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Fuzzy Neural Network Applied to Gene Expression Profiling for Predicting the 
Prognosis of Diffuse Large B-cell Lymphoma
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Diffuse large B-cell lymphoma (DLBCL) is the largest category of aggressive lymphomas. Less
than 50% of patients can be cured by combination chemotherapy. Microarray technologies have
recently shown that the response to chemotherapy reflects the molecular heterogeneity in DLBCL.
On the basis of published microarray data, we attempted to develop a long-overdue method for the
precise and simple prediction of survival of DLBCL patients. We developed a fuzzy neural network
(FNN) model to analyze gene expression profiling data for DLBCL. From data on 5857 genes, this
model identified four genes (CD10, AA807551, AA805611 and IRF-4) that could be used to predict
prognosis with 93% accuracy. FNNs are powerful tools for extracting significant biological mark-
ers affecting prognosis, and are applicable to various kinds of expression profiling data for any
malignancy.
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Diffuse large B-cell lymphoma (DLBCL) accounts for
30–40% of non-Hodgkin’s lymphomas and is well known
to include clinically and morphologically heterogeneous
groups.1–5) Current chemotherapeutic regimens can cure
some patients with DLBCL, but more than half succumb
to the disease.6, 7) Therefore, identification of high-risk
DLBCL groups is crucial and long overdue. Clinical prog-
nostic models such as the International Prognostic Index
(IPI; age, performance status, stage, number of extranodal
sites and serum lactate dehydrogenase) have been used
thus far to establish prognosis for DLBCL patients.8)

The recent development of microarray analysis provides
a new tool for establishing the prognoses of various
diseases.9, 10) With microarray data, comparison of gene
expression in tissues from distinct patient groups and their
normal counterparts may lead to a more comprehensive
and detailed understanding of the molecular mechanisms
of the disease than can be obtained from general parame-
ters such as clinical stage and age of the patient.11, 12) Using
microarray analysis, Alizadeh et al. concluded that
DLBCL can be divided into two groups, germinal center
B-like DLBCL and activated B-like DLBCL.11) The latter
has been shown to have a poorer outcome than the former.
The predictive value of their model was, however, lower

with another DLBCL group.12) This is partly because
Alizadeh’s analysis was designed for identifying new
DLBCL subtypes, rather than for prognosis. Recently,
Shipp et al. published a DNA microarray analysis of
DLBCL patients who had received standard chemother-
apy, and they created a prediction model based on a super-
vised classification algorithm. This model identified 13
out of the 6817 genes analyzed as being significant for
prognosis.12) However, it would be very beneficial to mini-
mize the number of prognostically significant genes.

Artificial neural network (ANN) analysis is a powerful
tool for accurately detecting causal relationships.13) The
fuzzy neural network (FNN) is one of the more advanced
ANN models, and its most attractive feature is that the
causality between input and output variables can be
described extremely accurately as linguistic IF-THEN
rules from the acquired model. In a previous study, the
FNN model was applied to predicting which peptides
would bind to the MHC class II molecule to stimulate an
immune response, and these peptides were identified from
non-binding peptides with an accuracy of more than
90%.14) The physicochemical characteristics of peptides
with high binding coefficients were described in terms of
IF-THEN rules.

In this study, we have applied the FNN method to the
separation of clinical DLBCL patients into two groups,
those predicted to survive and those predicted to die. We
used the gene expression profiling data published by
Alizadeh et al.11) From the expression ratios of only four
genes, we succeeded in predicting outcomes for 40
DLBCL patients with 93% accuracy.
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MATERIALS AND METHODS

Data preprocessing  Expression data of 5857 genes in 40
DLBCL patients were taken from the Stanford Microarray
Database (http:/ /genome-www5.stanford.edu/MicroArray/
SMD/).15) Expression data with a fluorescence intensity
1.4 times greater than that of the background were used
without alteration, and those with an intensity level less
than 1.4 times the background were treated as being at the
background level.11) The ratio of expression intensity of
each gene over the reference11) was used for analysis after
having been normalized from 0.1 to 0.9.
FNN modeling  A type-I FNN16) was used to establish the
relationship between gene expression and clinical out-
come. An FNN combines fuzzy reasoning with an artifi-
cial neural network. Construction of an FNN with one
input unit and one output unit is described in Fig. 1. Gene
expression data, that is, normalized ratio of expression
intensity is entered into the FNN and then the data are
assigned to two components, high and low, which describe
the grade of the gene’s expression level. The ‘high’ and
‘low’ membership grades are determined by fuzzy infer-
ence. The relationship between the ‘high’ and ‘low’ mem-
bership grades and the output is obtained by training the
model using training data, as with ANN.13, 14, 16, 17) In an
FNN model with one input and one output unit, the number
of parameters is 6 (two Wc, two Wg and two Wf). In the

