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Abstract

Cells exhibit propagating membrane waves which involve the actin cytoskeleton. One type of such membranal waves are
Circular Dorsal Ruffles (CDR) which are related to endocytosis and receptor internalization. Experimentally, CDRs have been
associated with membrane bound activators of actin polymerization of concave shape. We present experimental evidence
for the localization of convex membrane proteins in these structures, and their insensitivity to inhibition of myosin II
contractility in immortalized mouse embryo fibroblasts cell cultures. These observations lead us to propose a theoretical
model which explains the formation of these waves due to the interplay between complexes that contain activators of actin
polymerization and membrane-bound curved proteins of both types of curvature (concave and convex). Our model predicts
that the activity of both types of curved proteins is essential for sustaining propagating waves, which are abolished when
one type of curved activator is removed. Within this model waves are initiated when the level of actin polymerization
induced by the curved activators is higher than some threshold value, which allows the cell to control CDR formation. We
demonstrate that the model can explain many features of CDRs, and give several testable predictions. This work
demonstrates the importance of curved membrane proteins in organizing the actin cytoskeleton and cell shape.
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Introduction

Living cells have the ability to produce propagating waves on

their membranes, which are traveling membrane undulations

involving an accumulation of the actin cytoskeleton, that persist

over microns and during minutes. Such membrane waves have

been observed in a variety of cells, during cell spreading [1–3] and

in response to excitation by soluble factors [4]. These waves are

believed to play a role in cellular motility, probing of the

surrounding matrix, endocytosis and internalization of membrane

receptors [4]. In the damped liquid environment of the cell, these

propagating waves are maintained by the constant supply of active

forces from the cytoskeleton. The main type of active force at the

membrane is the protrusive force due to the polymerization of

actin filaments near the membrane.

The mechanisms responsible for these different waves are not

well understood at present. Several theoretical models have been

suggested to explain the propagation of actin waves on the

membrane of cells [5,6]. One kind of mechanism that was shown

to drive membrane-cytoskeleton waves involves the recruitment to

the membrane of actin polymerization by curved membrane

proteins (activators). The coupling between the membrane shape

and the protrusive force of actin polymerization was shown to

produce damped waves when only concave activators are present

[7]. In contrast, a model that was able to produce non-decaying

waves relied on the addition of contractile forces produced by

myosin II motors, in conjunction with only convex actin activators

[8]. This model was shown to fit recent experiments [9], where

myosin inhibition abolished the observed waves. Conversely, other

types of membrane ruffles are insensitive to inhibition of actomyosin

contractility or to the genetic removal of myosin II (Supporting

movies 7 and 8 of [10]). In order to account for such waves that do

not require myosin-driven contractility, we explore in this paper

wether only using the protrusive forces of actin polymerization can

give rise to non-decaying membrane-cytoskeleton waves. We indeed

identify a new mechanism for such waves, based on the interplay

between curved membrane proteins of both convex and concave

shapes, and give a specific biological example where it may apply.

Results

Experimental Results
In this paper, we are particularly interested in the phenomenon

of Circular Dorsal Ruffles (CDR), which form on the apical

surface of cells as circular actin rings that eventually enclose,

generating an endocytic vesicle [4] (Fig. 1). These CDRs are

involved in internalization of the membrane and its receptors, and

are induced by ligand stimulation of membrane receptors, mainly

of the tyrosine kinase family. These dynamic structures are driven

by actin polymerization, which is initiated by membrane bound

activators, such as N-WASP and WAVE complex [4,11]. CDRs

are formed in response to excitation of the cell by growth factor.
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In order to test whether CDRs are dependent on actomyosin

contractility, as suggested in [8], mouse embryo fibrobalsts were

treated with two types of myosin II inhibitors (Y-27632 and

Blebbistatin), and showed that CDRs are largely independent of

actomyosin contractility (Fig. 1a,b). The observed velocities for

CDRs in normal and blebbistatin-treated cells are 2:3+0:4 and

1:6+0:6mm/sec respectively. This difference in velocities is not

statistically significant (see Movie S1).

