extension 72�C 5 min 1

Hold 4�C Forever
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5. For digested vector, remove phosphate group from 50 end using calf-intestinal alkaline phospha-

tase for 1 h at 37�C.
6. Run DNA gel and cut out desired DNA bands for vector and gene of interest.

7. Gel purify digested vector and amplified gene of interest.

8. Ligate amplified gene of interest into expression vector.

For each ligation reaction, use

9. Transform DH-5a competent cells with ligation reaction and plate onto LB plates with 50 mg/mL

kanamycin. Incubate at 37�C for 12–18 h.

10. Pick single colony and inoculate into 10 mL LB supplemented with 50 mg/mL kanamycin.

11. Performminiprep (PromegaWizard� Plus SVMinipreps) and send plasmids for sequence confir-

mation.

Bacteria growth in LB media

Timing: 2 days

12. Transform 100 mL E. coli BL21 (DE3) competent cells with 1 mL of expression plasmid

(� 100 ng/ mL) for each construct by heat shock.

13. Add 900 mL LB media and incubate at 37�C for 1 h.

14. Spin down cell pellet at 6000 3 g for 10 min, and pipette out 900 mL supernatant.

15. Resuspend remaining media and spread evenly on LB agar plate with 50 mg/mL kanamycin.

Incubate at 37�C for 12–18 h.

16. Pick single colony and inoculate into 10 mL of LB media supplemented with 50 mg/mL

kanamycin. Culture at 37�C with shaking until media is turbid.

17. Transfer culture into 2 L LB media supplemented with 50 mg/mL kanamycin and culture for

4–5 h.

18. At OD600 of 0.6–0.7, induce protein expression with 0.5 mM IPTG after cooling down media on

ice for 15 min. Continue to shake at 18�C for 12–14 h.

19. Harvest cells.

a. Harvest cell culture by centrifugation at 6000 3 g for 10 min at 10�C.
b. Using post-induction gel sample, run SDS-PAGE and stain with Coomassie blue to determine

expression outcome.

Ligation reaction

Volume Reagents in ligation reaction

4 mL ddH2O

1 mL 103 ligation buffer

3 mL digested gene of interest

1 mL digested expression vector

1 mL T4 DNA ligase

Incubate at 4�C, 12–18 h.

Digestion reaction

Volume Reagents in digestion reaction

5 mL 103 NEB buffer 3.1

1 mL BamHI

1 mL NdeI

43 mL Purified PCR products or vector

Incubate at 37�C for 1 h.
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c. Gently discard the supernatant.

d. Resuspend cells in 45 mL lysis buffer containing newly added 2-mercaptoethanol (BME) and

protease inhibitors (see materials and equipment for recipe of lysis buffer).

CRITICAL: For RNA binding nucleocapsids, the concentration of salt is crucial in purifica-

tion outcome. Higher concentration of NaCl is required for purifying RNA-free

nucleocapsids.

Pause point: The harvested cells can be stored at �80�C for years.

Purification of nucleocapsid protein

Timing: 1 day per protein

Figure 1. Protein purification of SARS-CoV-2 nucleocapsid

C-terminal tagged nucleocapsid proteins are purified using Ni affinity chromatography (A) and size exclusion

chromatography (B). This purification strategy generates reasonably pure proteins for a series of constructs with one

day per protein time cost. Adapted from ‘‘His-tagged Protein Purification’’ and ‘‘Protein Purification’’, by Biorender.

com (2020). Retrieved from https://app.biorender.com/biorender-templates.
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The C-terminal His tag nucleocapsid proteins are purified using Ni affinity chromatography and size

exclusion chromatography (Figure 1).

20. After diluting thawed pellet into 45 mL lysis buffer, pass cells through an Avestin EmulsiFlex-C5

homogenizer without and with pressure three times.

21. Centrifuge sample at 30,000 3 g at 10�C for 40 min. Gently transfer the supernatant to a clean

container.

Note: Before proceeding to chromatography, filter the supernatant with a 1.2 mm filter to re-

move large particles.

22. Prewash the column with three column volumes of Ni buffer B and three column volumes of Ni

buffer A (see materials and equipment for recipe). Apply the supernatant to the Ni-NTA column.

23. Wash out nonspecific binders with three column volumes of Ni buffer A.

24. Elute bound protein with a step gradient of 40% Ni buffer B and a step gradient of 100% Ni

buffer B.

25. Perform SDS-PAGE to determine purity.

Note: For nucleocapsids that bind RNA with high affinity and tend to phase separate, low salt

conditions are avoided to maximize chance of RNA-free species purification.

26. Concentrate Ni elution to 5 mL using centrifugal filter units (Millpore Amicon� Ultra).

27. Inject concentrated protein into Superdex 200 size exclusion column, pre-equilibrated with size

exclusion buffer (see materials and equipment for recipe).

28. Evaluate fraction purity using Coomassie staining of SDS-PAGE.

CRITICAL: Despite the use of high salt concentration during purification, purified nucleo-

capsid protein may contain multiple species, including RNA-free and RNA-bound (Su et al.,

2018; Wu et al., 2021). To evaluate heterogeneity, measure A260/A280 ratios of samples.

A ratio below 0.6 is considered RNA-free.

29. Pool together and concentrate separately fractions within each peak before flash freezing in

liquid nitrogen for storage.

CRITICAL: When aliquoting, use a range of volumes (20, 50, 100, 200, 500 mL) to minimize

unnecessary freeze-thaw cycles for experiments requiring varying amounts of protein.

Pre-HDX quality control

Timing: 2–3 h

For successful analysis of proteins by HDX-MS, a homogenous and high purity sample is required.

We generally find that in-house expressed and purified protein is higher in quality than commercially

available counterparts. Because the instrument and personnel time investments for the HDX-MS ex-

periments and data analysis are considerable, quality control steps are recommended to maximize

the likelihood of success. Although biochemical assays may provide coarse-grained information per-

taining to the state and identity of the protein sample, using other high resolution mass spectrom-

etry measurements, described below, will be beneficial for quality control in this application.

30. Characterize/confirm sequence and heterogeneity of the protein construct by using denaturing

LC-MS.

a. Denature the protein with low pH (such as 0.1% formic acid), organic (< 5% acetonitrile),

reducing agents (such as TCEP), and/or denaturants.
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b. Inject the denatured protein onto an HPLC for desalting and elution into a mass spectrom-

eter (Figure 2).

c. Process data by using deconvolution software (e.g., Intact by Protein Metrics, Inc.) or manu-

ally to identify heterogeneity.

CRITICAL: The differential HDX-MS method described here relies on bottom-up LC-MS/

MS analysis to resolve local differences in deuterium uptake. Any heterogeneity (e.g.,

from mutations, post-translational modifications) will interfere with mapping results and

could result in convoluted HDX results reporting on the mixture.

Optional: If the oligomeric state is not clarified by other techniques, characterize oligomeric

state and confirm binding using native MS.