case of two inputs, it is 12, and (4n+2n) for an FNN model
with n input units and one output unit. The parameters
are assigned by model training. To construct an FNN
model with many input units, a large set of training data
are needed. In the present study, the candidate input vari-
ables are the 5857 gene expression data points for each
patient. To make the FNN model as simple as possible, the
input variables were selected by the SWEEP operator
method.17, 18) In our previous papers,13, 14, 17) we directly
selected the input variables by the parameter increas-
ing method (PIM)14) among input candidates and simulta-
neously constructed the FNN model by training. In the pre-
sent paper, however, the computational time for this
method would have been prohibitive. To select the input
genes in a short time, the selection was carried out by a
SWEEP operator method without training. In this method,
briefly, the weight parameters Wc and Wg were fixed and
Wf was determined by the SWEEP operator method. Since
no training was carried out, the method was suitable for
the selection of input variables from the large number
of input candidates (5857 genes). As a first step, an FNN
model with one input unit was created. Expression data
for the gene from all 40 patients’ data sets were entered
into the FNN model, and the Wf was determined by the
SWEEP operator method. We repeated this procedure 5857

Fig. 1. Structure of the fuzzy neural network (FNN). Gene
expression data, in the form of normalized expression ratios,
were entered into the FNN and then the data were assigned to
two components, ‘high’ expression (gray curve) and ‘low’
expression (dotted curve). The ‘high’ and ‘low’ membership
grades were determined by fuzzy inference based on the actual
expression data for each gene (upper panel); when the normal-
ized expression ratio of a gene in a given patient was 0.5, a grade
of 0.5 was assigned for both ‘high’ and ‘low’ membership as the
value before training.

Fig. 2. FNN modeling. As the first step, an FNN model with
one input unit was constructed. Expression data for one gene in
all 40 patients was entered into the FNN model, and the weight
parameter Wf were determined by the SWEEP operator method.
This procedure was repeated 5857 times to construct a model for
each gene. Then the models were compared for the accuracy
with which they predicted patient survival or death, and the gene
used in the most accurate model was selected as the “1st gene.”
Next, the PIM14) was applied. With the “1st gene” fixed, a similar
method was used to select the “2nd gene,” which yielded the
highest accuracy model in combination with the “1st gene.”
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times to construct a model for each gene. Then the accu-
racy of the models was compared, and the gene used in the
model with the highest prediction accuracy was selected
as the “1st gene.” Next, the PIM method was applied. Hav-
ing the “1st gene” fixed, we used a similar method to
select the “2nd gene,” which gave the highest accuracy
in combination with the “1st gene” (Fig. 2). Having the
“1st gene” and the “2nd gene” fixed, we then selected the
3rd gene. We repeated this procedure, increasing the num-
ber of input genes one by one. Then, we used training to
construct FNN models with the selected genes (Fig. 3).

In the present paper, the threshold value of 0.5 was used
for determining the predicted outcome; when the output
was more than 0.5, it was considered that the model pre-
dicted the death of the patient (Fig. 2). The predicted out-
comes were compared with the true outcome, alive or
dead, and the training of the model, i.e., the adjustment of
the parameters, was done by a back-propagation algo-
rithm. The training ratio and training time were set at 0.1
and 5000 iterations, respectively. The performance of the
FNN models were assessed by cross-validation (Fig. 4).19)

In each model, 30 data sets were used for training and 10
for evaluation. Since the number of data sets was not
large, the performance of the model depended on which
data were used for training. In order to assess the model
fairly, such cross-validation was carried out for each
model.
Survival analysis and Kaplan-Meier plots  The Kaplan-
Meier survival analysis plots were computed using Stat-

View for Windows version 5.01 (SAS Institute, Inc., Cary,
NC). The differences in survival rates were analyzed by a
log-rank test (Mantel-Cox method).

RESULTS AND DISCUSSION

Genes selected for prognosis  An FNN model with four
genes as input variables was constructed from data on
5857 genes. These four input genes are listed in Table I in
the order in which they were selected. The earlier the
input variables were selected, the more important they
were as input for the predictions. The model could predict
the 4-year survival rate for DLBCL patients with an accu-
racy of 93%. This value is high compared to that from the
hierarchical clustering method, 72%.11)

CD10, a membrane metallo-endopeptidase, was the first
variable selected in our analysis. It was more strongly
expressed in DLBCL survivors than in those who died. Its
expression has also been reported to be associated with a
better response to treatment of acute lymphoblastic leuke-
mia (ALL) and neuroblastoma.20, 21) CD10 is expressed in
normal precursor B-cells and follicle center cells.22, 23) Leu-
kemias and lymphomas originating from those cells, such
as ALL and follicular lymphoma, also express CD10.
Interestingly, about one-third of DLBCLs are known to
express CD10, suggesting that their normal counterpart is
the germinal center B-cell.24) Alizadeh et al. reported that
the germinal center B-like DLBCLs showed a better out-
come than the activated B-like DLBCLs.11) We next
selected two as-yet unidentified genes, and then IRF-4
(MUM1/LSIRF). IRF-4 was identified as a protooncogene

Fig. 3. Strategy of model selection. The combination of 1st and
2nd genes was selected by the SWEEP operator method and the
PIM. Having the “1st gene” and the “2nd gene” fixed, we
selected the 3rd gene. We repeated this procedure, increasing the
number of input genes one by one. Then, FNN models with the
selected genes were constructed by training, and the performance
of the model was tested.