There has been evidence that the actin activator N-WASP is

recruited to CDRs by a curved membrane protein called Tuba

[12]. Tuba is a protein that contains the Bin/Amphiphysin/Rvs

(BAR) domain [13], which is known to bend membranes in a

concave shape [14]. In addition, we present new experimental

observations that indicate the localization in CDRs of IRSp53

protein (Fig. 1c), which contains the Missing–in–metastasis (MIM)

domain, and induces convex membrane shape [15]. This protein

was also shown to have the ability to recruit actin activating

proteins [16].

Theoretical Results
Motivated by these observations, we propose here a model for

CDRs, which is based on the interplay between two types of

protein complexes that contain an activator of actin polymeriza-

tion and a curved membrane protein; one type is convex while the

Figure 1. Experimental results. Experiments done in MEF cells which are stimulated by PDGF. (A) Time-lapse of CDRs dynamics. Still images of
MEF cells serum-starved and pre-treated with vehicle (upper panels) or Blebbistatin (lower panels) and subsequently treated with PDGF to induce
CDRs formation. CDR dynamics were recorded by time-lapse video microscopy (see also Movie S1 and Methods section). Bar, 20 mm. (B) The fraction
of cells exhibiting CDRs is unaffected by treatment with two different myosin II inhibitors. P-values show no statistical significance. (C) IRSp53 is
localized at CDRs. IRSp53 marked in green and actin in red. Bar 10 mm. Arrows denotes CDRs.
doi:10.1371/journal.pone.0018635.g001
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other is concave in shape (Fig. 2). For example, one such concave

complex may contain Tuba and N-WASP [12], and a convex

complex may contain IRSp53 and WAVE [16]. Note that we

explore here the minimal model that contains just one type of

activator of each type of curvature (concave and convex), while in

the real cell many different proteins of both curvatures coexist and

may play a role in CDR formation, as we indicate in Text S1.

In our model we include the following three components (Fig. 2):

the flexible cell membrane, and the concentration fields of the

membrane-bound activators of the two types of curvatures. The

membrane has the usual bending and stretching elasticity, and is

assumed to be flat when there are no activators present. The

activators induce a spontaneous curvature on the membrane,

proportional to their local concentration. The membrane is further

pushed by actin polymerization, which is proportional to the local

concentration of the activators. In turn, the dynamics of the

activators is influenced by the membrane shape, causing the

activators to aggregate where the local membrane shape more

closely matches their spontaneous curvature. In the cell the

activators both diffuse in the membrane and adsorb from the

cytoplasm. In order to analyze the influence of the two processes

separately and to keep the analysis simple, we will assume that

each activator can be either diffusive or adsorptive but not both

(Fig. 2a,b). We analyze all possible sets of different types of

dynamics. This is a mean-field, continuum model, whereby we do

not describe the small-scale shape of the membrane due to the

individual activators, but treat only the averaged (coarse-grained)

membrane shape.

The feedback mechanisms (Fig. 2c) that operate in our model,

couple the distribution of the curved activators on the membrane

to the membrane shape (curvature). The activators tend to localize

where the membrane has a curvature that matches their

spontaneous shape, while they in turn modify the membrane

shape due to the forces that they apply; one force is simply due to

their shape which tends to curve the membrane, and the other,

active force is due to the recruitment of actin polymerization, and

is purely protrusive. The convex activators alone can give rise to a

positive feedback with the local membrane deformation, whereby

they tend to form membrane protrusions in which they are highly

localized [7,17], but do not propagate laterally. The concave

activators alone give rise to a negative feedback with the

membrane deformation, resulting in damped oscillations [7].

Combining the two types of activators can give rise to unstable

waves, whereby the convex activators initiate a protrusion, which

is then modified by the aggregation of concave activators that tend

to inhibit the local instability, but end up only shifting it laterally in

space. This is how the propagating waves arise in our model from

the interplay between the positive and negative feedbacks of the

two curved activators and the membrane shape.

The membrane is characterized by height undulations h(~rr), while

the area coverage fractions of the convex and concave activators are

denoted by w{(~rr) and wz(~rr). The proportionality factors relating

the local concentration of activators to the protrusive actin force that

they induce, are denoted by A+ respectively. We will denote the

activator dynamics by the dynamics of the convex followed by the

dynamics of concave activator, e.g. diffusion(2)–adsorption(+). We

are looking for the regimes of parameters where the system supports

undamped propagating waves. We use linear stability analysis to

map the regimes of parameters where the system becomes unstable,

and complement this analysis with simulations that include the non-

linearity due to conservation of the diffusive activators (Eq. 5). We

find below that indeed the model we describe has regimes in which

unstable waves arise, even in the limit of small perturbations (linear

analysis).