LC-MS valve setup

Timing: protease column preparation: 2 days; valve set up: 30 min

Assemble a valve setup for online protease digestion, peptide desalting, analytical separation, and

elution into a mass spectrometer (Figure 2).

Figure 2. LC-MS diagram

(A) Overview of protein sample submitted to HDX prior to MS analysis.

(B) Sample and LC solvent paths for valve position 1, allowing for sample loading into sample loop or elution from

desalting column through protease columns (generating peptides), separated by C18 column, and into the MS.

(C) Sample and LC solvent paths for valve position 2, moving protein from sample loop onto desalting column.

Figure created with Biorender.com.
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31. Prepare a protease column(s) for online, post-HDX digestion (Wang et al., 2002).

a. Immobilize acidic protease(s) on POROS-20AL beads.

i. Add 20mg of sodium cyanoborohydride dissolved in 1mL of 2M sodium sulfate to a 2mL

solution containing 80 mg of the protease in 50 mM sodium citrate buffer (pH 5), and

incubate for 10 min at 18�C–22�C with gentle rocking.

CRITICAL: Sodium cyanoborohydride is a flammable solid, reactive with water, and expo-

sure can cause serious burns. Pay special attention to the safety data sheet for proper stor-

age and handling.

ii. To this mixture, add 600 mg of POROS-20AL beads, adjust the rocker speed to suspend

the slurry, and incubate 5–10 min at 18�C–22�C.
iii. Slowly add 2.125 mL of 2 M sodium sulfate (� 500 mL every 5 min).

iv. Incubate for 12–16 h at 18�C–22�C with rocking.

v. Quench the reaction with 1 mL of 1 M ethanolamine and incubate for 2 h at

18�C–22�C.
vi. Filter the coupled beads and wash with 50 mM citrate buffer (pH 5), 1 M NaCl in citrate

buffer (pH 5), 50 mM citrate buffer (pH 5), and water/0.1% formic acid. Resuspend beads

in water/0.1% formic acid for packing into a column.

Alternatives: Protease coupled beads are available for purchase.

Note: Once coupled, the beads can be stored at 4�C in water/0.1% formic acid for several

months.

b. Pack beads with an immobilized protease into clean stainless-steel columns (we used 2 mm

inner diameter 3 20 mm length column).

c. Wash the packed column for 12–18 h directly into waste with water/0.1% formic acid at

50 mL/min.

Note: With careful use, packed protease columns can be reused for months. After

usage, the ends should be capped to keep the beds wet, and the column stored at 4�C.
We recommend using a model protein to evaluate the health of the protease column before

each use.

Alternatives: Prepacked protease columns are available for purchase.

Alternatives: Instead of online digestion, in-solution protein digestion can be performed with

a large excess of proteases, but this increases H/D back-exchange and produces protease

peptide fragments congesting the spectra.

32. Incorporate a C8 column for trapping and desalting the digested peptide products.

33. Use a C18 column for analytical separation of the product peptides.

34. Couple the LC apparatus to a mass spectrometer capable of both MS and MS/MS (in this case a

Bruker MaXis II HM Q-TOF).

35. During acquisition, maintain the valves, columns, and lines (except the protease column(s)) in an

ice bath to reduce back-exchange.

Alternatives: Any mass spectrometer capable of MS and MS/MS can be used for mass

analyses.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-human IgG secondary Ab labeled with HRP (1:5000) Southern Biotech Cat#905209

Bacterial and virus strains

E. coli BL21(DE3) Agilent Cat#200131

SeV Department of Microbiology, Icahn
School of Medicine at Mount Sinai,
New York, NY USA

N/A

Biological samples

Human Plasma, Patient with Confirmed
SARS-CoV-2 Infection

Barnes-Jewish Hospital, St. Louis, MO, USA N/A

Human Plasma, Patient with Confirmed
SARS-CoV-2 Infection

Hong Kong University and HK Island West
Cluster of Hospitals, Hong Kong, PRC

N/A

Human Plasma, Patient with negative test Barnes-Jewish Hospital, St. Louis, MO, USA N/A

Chemicals, peptides, and recombinant proteins

LC-MS grade formic acid CovaChem Cat#PI 85171;
CAS 64-18-6

Phosphate buffered saline tablets Millipore Sigma Cat#P4417

Deuterium oxide (D, 99.9%) Cambridge Isotope Laboratories Cat#DLM-4-100;
CAS 7789-20-0;

Urea Millipore Sigma Cat#U4883;
CAS: 57-13-6

2% Uranyl Acetate Ted Pella 19481

KOD DNA polymerase Millipore Sigma 71085

Critical commercial assays

Dual-Glo luciferase kit Promega Cat#E2920

Promega Wizard� SV Gel and PCR
Clean-Up System

Promega A9282

Promega Wizard� Plus SV Minipreps Promega A1460

Experimental models: Cell lines

Human: HEK293T cells ATCC CRL-3216

Oligonucleotides

20nt ssRNA sequence: UUUCACCUCCCUUUCAGUUU GenScript N/A

19nt slRNA sequence: GGAAGAUUAAUAAUUUUCC GenScript N/A

Recombinant DNA

Plasmid pET28a-CterTEV His6 SARS-CoV-2 N 1-419 This work N/A

Plasmid pET28a-CterTEV His6 SARS-CoV-2 N 44-419 This work N/A

Plasmid pET28a-CterTEV His6 SARS-CoV-2 N 44-369 This work N/A

Plasmid pET28a-CterTEV His6 SARS-CoV-2 N 44-247 This work N/A

Plasmid pET28a-CterTEV His6 SARS-CoV-2 N 44-176 This work N/A

Plasmid pET28a-CterTEV His6 SARS-CoV-2 N 248-369 This work N/A

Plasmid pCAGGS MLAV VP35 This work N/A

Plasmid pCAGGS SARS-CoV-2 N 1-419 This work N/A

Plasmid pCAGGS SARS-CoV-2 N 44-369 This work N/A

Plasmid pCAGGS SARS-CoV-2 N 44-176 This work N/A

Plasmid pCAGGS SARS-CoV-2 N 248-419 This work N/A

Plasmid pCAGGS SARS-CoV-2 N 248-369 This work N/A

IFN-b promoter-firefly luciferase reporter plasmid Department of Microbiology,
Icahn School of Medicine at
Mount Sinai, New York, NY USA

N/A

pRL-TK Renilla luciferase reporter plasmid Promega E2231

(Continued on next page)
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MATERIALS AND EQUIPMENT

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Intact Mass� Protein Metrics
Incorporated

Version 3.11

Byonic� Protein Metrics Incorporated Version 3.11

Byologic� Protein Metrics Incorporated Version 3.11

DataAnalysis v 4.4 Bruker Daltonics Version 4.4

HDExaminer Sierra Analytics Incorporated Version 2.5.1

Origin OriginLab Version 7

PRISM GraphPad Version 7

Dynamics Software Wyatt Version 7

Gen5 Software BioTek Version 3

Other

ZORBAX Eclipse XDB C8 trap column (2.1 3 15 mm) Agilent Technologies Cat#975700-936