Fig. 4. A cross-validation. A 4-fold cross-validation was carried
out to fairly test predictions for 40 patients. The 40 data sets
were divided into training data (30 data sets) and evaluation data
(10 data sets). The FNN model was then optimized using the 30
training data sets and validated with the 10 evaluation data sets.
This training procedure was repeated four times so that the data
for each patient were assessed once as evaluation data. Then the
prediction accuracy across all four trials was calculated and aver-
aged for the overall accuracy of the FNN model.
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activated by chromosome translocation t(6;14)(p25;q32),
which juxtaposes the immunoglobulin heavy-chain locus
to the IRF-4 gene in multiple myeloma cell lines.25) The
activated B-like DLBCL signature includes high IRF-4
expression and has a poorer prognosis.11) These findings
suggest that IRF-4 expression may confer a growth advan-
tage on the lymphoma cells, thus accounting for their
aggressive clinical behavior. AA807551, a hypothetical

gene also listed as accession number AL512731 in Gen-
Bank, was more strongly expressed in those who died than
in the survivors of DLBCLs. However, the biological sig-
nificance of the expression of this gene, and of AA805611,
remains to be explored. For all four genes, differences in
expression between the two patient groups showed a P
value of less than 0.05 (Table I).

A previous report showed that mutations of the p53
gene were associated with a poor prognosis in aggressive
B-cell lymphoma.26) However, owing to the unavailability
of p53 expression data from some patients, we could not
include the p53 gene in the analysis.
Relationships among the selected genes  From the con-
structed FNN model, the relationship between the input of
four genes and the output of the survival score is described
as a fuzzy rule, shown in Fig. 5. From this matrix, the fol-
lowing rules are obtained. Patients with low expression of
CD10 were predicted to have a poor prognosis in the FNN
model. A poor outcome was predicted particularly when
CD10 expression was low and IRF-4 expression was high.
Fourteen of the patients were identified as having poor
prognosis on the basis of these two factors, which corre-
sponds to 67% of all patients with poor prognosis.
Patients, No. 5, 24, 33 and 39, are four exceptional cases.

Furthermore, the FNN model also identified cases with
a poor prognosis despite a high expression ratio of CD10.
The correct identification of these cases was obtained by
adding the expression information on the other two genes;
the outcomes of patients are poor even though CD10
expression is high if AA807751 is high and AA805611 is
low. Six patients belong to this causality group without
exception.

Our study attained a high prediction accuracy of 93%
with the FNN model. This means that three out of 40
patients’ prognoses were incorrectly predicted. These three

Table I. Four Genes Selected with the FNN Model

Order of selection Selected genes P value Predictive 
accuracy

1 CD10 0.008

93%

2 Unknown
(AA807551)

0.002

3 Unknown
(AA805611)

0.032

4 IRF-4 0.022

The genes selected by the PIM are shown in the order selected.
The P value for each gene, calculated by the Mann-Whitney
test, indicates the significance of expression differences between
patients with 4-year survival and those without. The predictive
accuracy was determined by cross-validation (Fig. 4). 

Fig. 5. Relationship among four input genes and predicted out-
come. H and L respectively refer to high and low expression
level of each gene. Since the expression level of each gene can
be divided into either high or low groups according to fuzzy rea-
soning, this model comprised 16 (=24) fuzzy rules. Light gray
areas ( ) represent predicted poorer prognosis by the FNN.
Dark gray areas ( ) represent the poorest prognosis. Numbers
in each matrix cell are the patients’ numbers previously
described by Alizadeh et al.11) Bold type numbers with underline
indicate the patients dead within 4 years, and italic type numbers
alive. Patient numbers are placed in the matrix according to the
expression levels of the four genes in that patient. Patient num-
bers in circles represent incorrect classification by the FNN.

Fig. 6. Kaplan-Meier plot of the 4-year overall survival for all
patients grouped by FNN score. The P value for the prediction
outcome groups is computed using a log-rank test. The tick
marks represent censored data.
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patients, Nos. 5, 11 and 24, are indicated with circles in
Fig. 5. Patients No. 11 and 24 had intermediate levels of
CD10 expression, indicating the patients were considered
marginal for survival.
Kaplan-Meier plots  Kaplan-Meier survival analyses
indicated that the patients predicted alive by the FNN
model showed longer survival than the patients predicted
dead (Fig. 6). This result indicates the existence of a gene-
expression signature in DLBCL associated with a better
outcome. Kaplan-Meier plots of overall survival showed
the independence of the IPI and the groups based on the
FNN model (Fig. 7). Among the patients whom IPI put in
the low-risk group, FNN successfully identified those who
had poorer prognosis. Patient prognosis was the poorest
for patients in the high-risk group by IPI and predicted
dead by FNN (Fig. 7B). Thus, the FNN is more informa-
tive in combination with clinical presentation. The patients
predicted to have the poorest outcome by both the IPI and
the FNN should be treated with a therapy other than con-
ventional chemotherapy.

In conclusion, these results indicate that the FNN model
is a powerful tool for identification of genes significant for
prognosis. The FNN model should be applicable to
microarray analysis data obtained from various malignan-
cies.
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