We analyze the linear stability of the system as a function of the

activity levels of the two activators, i.e. in the A{–Az plane, in

Fig. 3 (parameters used in these calculations are given in Table 1).

We chose to analyze the system in terms of these parameters

because cells can regulate the activity of the actin cytoskeleton

through a variety of signaling pathways [4], and these are also

experimentally accessible. In Fig. 3 we show only the regions of

wave instability, and a more detailed analysis of these phase

diagrams is given in Text S1. The following general conclusions

can be drawn from the phase diagrams in Fig. 3

1. When the dynamics of both activators is of the same type

(both adsorptive or diffusive - a, d), we see that for unstable waves

Figure 2. Schematic description of the model. (a) The activator diffuses in the membrane. (b) The activator adsorbs to the membrane from an
infinite reservoir. (c) Feedback diagram describing the main interactions in our model, where positive and negative feedback loops combine to
produce oscillations.
doi:10.1371/journal.pone.0018635.g002
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Figure 3. Wave instability phase diagram in the A{–Az plane. Regions marked in pink denote the unstable waves. (a) the diffusion(2)–
diffusion(+) model, when D{wDz. (b) the adsorption(2)–diffusion(+) model. (c) the diffusion(2)–adsorption(+) model. (d) the adsorption(2)–
adsorption(+) model when k{

offwkz
off . In (a) and (c) the dashed line marks the values along which the bifurcation graph (Fig. 5) was plotted. In (b) and

(c) the threshold value of A{ is denoted by Ac
{.

doi:10.1371/journal.pone.0018635.g003

Table 1. List of parameters used in the calculations.

Parameter Units Valuea Parameter Units Valuea

T 0K 300 D{
b

mm2=s 1.3, 1

Hz~H mm{1 10 Dz
c

mm2=s 1

H{~{aH mm{1 -1 k g mm2=s2 5 kBT

a~DH{ D=Hz a.u. 0.1 md,e a.u. -1

d mm 0.1 k{
off

d
s{1 0.02, 0.01

g~100gwater g=(mms) 10{4 kz
off

e
s{1 0.01

�ww{
b a.u. 0.5, 0.8 ns

{~ns
z mm{2 500

�wwz
c a.u. 0.5, 0.8 b a.u. 10

aDynamic constants were estimated from [32] and spontaneous curvatures from [16,21]. Other values are of typical magnitude for cells.
bFirst number corresponds to diffusion(2)–diffusion(+) model and the second number corresponds to the diffusion(2)–adsorption(+) model.
cFirst number corresponds to diffusion(2)–diffusion(+) model and the second number corresponds to the adsorption(2)–diffusion(+) model.
dRelevant for adsorption(2)–diffusion(+) model.
eRelevant for diffusion(2)–adsorption(+) model.
doi:10.1371/journal.pone.0018635.t001
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to arise the convex activator (w{) needs to have faster dynamics

than the concave activator (wz). The convex activator is the one

responsible for the instability in our system, as it has a positive-

feedback with the membrane shape (Fig. 2), and it therefore needs

to respond faster to the membrane deformations, as compared to

the concave activators which have a negative feedback with the

membrane shape.

2. In all the cases we find that unstable waves occur above some

minimal value of both A{ and Az. Note that for all the cases

except the diffusion(2)–adsorption(+), the unstable waves disap-

pear for A{ above some critical value (a,b,d).

3. When the activators have different types of dynamics (b, c)

the transition from damped waves to unstable waves is given

approximately by a constant threshold value of A{, denoted by

Ac
{ (red line). In both cases this critical value increases with

increasing membrane tension. Only for case (c), we find that above

a critical value of the membrane tension, unstable waves appear

even for vanishing Az.

We now explore in more details the cases of diffusive(2)–

adsorptive(+) (a) and diffusive(2)–diffusive(+) (c) dynamics. In

Fig. 4, we give the dynamics of the waves for parameter values that

support unstable waves (points marked II and I in Fig. 3a,c

respectively). We plot the dispersion relation and the time

evolution simulation of the waves both for short times and at the

final steady-state, from an initial small perturbation. In the

dispersion relations the modes that support unstable waves are

characterized by having a non-vanishing imaginary part, and a

positive real part.