XSelect CSH C18 XP (130 Å, 2.5 mm, 2.1 3 50 mm) Waters Corporation Cat#186006101

MaXis II 4G Q-TOF Bruker Daltonics N/A

MaXis II HM Q-TOF Bruker Daltonics N/A

EmulsiFlex-C5 homogenizer Avestin N/A

Glow-Discharged Copper Grid, 200 mesh Ted Pella 01840-F

JEM-1400 plus TEM JEOL N/A

Phosphor-Scintillated 12-bit CCD Camera AMT XR111

DynaPro-PlateReader II Wyatt Technologies Corporation N/A

Cytation5 Plate Reader BioTek N/A

Lysis buffer

Reagent (stock concentration) Final concentration Amount (mL) for 1000 mL

Tris-HCl pH 7.5 (2 M) 20 mM 10

NaCl (5 M) 1 M 200

Imidazole (2 M) 20 mM 10

2-mecaptoethanol (BME) (14.3 M) 5 mM 0.35

Antipain (1 mg/mL) 1 mg/mL 1

Benzamidine (1 mg/mL) 1 mg/mL 1

Leupepsin (1 mg/mL) 1 mg/mL 1

Pepstain (0.5 mg/mL) 1 mg/mL 2

ddH2O n/a 774.65

Total n/a 1,000

Store at 4�C for up to 6 months. Add protease inhibitors and BME right before use.

Ni buffer A

Reagent (stock concentration) Final concentration Amount (mL) for 1,000 mL

Tris-HCl pH 7.5 (2 M) 20 mM 10

NaCl (5 M) 1 M 200

Imidazole (2 M) 20 mM 10

2-mecaptoethanol (BME) (14.3 M) 5 mM 0.35

ddH2O n/a 779.65

Total n/a 1,000

Store at 4�C for up to 6 months. Add BME right before use.
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Size exclusion buffer

Reagent (stock concentration) Final concentration Amount (mL) for 1,000 mL

HEPES pH 7.5 (1 M) 25 mM 25

NaCl (5 M) 500 mM 100

Glycerol (80%) 5% 62.5

TCEP (0.5 M) 2 mM 4

ddH2O n/a 808.5

Total n/a 1,000

Sterilize with 0.22 mm filter. Store at 4�C for up to 6 months.

DLS buffer

Reagent (stock concentration) Final concentration Amount (mL) for 1,000 mL

HEPES pH 7.5 (1 M) 25 mM 25

NaCl (5 M) 150 mM 30

Glycerol (80%) 5% 62.5

TCEP (0.5 M) 2 mM 4

ddH2O n/a 878.5

Total n/a 1,000

Sterilize with 0.22 mm filter. Store at 4�C for up to 6 months.

RP-LC Solvent A

Reagent Final concentration Amount

HPLC Grade water 99.9% (%v/v) 999 mL

MS-Grade Formic Acid 0.1% 1 mL

Total n/a 1 L

Store at 18�C–22�C for no longer than 1 month.

RP-LC Solvent B

Reagent Final concentration Amount

HPLC Grade water 19.9% (%v/v) 199 mL

HPLC Grade acetonitrile 80% 800 mL

MS-Grade Formic Acid 0.1% 1 mL

Total n/a 1 L

Store at 18�C–22�C for no longer than 1 month.

Ni buffer B

Reagent (stock concentration) Final concentration Amount (mL) for 1,000 mL

Tris-HCl pH 7.5 (2 M) 20 mM 10

NaCl (5 M) 1 M 200

Imidazole (2 M) 500 mM 250

2-mecaptoethanol (BME) (14.3 M) 5 mM 0.35

ddH2O n/a 539.65

Total n/a 1,000

Store at 4�C for up to 6 months. Add BME right before use.

ll
OPEN ACCESS

10 STAR Protocols 2, 100906, December 17, 2021

Protocol



CRITICAL: Adjust the pH with concentrated HCl or NaOH to minimize incorporation of

exchangeable hydrogen into the deuterated buffer. Alternatively, you can use DCl or

NaOD diluted with D2O. Ensure recording the pH of the final solution.

CRITICAL: The kinetic minimum for protein backbone amide H/D exchange is at pH �2.5

(Narang et al., 2020); after quenching the exchange, HDX should be minimized, and back

exchange with the solvent minimized. Test the pH of a 2:3 mixture of HDX H2O buffer:HDX

quench buffer solution to ensure the pH is �2.5 and record the value.

Note: The appropriate pH is also dependent upon the protease activity. Some sacrifices to

H/D back-exchange may be necessary if alternative proteases to pepsin are used.

Alternatives: A variety of quench buffers may be prepared for optimizing the digestion

conditions.

HDX Quench buffer

Reagent Final concentration Amount

Urea (8 M) 4 M 25 mL

13PBS 5 mM Phosphate Buffer
68.5 mM NaCl
1.35 mM KCl pH 2.4

25 mL

Total n/a 50 mL

Aliquot and store frozen (�20�C) for no longer than 1 year

HDX D2O buffer

Reagent Final concentration Amount

1 3 Phosphate buffered saline tablet 10 mM Phosphate Buffer
137 mM NaCl
2.7 mM KCl pH 7.0 (pD 7.4)

1 tablet

deuterium oxide (99.9%) n/a 200 g

Total n/a 200 mL

Aliquot and store frozen (�20�C) for no longer than 1 year.

MS data acquisition parameters

Method node Parameter Setting

MS and MS/MS

Mode Spectra File Type save line and profile spectra

Ion Polarity positive

Mass Range 50–4000 m/z

Rolling Average Off

(Continued on next page)

HDX H2O buffer

Reagent Final concentration Amount

1 3 Phosphate buffered saline tablet 10 mM Phosphate Buffer
137 mM NaCl
2.7 mM KCl pH 7.4

1 tablet

HPLC Grade Water n/a 200 mL

Total n/a 200 mL

Store at 4�C for no longer than 1 year.
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STEP-BY-STEP METHOD DETAILS

Dynamic light scattering (DLS)

Timing: 2 h

Continued

Method node Parameter Setting

Spectra Rate 2.00 Hz

ESI Source End Plate Offset 500 V

Capillary 4500 V

Nebulizer 2.0 Bar

Dry Gas 5.0 L/min

Dry Temp 250 C

Tune Tab Transfer Funnel 1 RF 400.0 Vpp

Transfer isCID Energy 0.0 eV

Transfer Multipole RF 400.0 Vpp

Quadrupole Ion Energy 3.0 V

MS/MS

Auto MS/MS Precursor Ion List include

Mass Range 300.00–4000.00

Width G 0.5

Cycle Time 3.0 s

Exclude after 1 spectrum

Release after 2.00 min

Reconsider Precursor if Curr./Prev. Intens. checked

Reconsider Precursor if Curr./Prev. Intens. 3

MS/MS Preference Preferred Mass Range (checked) 300.00–2200.00

Width G 0.5

Charge State Range 1–6

Exclude Singly unchecked

Exclude Unknown unchecked

Acquisition (Precursor MS Spectra Rate 2.00 Hz

Acquisition Control) MS/MS Low (per 1000 sum.) 25000 cts, 2.00 Hz

MS/MS Low 57175 cts.