From the dispersion relation for the diffusive(2)–adsorptive(+)

case (Fig. 4a) we find that the unstable waves exist for a limited

range of wavelengths, around qcw0. We show in Fig. 4b the result

of a simulation for short times, where we find that the most

dominant wavelength that propagates away from the initial

perturbation is indeed lc~2p=qc, which has the largest positive

real part in the dispersion relation and is therefore the most

unstable mode (Fig. 4a). An approximate expression for qc is given

in Text S1. We find from this expression that the wavelength lc

depends more strongly on the activity of the convex activator, as

lc!A{1=2
{ . It depends very weakly on the activity of the concave

activator Az.

A simulation for the long time evolution of the waves is shown in

Fig. 4c (see Movies S2 and S3). We find that the initial

perturbation induces counter-propagating waves and therefore a

standing-wave pattern fills the domain, at the most unstable

wavelength lc, with an oscillation period which is close to that

predicted by the linear dispersion relation (vc in Fig. 4a).

Eventually, numerical noise breaks the symmetry of the counter-

propagating waves, and a single traveling wave persists at

wavelength lc (Fig. 4d). The time it takes the system to break

the symmetry is determined by noise, which is not included

explicitly in these calculations. The velocity of this wave is

V*0:7mm=min, which is smaller by about 30% compared to the

group velocity predicted by the slope of the dispersion relation at

qc (Fig. 4a). A good approximation for the wave velocity is given

by

Vapprox&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dAz

�wwzkHzkz
off

2gns
zT

s
ð1Þ

See Materials and Methods section for the definition of the

different parameters and the derivation of this expression. As is

shown in Eq. 1, the velocity increases with the strength of the

active forces (Az), and the rate of activator turnover (kz
off ), as well

as with the membrane bending modulus (k). The velocity

Figure 4. Linear stability and simulation results. (a–d) Results of the diffusion(2)–adsorption(+) system. (a) Dispersion relation of point marked
II in Fig. 3c. Vertical dashed line mark qc and horizontal dashed line marks vc. The slope of the imaginary part of the dispersion relation at qc gives us
an estimate of the group velocity of the waves V . (b) Simulation for short times. One can see that the convex activators are in-phase with the
membrane while the convex activators are in anti-phase. Due to symmetry only half of the domain is shown. (c) Kymograph depicting the membrane
height displacement as a function of space and time. (d) Steady state wave at time t = 12,500 sec (marked by the dashed line in (c)). Arrow shows
direction of propagation. (e–h) Results of the diffusion(2)–diffusion(+) system. (e) Dispersion relation of point marked I in Fig. 3a. Vertical dashed line
marks qc and horizontal dashed line marks vc . (f) Simulation for early times (as in (b)). (g) Kymograph depicting the membrane height displacement
as a function of space and time. (h) Steady state wave at time t = 12,000 sec (marked by the dashed line (g)). Arrow shows direction of propagation.
The simulations are shown in Movies S2 and S3 respectively.
doi:10.1371/journal.pone.0018635.g004

Membrane Waves Driven by Curved Activators

PLoS ONE | www.plosone.org 5 April 2011 | Volume 6 | Issue 4 | e18635



decreases for increasing fluid viscosity (g). From this approxima-

tion we understand that the velocity depends very weakly on the

activity of the convex activators (A{). The accuracy of this

approximate expression is discussed below.

In Fig. 4e–h we plot the analysis of the diffusive(2)–diffusive(+)

system. The main difference in this system is that the unstable

waves extend to infinite wavelengths (Fig. 4e). At short times

(Fig. 4f) the most unstable wavelength (lc) dominates, but non-

linear interactions eventually cause the largest wavelength possible

in the domain to persist (Fig. 4g,h). The velocity of this wave is

V*1:48 mm=min, which is smaller by about 40% compared to

the group velocity predicted by the slope of the dispersion relation

at the wavelength of steady-state wave.

In both cases we find that in the propagating waves the convex

activator (w{) is in-phase with the membrane displacement, while

the concave activator (wz) is almost in anti-phase (Fig. 4d,h).

In Fig. 5 we plot the mean-square amplitude of the steady-state

membrane waves as a function of the activity of the convex

activators, moving along the vertical dashed lines in Figs. 3a,c. We

find that the amplitude of the steady-state waves continuously

vanishes as we approach the wave instability transition line (red

lines in Figs. 3a,c) from above (supercritical bifurcation).

Discussion

Experimental evidence given here demonstrates that CDRs

contain curved membrane proteins of both curvatures which are

furthermore known to be involved in the recruitment of actin

polymerization to the membrane. In addition, myosin II

contractility was shown not to be an essential component of such

waves, and its inhibition does not change the wave velocity. Our

theoretical model demonstrates that indeed actin protrusive forces

induced by the interplay of these two types of membrane-bound

curved activators is sufficient to give rise to propagating membrane

waves (Fig. 2c). Therefore this result suggests that this could be the

dominant mechanism for CDRs.

We can make the following more quantitative comparisons

between the waves that our model gives and the observed CDRs.

1. For the cases where the concave activator is adsorptive, the

waves in our model have a typical wavelength of order of a few

microns (for ‘‘rule of thumb’’ parameter values, Table 1), which is

similar to the width of observed CDRs [11,12].

2. The experimentally observed wave velocity is in reasonable

agreement with the the range of velocities we observe in our model.

3. The concave and convex activators are displaced within the

propagating CDR, such that the convex activator is localized at

the membrane protrusion, while the concave activators are

localized where the membrane is depressed (Fig. 4b,f). This

may explain the observation that Tuba trails the actin front in

CDRs [12].

These comparisons support the validity of our model for CDR,

and may further indicate that the concave complex (e.g.

containing Tuba) is more slowly diffusing in the membrane

compared to the convex complex (e.g. containing IRSp53).

Regarding the velocity of the waves in our model, Eq. 1 shows

that it depends on both the passive parameters of the system (such

as the membrane elasticity and fluid viscosity) and on the average

concentration and activity of the concave activators (�wwz,Az). This

expression highlights that the wave phenomenon that we describe

is a result from an interplay between the active forces due to actin

polymerization and the passive reaction of the system. Note that

the approximate expression we derived for the wave velocity (Eq.

1) is reminiscent of the expression that appears for myosin-II

driven membrane waves (Eq. 5 in [8]).

Our model gives the following insight about the process of CDR

excitation in cells. Before the cell is excited its internal parameters

correspond to a point in the stable regime of the phase diagram

(below the red line in Fig. 3). When it is excited the stimulation

changes the internal parameters, for example the activity of the

actin activators (A+), and above some threshold values the system

crosses into the unstable-wave region. An alternative possibility

could have been that the cell can be close enough to the transition

line (in the stable regime), such that a large perturbation switches it

to the propagating wave state. This route does not exist within our

non-linear model, as illustrated in Fig. 5. This means that the

difference between a quiescent cell and an excited cell with CDRs

is a real change in the internal state of the cytoskeleton activity,

and not simply a large perturbation of the membrane-cytoskeleton

organization.

Let us discuss some assumptions that we have used in our

model. We assumed that the actin polymerization induced by the

curved activators (A+) is spatially uniform. However, there are

mechanisms in the cell that can make this parameter vary in space

since it may depend on the local membrane curvature [18] and

signaling pathways [19]. Our model demonstrates that even

without this added level of complexity propagating waves can

form. Furthermore, our simulations were done in a regime where

the amplitude of the concentration undulations of the activators in

the waves are small (Fig. 4d,h), and as a result the waves are purely

periodic in space. In comparison, the observed CDRs are solitary

(Fig. 1) and the actin activators are highly localized in the CDR.

Nevertheless, the conditions that allow the system to support waves

Figure 5. Bifurcation analysis. The mean square amplitude of the membrane height displacement in the two systems: (a) diffusion(2)–
diffusion(+), (b) diffusion(2)–adsorption(+), along the vertical dashed lines in Fig. 3a,c respectively. The amplitude of the steady-state waves
continuously vanishes as we approach the wave instability transition line from above (supercritical bifurcation).
doi:10.1371/journal.pone.0018635.g005

Membrane Waves Driven by Curved Activators

PLoS ONE | www.plosone.org 6 April 2011 | Volume 6 | Issue 4 | e18635



are independent of the amplitude of the wave (Fig. 5), so our

conclusions remain unaffected. As soon as we reduce the

membrane tension and allow the membrane amplitude to form

stronger gradients, we got complete depletion of activators from

certain regions of the membrane, and this indicates that the system

has then the tendency to form isolated structures, similar to the

solitary waves observed experimentally. A simulation of a solitary

propagating structure, which shows that such structures indeed

tend to form in our model, is shown in Movie S5. This regime

remains to be explored in future studies.