MS/MS High (per 1000 sum.) 250000 cts., 5.00 Hz

MS/MS High 571750 cts.

MS/MS Total Cycle Time Range 3 s

MS/MS Absolute Threshold 1144 cts.

CID collision energy list

Type Mass Width CE Charge state

Base 300 3 21 3

Base 300 3 26 2

Base 300 3 34 1

Base 500 4.8 28 3

Base 500 4.8 34 2

Base 500 4.8 39 1

Base 1,000 6 36 3

Base 1,000 6 40 2

Base 1,000 6 52 1

Base 2,000 9 40 3

Base 2,000 9 45 2

Base 2,000 9 55 1
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DLS measures hydrodynamic properties of purified RNA-free nucleocapsid protein to monitor olig-

omerization using a Wyatt DynaPro PlateReader-III. This assay is useful to characterize particles with

a wide range of hydrodynamic radii from 1 nm to 1000 nm (Figure 3) (Stetefeld et al., 2016; Su et al.,

2018).

1. Thaw purified protein on ice.

2. Filter DLS buffer with a 0.22 mm filter.

3. Dilute protein solution into 2 mg/mL. Prepare 120 mL of sample for each protein, sufficient for

technical triplicates. With Corning� Low Volume 384-well Clear Flat Bottom plate (Corning

3540), each well requires 35 mL of sample.

Note: To adjust salt concentration, prepare buffer without salt for a simple calculation. First

calculate the amount of buffer without salt needed for dilution, then dilute with DLS buffer

to target for desired protein concentration.

CRITICAL: Centrifuge sample for 5 min at 4�C using a tabletop centrifuge at top speed to

remove aggregates.

4. Load 35 mL sample into each well.

Note: Before loading, check for presence of dust in wells. Cover plate with aluminum foil

whenever possible when not loading to reduce likelihood of dirt getting inside.

Figure 3. Dynamic light scattering assay for size characterization

Brownian motion of particles produces dynamic light scattering signals. These intensity fluctuations contain useful information and diffusion

coefficients from autocorrelation analysis that can be converted to size.
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CRITICAL: While loading, place pipette tip on the bottom of well and pipet slowly. Avoid

generating bubbles. Gently shake plates if bubbles are trapped inside and remove bub-

bles by pipetting. It is important to get rid of bubbles before experiments.

5. Set up experiment for acquisition.

a. Correlation function high cutoff set to 60 ms.

b. Acquire well images set to Yes.

c. DLS Acq time set to 5 s.

d. DLS Number Acq set to 10.

e. Auto-attenuation time limits set to 60 s.

6. When analyzing data, access Regularization Graph and use triplicates to reach consensus.

a. Remove peaks with less than 1% mass.

b. Align triplicates to check consistency for each major peak.

c. Determine statistics of measured radius across triplicates.

d. Repeat with newly prepared sample to check consistency across runs.

Note: DLS is extremely sensitive to dirt and bubbles. Use well images to check sample condi-

tions and repeat when inconsistency arises. Please refer to Wyatt for additional guidance on

instrument specific protocols.

Fluorescence polarization (FP) assay

Timing: 1 day

Timing: 2 h for step 7

Timing: 1 h for step 13

The FP assay uses fluorescently labeled RNA and titrates increasing concentrations of protein for

affinity estimation based on polarization change of fluorescence label upon binding (Figure 4).

Due to the high sensitivity of this technique, as low as 1 nM FITC-labeled RNA can be used, making

it a useful probe for high affinity binding system (Liu et al., 2017; Su et al., 2018).

7. Prepare protein titration series.

a. Determine highest concentration point and fold of dilution. For nM affinity binding, a 2.5 fold dilu-

tion series with 12 concentration points starting with 10 mMas highest concentration and 0.42 nM

as lowest concentration covers the entire binding curve. This step usually requires optimization.

Note: FITC labeled RNA at 1 nM concentration in this assay setup results in reasonable signal.

Optimize RNA concentration with a known RNA binder so Z-factor is above 0.5. Z = 1�
3ðsðpÞ+ sðnÞÞ
mðpÞ�mðnÞ , m and sare means and standard deviations of positive (p) and negative (n) controls.

b. Prepare 120 mL of highest concentration point for the entire dilution series (each concentration

point needs a volume of 25 mL and duplicates need 60 mL). Binding buffer is same as DLS buffer

has 150 mM NaCl.

c. Pipette 90 mL binding buffer into each of 11 Eppendorf tubes. Take out 60 mL from highest con-

centration tube and mix well into the next concentration point. Repeat 11 times until entire

dilution series are prepared.

8. Prepare labeled RNA stock.

a. Calculate amount of RNA needed for each duplicate run. 700 mL at 2 nM (1 nM final concen-

tration after mixing with protein) are prepared.

b. Cover tubes with aluminum foil to protect from light.
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9. Load protein dilution series into wells of a 96 well plate (Corning 3650). Each titration series is in

one row. For example, duplicate runs of one experiment will take row A and B.

10. Load 25 mL of RNA into each well.

11. Load buffer and RNA only controls in row C.

Optional: Load multiple controls to estimate uncertainty associated with detection.

12. Read with Cytation 5 Cell Imaging Multi-mode Reader.

Figure 4. Fluorescence polarization assay for nucleocapsid-RNA binding

(A) Principle for fluorescence polarization based RNA binding assay. Fluorescence labeled RNAmolecules tumble fast

and do not lead to preferential orientation. This results in depolarized emission that can be recorded with equal

parallel and perpendicular fluorescence intensity. This corresponds to low FP values. After binding with protein,

labeled RNA tumble slowly resulting in residual orientation that can be recorded with increased fluorescence

polarization. By titrating protein concentration, the varying FP values will yield a binding curve that can be fit for a KD.

(B) Fluorescence polarization assay in 96 well plate. First, a protein dilution series is prepared. Depending on binding

mechanism which results in different curve shape, choose a suitable dilution factor to cover both unbound and bound

side of baselines. A 2.5 fold dilution usually is a good starting point for a 12 point dilution series. After the dilution

series are prepared, load protein first into wells and then labeled RNA. Cover solution containing labeled RNA with

aluminum foil whenever possible to reduce quenching. A 10 min shake and incubation is recommended before

reading with plate reader. Adapted from ‘‘Fluorescence Polarization Assay’’, by Biorender.com (2020). Retrieved from

https://app.biorender.com/biorender-templates.
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a. Set excitation to 485 nm and emission to 528 nm with a bandpass of 20 nm.

b. Set read height to 8.5 mm.

Note: Optical probe height has a considerable effect on the signal to noise ratio. Therefore,

read height may need optimization for best performance.