The different versions of our model (Fig. 3) give different

behavior for the propagating waves, as can be seen in the final

wavelengths in Fig. 4. Future experiments may allow to distinguish

between the different versions of our model. One example for such

a discriminating observation between the models is shown in Fig. 6,

where we plot the calculated dependence of the wave group

velocity on the actin polymerization activity. This actin activity

may be modified experimentally by using a variety of actin

inhibitors or promoters, which would therefore change both A{

and Az. The plotted trajectory is schematic, as it assumes a simple

linear relation between the response of both types of activators to

the drug.

We can use our model to make the following list of observable

predictions: (i) functional or genetic interference with one type of

curved proteins (assuming non-redundant roles among proteins of

the same type of curvature, see Text S1 section 2) should inhibit

CDR formation, (ii) the two types of curved activator complexes

are spatially displaced within the CDR, following the undulation

in the membrane shape (Fig. 4b,f), (iii) the phase diagrams shown

in Fig. 3 may be explored systematically by controlling the rate of

actin polymerization in the cell (note that drugs such as

Latrunculin A would change both A{ and Az, Fig. 6), (iv) the

expression levels of the two types of activators may be regulated

artificially and would change the behavior of the cell (shown in

Fig. 7a), (v) the CDR velocity should increase roughly as a square-

root of the activity of the concave activator, Az (Eq. 1, Fig. 7b),

and (vi) change of the membrane tension will change the velocity

of the CDR and the threshold value of A{ for wave instability

(Figs. 7c,d respectively).

In Fig. 7b the accuracy of the approximate expression for the

wave group velocity given in Eq. 1 can be judged, as a function of

Az, by comparing to the group velocity at qc.

We present a physical model that demonstrates how actin

protrusive forces induced by the interplay of membrane-bound

curved activators of both convex and concave curvatures, can give

rise to propagating membrane waves. This is a new mechanism for

membrane-cytoskeleton waves, and may be the dominant driving

force for CDRs. Our model explains many of the observed

features of CDRs and provides testable experimental predictions.

The theoretical model, together with the experimental observa-

tions, demonstrate the essential role played by curved membrane

proteins that recruit actin polymerization as organizers of the

cortical actin cytoskeleton. Unlike other cellular structures that

have been shown to contain such proteins [20,21], we demonstrate

that proteins of both curvatures are necessary to drive propagating

waves.

Materials and Methods

Drug treatment and staining
In order to test whether CDR induced by PDGF stimulation are

dependent on an intact actomyosin contractile system, mouse

embryo fibroblasts (MEF) were serum-starved and pre-treated

with vehicle or Y-27632 (10 mM, 309), a specific inhibitor of

ROCK kinase, that regulates myosin light chain kinase and MLC-

based contractility [22], or Blebbistatin (50 mM, 309), a small

molecule inhibitor showing high affinity and selectivity toward

myosin II [23] (Fig. 1a,b). Cells were subsequently treated with

10 ng/ml of PDGF for 7 min, which potently and synchronously

induces CDR fomation [24] in MEFs. Cells were then fixed and

stained with rhodamine-phalloidin to detect F-actin and visualize

CDR. The percentage of MEFs exhibiting CDRs were counted.

Data is expressed as mean + SD (Fig. 1b). To detect the

localization of IRSp53 in CDRs, cells were fixed and stained with

Figure 6. Group velocity dependence on A{. The group velocity dependence along the dashed lines in the insets: (a) the diffusion(2)–
diffusion(+) model, when D{wDz. (b) the adsorption(2)–diffusion(+) model. This trajectory represents the effects of addition of actin
polymerization inhibitors or promoters. In both cases we find that the wave velocity increases with the actin activity, but in a very different manner.
This prediction can serve to differentiate between the different types of activator dynamics described by our model.
doi:10.1371/journal.pone.0018635.g006
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anti-IRSp53 antibody (green) and rhodamine-phalloidin to detect

F-actin (red)(Fig. 1c).