13. Fit KD using Origin.

a. Determine FP values using Gen5 Analysis software. More information on analysis using Gen5

Analysis can be found on the BioTek website.

b. Averages and standard deviations for titration points are calculated in Excel.

c. Binding curves are fit using Origin. See quantification and statistical analysis for details (Liu

et al., 2017; Su et al., 2018). Alternative software such as GraphPad PRISM can also be for

analysis.

Note: Each experiment containing duplicates are repeated at least three times. Statistics

about KD values are reported across these technical repeats.

Negative-stain electron microscopy

Timing: 1 day

Timing: 30 min per grid (including loading and imaging) for step 22

This step describes preparation of nucleocapsid-RNA negative-stain sample for electronmicroscopy

(EM) (Figure 5).

14. Glow discharge carbon-coated copper grids (Ted Pella, 01840-F).

a. Place grids onto a glass slide with carbon film side facing up.

b. Put the glass slide on sample stage of Leica EM ACE600.

c. Glow discharge for 45 s with following settings: Current (12 mA), Air (2.0E-1 mbar), Working

Distance (50 mm), and Tilt (0�C).
15. Apply 2 mL of sample at 1 mg/mL diluted in PBS to each grid. Wait for 1 min.

16. Blot the grid with filter paper for 3 s.

17. On a piece of parafilm, pipette three droplets of ddH2O and two droplets of 2% uranyl acetate

(UA) solution. Each droplet has a volume of 20 mL.

Figure 5. Negative-stain electron microscopy

Freshly thawed proteins samples are loaded onto glow-discharged grids. After blotting with filter paper, grids are

washed in water before stained with 2% UA solution. Air dried grids are then imaged with electron microscope.

Adapted from ‘‘EM’’, by Biorender.com (2020). Retrieved from https://app.biorender.com/biorender-templates.
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CRITICAL: Though the external radiological and chemical hazards of UA are relatively low,

it is acutely toxic if swallowed or inhaled and may cause damage to organs through pro-

longed or repeated exposure. Review Safety Data Sheet and use with precautions.

Prepare fresh 2% UA from 4% UA stock solution and spin for 1 min at top speed using a tabletop

centrifuge. Prepare 4% UA stock every 6 months.

18. Face the grid onto the ddH2O droplet to wash for 30 s and blot the grid for 3 s.

19. Repeat two more times with ddH2O.

20. Repeat two more times with 2% UA.

21. Airdry the grid before storing in a grid box.

CRITICAL: Make sure grids are completely dry before imaging.

22. Image grids with electron microscope. Each negative-stained grid is loaded onto the side-entry

holder of JEOL JEM-1400plus Transmission Electron Microscope operating at 120 kV and re-

corded with an AMT XR111 high-speed 4K3 2K pixel phosphor-scintillated 12-bit CCD camera

at 3,000 to 40,000 magnification.

Enzyme-linked immunosorbent assay (ELISA) for human plasma

Timing: 2 days for step 23

This section outlines how to perform an ELISA with patient plasma samples to screen for serological

responses (Figure 6).

23. Recombinant N proteins were coated on 96 well flat bottom immunosorbent plates at a concen-

tration of 500 ng/mL in 100 mL coating buffer (PBS with 53% Na2CO3 and 42% NaHCO3) at 4�C
for 12–18 h.

a. An additional plate was coated with a non-specific protein mixture to measure background

binding of each sample.

i. Non-specific protein mixture consisted of PBS with 5% fetal bovine serum (FBS).

24. Diluted plasma samples (1:100) were bound for 2 h.

a. Samples were diluted in dilution buffer (PBS with 0.05% Tween-20 and 0.1% FBS) for a total

volume of 200 mL.

Figure 6. ELISA overview

A 96-well plate is coated with N-protein fragments. The plate is subsequently blocked with protein and exposed to

patient sera. A secondary antibody, an anti-human IgG conjugated to horseradish peroxidase (HRP) is then added to

the plate for read-out. Created with Biorender.com.
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25. The 96 well plate was rinsed with 150 mL of wash buffer (PBS with 0.1% Tween-20).

26. Both 96 well plates were exposed to an anti-human IgG secondary antibody labeled with HRP

(Invitrogen) diluted at 1:5000 in 20 mL dilution buffer (PBS with 0.05% tween-20 and 0.1% FBS).

27. Plates were read-out with R&D substrate (Cat#DY999) as per manufacturer’s recommendation

on a Wallac spectrophotometer. Incubation was between 18�C–22�C for 20 min while protect-

ing from light. The absorbance was detected at 450 nm.

CRITICAL: Patient plasma samples carry risk of pathogens, not limited to hepatitis B

(HBV), hepatitis C (HCV), and human immunodeficiency virus (HIV). Therefore, proper

PPE must be utilized when handling any samples (Twitchell, 2003).

IFN-b promoter reporter assay

Timing: 3 days

This assays measures the ability of transfected proteins of interest to influence an interferon

response induced by Sendai virus (SeV) (Figure 7) (Messaoudi et al., 2015).

28. Seeding HEK-293T cells.

a. HEK-293T cells were prepared from a stock solution of cells.

i. Cells were split between 70%–90% confluency.

b. HEK-293T cell media was aspirated from the flask.

c. Cells were exposed to EDTA-Trypsin for 5 min.

d. DMEM + 10% was added to the cell flask.

e. Trypsinized cells, split 5 3 104 into a 96 well plate.

29. 24 h later, HEK-293T cells (5 3 104) were co-transfected using Lipofectamine 2000 with:

a. 25 ng of an IFN-b promoter-firefly luciferase reporter plasmid

b. 25 ng of pRL-TK Renilla luciferase reporter plasmid

c. 125, 12.5, and 1.25 ng of the indicated viral protein expression plasmid

30. 24 h after transfection, cells were mock-treated or treated with SeV (15 hemaglutination

units/mL).

31. 18 h post-treatment or post-infection, cells were lysed.

32. Cell lysates were analyzed for luciferase activity using a Dual-Luciferase reporter system.

a. The Promega Dual-luciferase system utilizes enzymatic substrates for both Renilla luciferase

and Firefly Luciferase.

Figure 7. IFN-b reporter assay

HEK-293T cells are transfected with a plasmid containing an IFN-b promoter-firefly luciferase reporter, a control plasmid containing a Renilla luciferase

reporter, and an expression plasmid for one of the studied N-protein variants. Subsequently, cells are infected with Sendai virus (SeV), which stimulates

the Interferon signaling pathway. N-protein variants inhibit the Interferon response pathway. Following transfection and infection, cells are lysed, and

luciferase activity evaluated. Created with Biorender.com.
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b. Preparation of Buffers.

i. Resuspend the Luciferase Assay Substrate in Luciferase Assay Buffer II.

ii. Dilute the stock solution of Stop & Glo� 50x to 1x with Stop & Glo� Buffer.

c. Read-out of 96-well plate.

i. Add 20 mL of cell lysates prepared above.

d. Assays were performed in triplicate.

33. Viral protein expression was confirmed by Western blot analysis.

CRITICAL: It is important that all reagents used in cell culture are kept sterile (Coté, 1998).

Prior to readout with the luciferase, verify that the LAR II and the Stop & Glo� Reagents

have been warmed to 18�C–22�C. Luciferase activity is highly variable (Repele and

Manu, 2019), and it is recommended that an auto-injector is used for injection of reagents.

Differential HDX-MS structural characterization of RNA binding

Timing: Mapping: 1 day; HDX-MS: 1 day per protein state

Hydrogen-deuterium exchange mass spectrometry (HDX-MS) provides sensitive, high-resolution

measurement of solvent accessible surface area and changes in protein dynamics (Masson et al.,

2019). We and others successfully used HDX-MS to characterize host-pathogen interactions (Pei

et al., 2021; Raghuvamsi et al., 2021), monitor individual host and viral protein dynamics and inter-

actions (Batra et al., 2021; Su et al., 2018; Courouble et al., 2021),map antibody-antigen interactions

(Huang et al., 2018; Chen et al., 2019), and determine binding sites of DNA/RNA with proteins (Long

et al., 2017). This protocol outlines a method to pinpoint viral protein RNA binding.

34. Perform pre-HDX mapping.

a. To � 100 pmol of the protein of interest (2 mL), dilute 10:1 with H2O buffer (+ 18 mL).

b. Dilute 2:3 with a selected quench buffer.

Note: For more dilute protein samples, scale up the volumes if the ratios are retained.

Optional: Flash freeze quenched solutions for ease in the HDX-MS analysis.

c. Inject into the LC-MS apparatus for digestion, desalting, and LC-MS/MS analysis

i. Digest and desalt the protein with 200 mL/min solvent A using valve position 2 (Figure 2)

for 3 min (or 3 trap column volumes).

ii. Analytically separate and elute the digested protein fragments by using valve position 1

(Figure 2) and an organic gradient (solvent A – solvent B; for an example gradient, see

below).

Note: Include a high organic pulse (i.e., 100% solvent B) at the end of the LC gradient to

decrease carryover from run to run.

Example linear gradient for reversed-phase peptide elution

Time (min) % A % B

0 95 5

0.5 95 5

11 50 50

13 0 100

13.5 0 100

15 95 5
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Note: The LC gradient may need to be adjusted for differences in protein hydrophobicity or to

improve temporal separation of peptides/chromatogram congestion.

d. Process the LC-MS/MS results to optimize digestion efficiency using Byonic and Byologic

(see quantification and statistical analysis below for details) to compare:

i. Protein coverage

ii. Peptide length

iii. Peptide abundance

iv. Count of identified peptides

v. Redundancy

Note: Peptides with a 5–20 amino acid length are recommended for HDX-MS. Redundancy

can be measured numerically as a function of the average number of overlapping peptides

across all residues and tabulated in the suggested comparison. We also recommend visual

inspection of redundancy in the context of protein coverage.

e. Repeat with a range of quench conditions and protease columns/column orientations (Cravello

et al., 2003) (see Figure 8A for an example of digestion optimization logic). Optimization of

temperature, quench incubation time, addition of other chaotropic reagents can be done.

f. Repeat the mapping experiment with the chosen conditions, but with added RNA to confirm

the RNA is not affecting the digestion.

Pause point:As long as mapping conditions (i.e., MS settings and protease choice) are repli-

cated during the HDX-MS experiment, HDX-MS can be completed at any time assuming sam-

ple integrity. Proteins can typically be stored for months at �80 �C.

Note: If the protein contains disulfide bonds, a reducing agent should be added to the

quench. Reduction of disulfide bonds may necessitate incubation at elevated temperature

for 1–3 minutes. Incubation, especially at elevated temperatures, increases H/D back-ex-

change; care should be taken to minimize back exchange.

Note: Denaturation using other chaotropic agents such as guanidine HCl may be used to bet-

ter denature the protein. The efficacy of such denaturants on improving protein digestion is

protein-dependent.

CRITICAL: Screening of mapping conditions defines the feasibility and resolution of the

HDX-MS experiment. Carefully optimize the mapping results before proceeding with

HDX-MS. For an example of mapping logic, see table below and Figure 8A.

35. Equilibrate unbound and bound stock solutions. Protein/ligand concentrations and buffer con-

ditions should be consistent across all HDX samples. A higher concentration stock should be

generated for both bound and unbound states such that 2 mL of stock diluted with 18 mL D2O

buffer yields the same final protein concentration.

Example screening of quench and digestion conditions

Denaturant (starting conc.) Protease column (s) Coverage (%) Average length (aa) ID’d peptide count

1 3 M Urea Pepsin 100% 28.2 (G 0.8) 341 (G 7)

2 3 M Urea FXIII 100% 20.86 (G 0.04) 577 (G 3)

3 3 M Urea FXIII-Pepsin 100% 18.3 (G 0.4) 550 (G 20)

4 3 M Urea Pepsin-FXIII 100% 20.18 (G 0.04) 556 (G 4)
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Figure 8. HDX expected outcome

(A) (i) Representative MS2 spectrum of positively identified peptide from the mapping experiment, interpreted from b- and y- ion fragments that provide

sequence information. Blue, N-terminal-facing notches in the peptide sequence indicate identification of b-ions; red, C-terminal-facing notches in the

peptide sequence indicate identification of y-ions. A screenshot of data from Byologic software. Peptide map spanning SARS-CoV-2 N protein NTD-

LKR-CTD showing coverage from digestion by pepsin (ii, black) and pepsin-FXIII columns (iii, orange). iv) Comparison of effect of protease selection on

peptide length. In general, pepsin (black) generates longer peptides than pepsin-FXIII columns in series (red).

(B) (i) LC extracted ion chromatograms, indicated by red triangle bookends, for a peptide submitted to incubation in D2O for 0 (nondeuterated control),

10, 30, 300, 3600 s (top to bottom), demonstrating consistent elution times with time. The mass spectra (ii) associated with these peaks demonstrate

increased deuteration as a function of time. (iii) Graphing the centroid shift allows for the comparison of unbound (black) and the RNA-bound protein
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a. Prepare the unbound protein stock solution (�25 mM).

b. Prepare the bound protein stock solution (�25 mM) with 1:1 RNA.

Optional: The amount of RNA addedmay be increased to maximize the percentage of protein

bound to RNA.

Note: Prepare and acquire the non-deuterated control and all HDX time points in at least

duplicate.

36. Prepare the non-deuterated control (i.e., 0 s).

a. To 2 mL of the unbound protein stock, add 18 mL H2O buffer.

b. Stop HDX with addition of 30 mL quench solution.

c. Flash freeze, and store solution at �80�C.

37. Prepare HDX labeled protein (Figure 2A).

a. To 2 mL of unbound protein stock on ice, add 18 mL D2O buffer (to maximize HDX at 90% D).

b. Incubate at range of times logarithmic: 4 time point: 10, 30, 300, 3600 s.

Optional: More time points may be added (e.g., 60, 900, 14400 s) to define better HDX

kinetics.

c. Quench HDXwith addition of 30 mL quench solution for final volume of 50 mL (same as sample

loop).

d. Flash freeze in liquid nitrogen.

38. Repeat all with the bound protein stock solution.

CRITICAL: All times should be controlled! Deviations in timing can lead to differential

back-exchange extents and poor precision. Deviations in observed LC elution times result

in more manual adjustment of extraction window during processing.

CRITICAL: HDX-MS is sensitive to fluctuations in temperature, pH, and ionic strength. All

buffer conditions should be controlled, and all reagents should be pre-equilibrated at the

temperature they will be used to ensure no unwanted deviations across the experiment.

Alternatives: Inject immediately if protein aggregates upon flash freeze.

Pause point: Store flash frozen HDX samples at �80�C for up to 1 month.

39. Perform LC-MS analysis of the HDX labeled protein states.

a. Thaw flash frozen HDX samples at 37�C for 30 s just prior to injection (consistency is essen-

tial).

b. Inject the protein and analyze as noted for mapping above for MS analysis (without MS/MS).

Note: Deuteriums are prone to scrambling, especially with collision induced dissociation.

Other dissociation techniques can be used for fragmentation without scrambling (Ferguson

et al., 2007).

Figure 8. Continued

(red), indicating protection (left) or no change (right) for peptide generated by pepsin-FXIII digestion in the bound state. (iv) A Woods’ plot includes

cumulative differences from all time points for the peptides to be viewed in one image, with statistics (p < 0.1, *; p < 0.05, **; p < 0.01, ***), enabling an

overall/global view/overview of changes in HDX across the entire protein sequence. Changes in deuteration upon RNA-binding mapped on a known

structure of N protein NTD (PDB: 6M3M) (v). Meaningful decreases shown in blue. Raw data screenshots from PMI Byos and HDExaminer softwares.

Woods’ plot and N protein NTD structure (iv and v) from Wu et al. (2021).
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40. To reduce carryover, wash sample loop with at least 3 volumes (i.e., 150 mL for a 50 mL loop) with

water/0.1% formic acid, acetonitrile + 0.1% formic acid, and again water + 0.1% formic acid be-

tween injections.

41. To monitor carryover extents, run a blank between samples.

a. H2O blank: 20 mL H2O buffer + 30 mL quench.

b. D2O blank: 2 mL H2O buffer + 18 mL D2O buffer + 30 mL quench.

EXPECTED OUTCOMES

Negative-stain EM is particularly useful to visualize oligomeric species with higher resolution of the

electron microscope compared to the light microscope. For nucleocapsids bound to RNA, it is com-

mon to observe loose coils where oligomers of nucleocapsids are linked with copurified RNA as well

as more condensed form helical assembly, depending on specific constructs and solvent environ-

ment. Due to inherent conformational flexibility, oligomers of nucleocapsid protein can adopt

different forms, such as rings and tubes of different lengths. In the case of SARS-CoV-2 N, upon

RNA binding and dilution into 150 mMNaCl, we observed additional species of N-RNA which phase

separates into liquid droplets of mm size. These droplets are a separate phase from solvent and lack

internal details. They might be relevant to RNA packaging.

HDX-MS mapping of the protein-RNA binding system with appropriate selection of protease and

quench conditions generates a set of peptides spanning the protein (Figure 8A). Positively identified

peptides are selected prior to exchange based on high quality MS2 spectra whereby fragment ions

essentially sequence the peptide (Figure 8Ai). The efficacy of mapping may be checked by peptide

coverage maps to afford quick comparison (e.g., pepsin vs. FXIII-pepsin, Figures 8Aii and 8Aiii,

respectively). Because 5–20 amino-acid peptides are optimum for maximizing HDX-MS resolution,

peptide length as a metric should be compared across mapping conditions (Figure 8Aiv). Taken

together, coverage and peptide length are two metrics for optimization of HDX-MS conditions.

Differential HDX-MS of a two-state systemmeasures meaningful differences for peptides containing

residues involved in RNA binding (Figure 8B). Timing of the HDX-apparatus for repeatability of LC

conditions should generate chromatograms with consistent elution times. Specifically, the extracted

ion chromatogram (XIC/EIC) of an identified peptide should show maintenance of elution time,

shape, and relative abundance across samples undergoing differential HDX (Figure 8Bi). If the ex-

change kinetics are appropriately measured in the HDX experiment, the extracted mass spectrum

for the LC peak will demonstrate an increase in deuteration, whereby the centroid will shift with

time (Figure 8Bii). Kinetic plots, representing peptide deuteration as a function of incubation time

will show changes in deuteration for the protein bound state relative to the unbound state for those

peptides that include RNA binding sites (decreased HDX) and/or changes in backbone flexibility/

hydrogen bonding (increased and/or decreased HDX) (Figure 8Biii, left). Conversely, there will be

nomeaningful difference in HDX for the two states for those peptides covering regions of the protein

not affected by RNA binding (Figure 8Biii, right). The cumulative difference (defined in quantification

and statistical analysis section) for all kinetics plots are plotted across the protein sequence, allowing

the user to visualize dynamics for the entire system (Figure 8Biv). Finally, meaningful differences in

deuteration are represented on known structures to draw conclusions about differential H-D kinetics

in the context of structure (Figure 8Bv).

QUANTIFICATION AND STATISTICAL ANALYSIS

Curve fitting of fluorescence polarization binding data

Timing: 1 h

Titrations curves of varying protein receptor concentration were fitted using the following user

defined equation in Origin.
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F = ðFb� Ff Þ3
ðKD + L+RÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKD + L+RÞ2 � 43R3 L

q
23R

Fb is fluorescence polarization value when FITC-ssRNA is saturated with protein receptor and Ff is

fluorescence polarization value when FITC-ssRNA is alone. KD is the dissociate constant. L and R

are total RNA and protein concentration, respectively.

Alternatives: Origin was used for curve fitting. However, any other software, e.g. GraphPad

Prism, that is capable of nonlinear curve fitting can be used.

Processing pre-HDX mapping results using Protein Metrics software

Timing: 2 h

Alternatives: Several LC-MS/MS peptide identification processing softwares are available

(e.g., Mascot, PEAKs, Proteome Discoverer), and any that identifies peptides from MS/MS

analysis and reports the LC retention time for the peptide can be used.

1. Process each LC-MS/MS mapping datafile using Byonic�.

a. Import raw data and FASTA sequence files.

b. Search data using non specific [sic] (slowest) digestion specificity, as is appropriate for nonspe-

cific digestion of proteins with Pepsin/FXIII proteases.

c. Check newly-generated Byonic file for protein coverage by using peptides with good MS2

fragmentation.

2. Import Byonic� results into Byologic�.

a. Use the Byonic Import function to search directly Byonic data for LC retention window infor-

mation.

b. Validate MS2 spectra for good fragmentation and appropriate assignment to LC peaks.

CRITICAL: If data quality or coverage are poor, do not move on; consider evaluating

additional mapping conditions.

3. Export parameters for comparison of the quench and digestion conditions (Figure 8A).

Note: Consider, given that peptides containing 5–20 amino acid residues are most useful for

HDX, evaluating and selecting optimum quench and digestions conditions.

4. Export a csv file for all peptides with the chosen quench and digestion conditions.

5. Within the csv file, remove all columns except sequence, XIC apex (or retention time), charge, and

score. This is the working mapping file for processing HDX results.

Processing HDX-MS results using HDExaminer

Timing: 3 days

Alternatives: Several HDX processing software packages are available (e.g., HDXWorkbench,

HX Express) and can be used.

6. Start new project from the protein FASTA sequence.

7. Import the peptide list from the mapping results created in Byologic in step 5, previous section.

8. Import the raw LC-MS datafiles; adjust incubation times and percent deuterium to correspond

with each data file.
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9. For each peptide, adjust LC extraction windows to cover the same retention time across all time-

points. Watch for contaminating ions in the m/z window, as they perturb the fitting for m/z

centroid calculation (and resulting deuteration values).

Note:Care should be taken to ensure the same extraction window for each peptide for all time

points and all states (i.e., unbound/bound).

Note: Some peptides should be deleted from the analysis pool on basis of quality of extracted

ion chromatogram and/or MS of isotopologues. Export peptide pool results.

Woods’ plot generation and statistical analysis

Timing: 1 h

10. Calculate cumulative differences in HDX (Figure 3A) as the sum of all differences in D at all time

points:

Summed DHX =
X

ðD t; boundÞ �
X

ðD t; unboundÞ
where Dt is the deuterium uptake in Da at each time point for the respective state (unbound or

bound).

Note: Positive summed DHX values indicate the HDX for a given peptide is higher in the

bound state than the unbound (i.e., binding increased solvent accessibility or decreased

amide hydrogen bonding). Negative summed DHX values indicate the HDX for a given pep-

tide was lower in the bound state than the unbound state (i.e., binding decreased solvent

accessibility or increased amide hydrogen bonding).

11. Calculate the error of the HDX measurement for each differential peptide result as 3 times the

propagated error from the standard deviations at each time point and for both states.

12. Calculate global HDX significance limits.

a. Calculate the pooled standard deviation for the entire dataset for each state:

spooled =

ffiffiffiffiffiffiffiffiffiffiP
s2

N

r

where s is all standard deviations across the dataset and N is the number of data points (the number

of timepoints * the number of peptides).

Note: Peptides for which standard deviations were not calculated at any time point should be

excluded from the dataset.

b. From the pooled standard deviations of both states, calculate the standard error of the mean

(SEM):

SEMDHX =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p;unbound
nunbound

+
s2p;bound
nbound

s

where n is the number of experimental technical replicates (in this case 2 for both).

c. Using the SEM and t-values for a two-tailed Student’s t-distribution, p < 0.1, 0.05, and 0.01,

and 2 degrees of freedom (for duplicates of two states, 2 + 2 - 2), calculate the confidence

interval or global DHX significance limit(s):

ll
OPEN ACCESS

STAR Protocols 2, 100906, December 17, 2021 25

Protocol



GCIDHX = t 3SEMDHX

Peptide HDX differences are only considered statistically significant if the propagated error does not

cross 0 and the HDX differences exceed the global significance limit(s).

13. Generate HDX summary and HDX data tables.

LIMITATIONS

HDX-MS modifies amide hydrogens on the entire protein surface as a function of solvent accessi-

bility to probe changes in backbone protein dynamics and hydrogen bonding occurring the in

higher order structure. Owing to the risk of back-exchange necessitating expedited sample handling

and special considerations for low pH digestion, regions of the protein in critical regions of interest

may not digest well, and the user may wish to probe solvent accessibility of specific protein side

chains.

TROUBLESHOOTING

Problem 1

Broad peaks in size exclusion chromatography (purification of nucleocapsid protein, step 27).

Potential solution

Since only one affinity tag column is used before size exclusion chromatography, contaminants

might be a problem to cause broad peaks in size exclusion chromatography. Due to the RNA binding

and aggregation-prone nature of N, especially for longer constructs, it is crucial to maintain high salt

concentration in lysis and Ni column steps. This helps remove nonspecific binding. In addition, when

choosing molecular weight cutoff of concentrators, it is better to use concentrators of highest mo-

lecular weight cutoff to improve purity. In addition, keep everything on ice and purify as fast as

possible to minimize degradation.

Problem 2

Introduction of bubbles while loading (dynamic light scattering, step 4).

Potential solution

Avoiding generating bubbles in the sample in the first place. This can be done by sample centrifu-

gation. While loading, touch the bottom of the well, then slowly release sample inside while pulling

up pipette tip. Leave the last bit of sample and do not pipette everything out. Practice loading with

buffer and BSA protein sample first. If bubbles are introduced into wells, gently tap the plate to let

bubbles float to surface and remove bubbles with pipette tip.

Problem 3

Mapping digestion showsmissing sections of protein (i.e., low coverage), poor peptide redundancy,

low peptide signal (differential HDX-MS structural characterization of RNA binding, step 34).

Potential solution

These are indications that mapping requires further optimization before starting HDX experiments.

One or both of the following may be required: (1) adjust quench solution components (e.g., chaot-

ropic reagent, salt concentration, reducing agent). (2) Incorporate additional protease on-line with

original protease or use alternative protease or preparation.

Problem 4

No meaningful differences in H-D are observed between two protein states (differential HDX-MS

structural characterization of RNA binding, step 37).
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Potential solution

HDX is reporting on all states of the target protein in solution. If complex formation is incomplete,

differences in HDX are diluted. To ensure more protein binding, the user can increase the relative

concentration of the RNA. It may be possible that the time range of the experiment is not the

same as the protein dynamics/kinetics of HDX. When both protein states are highly exchanged

across all timepoints, decrease the temperature for HDX (e.g., perform on ice); for cases where

both protein states undergo slow exchange with time, increase the HDX temperature. It is also

possible that back exchange is occurring during separation and measurement. Ensure that minimal

time is involved for measurement and that sample is kept at low T. Check the pH of the final solution

after quench to ensure a value corresponding nearly to the kinetic minimum at pH 2.6.

Problem 5

Peptide XIC elution times drift, making HDX-MS data processing more time consuming (differential

HDX-MS structural characterization of RNA binding, step 39).

Potential solution

Consistent timing of sample injection, start of LC gradient, and operation of MS file acquisition are

critical to maintain a consistent measurement of XIC elution time. We recommend the use of a hand-

held timer to set alarms reminding the user to operate each piece of equipment in manual mode.

Given that peptide elution times are also a function temperature; ensure constant temperature in

the HDX-MS apparatus by maintaining an ice water slush for the duration of the experiment.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Dr. Gaya Amarasinghe (gamarasinghe@wustl.edu).

Materials availability

Plasmids in this study are available with a completed Materials Transfer Agreement Request for

these reagents by submitting to Dr. Gaya Amarasinghe (gamarasinghe@wustl.edu).

Data and code availability

The protocol includes all data sets generated or analyzed during this study.
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