Cell culture and reagents
Mouse embryo fibroblasts (MEFs) used in the experiments were

derived as described in [25] from Eps8 null mice. MEFs were

cultured in DMEM-Glutamax-1 medium supplemented with 10%
FBS, 1|Pen-Strep. IRSp53 knockout cells were spontaneously

immortalized cells from IRSp53 knockout mouse embryos infected

either with pBABE-puro or pBABE-puro-IRSp53 [26]. MEFs

were cultured in DMEM-Glutamax-1 medium supplemented with

20% FBS, 1|Pen-Strep, and 1 mg=ml puromycin. The mono-

clonal anti-IRSp53 was generated against the full-length His-

tagged purified protein [27]. PDGF was from Immunological

Science (Rome, Italy), Blebbistatin from Sigma-Aldrich (St. Louis,

MO, USA), Y-27632 from Tocris Bioscience (Ellisville, MO,

USA).

Immunofluorescence microscopy and CDRs counting
Cells seeded on gelatin were serum starved for two hours and

then treated with PDGF for 7 minutes. Cells were then processed

for indirect immunofluorescence microscopy. Briefly, cells were

fixed in 4% paraformaldehyde for 10 min, permeabilized in 0:1%
Triton X-100 and 0:2% BSA for 10 min, and then incubated with

the primary antibody for 45 min, followed by incubation with the

secondary antibody for 30 min. F-actin was detected by staining

with rhodamine-phalloidin (Sigma-Aldrich, St. Louis, MO, USA)

at a concentration of 6.7 U ml{1. The number of cells exhibiting

CDRs upon PDGF treatment was counted. At least 500 cells in

each experiment performed in triplicate were analyzed (mean

s.e.m.).

Time lapse of CDRs
MEFs cells seeded on gelatin were serum-starved for two hours

and then pre-treated with vehicle or Blebbistatin. Cells were

treated with PDGF and subjected to time-lapse video microscopy

at 37uC, 5% CO2 using an Olympus IX81 microscope (40X

objective) connected to a Photometrics cascade 1K camera.

Images were taken every 5 seconds for 20 minutes. Reduction of

the area of each CDR was monitored over time using Image-J

software and from the relation between the area and time we could

extract the reduction in the average radius, by assuming a circular

shape. We then used the change in the CDR radius at the

beginning of the shrinking, to calculate the velocity.

Figure 7. Predictions for the diffusion(2)–adsorption(+) model. (a) Wave instability phase diagram in the w{–wz plane. It is very similar to
the phase diagram in the A{–Az plane (Fig. 3c). (b) Log-log plot of the dependence of the group velocity at qc (Fig. 4a) on the parameter Az, along
the wave instability transition line in Fig. 3c. The dashed line gives the approximate expression for the velocity, given in Eq. 1. (c) The dependence of
the group velocity at qc (for A{~0:0076g=(mms2), Az~0:0035 g=(mms2)), on the membrane tension. (d) The dependence of the threshold value Ac

{

(Fig. 3c) on the membrane tension.
doi:10.1371/journal.pone.0018635.g007
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Model details
The membrane is characterized by height undulations h(~rr)

(Monge representation in the limit of small undulations), while the

area coverage fractions of the convex and concave activators are

w{(~rr) and wz(~rr), with spontaneous curvature H{v0 and

Hzw0. The dynamics are governed by the Helfrich Hamiltonian

[28] where the bending energy is proportional to the mismatch

between the mean membrane curvature (+2h) and the spontane-

ous curvature of the curved activators (up to quadratic order)

H~

ð
S

k

2
+2h{H{w{{Hzwz

� �2
z

seff

2
+hð Þ2d2r, ð2Þ

where k is the membrane’s bending modulus and seff is an

effective surface tension which includes contributions due to the

spontaneous curvature and entropy of the activators (details in

Text S1).

We assume that the pushing force of actin polymerization is

linearly proportional to the activators’ density

factin(~rr)~Az wz(~rr){�wwz

� �
zA{ w{(~rr){�ww{

� �
ð3Þ

where A+ is a proportionality constant that gives a measure of the

activity of the actin polymerization induced by the respective

activator and �ww+ is the average concentration. We will assume in

this work that the values of A+ are uniform throughout the

domain and constant in time. The {A+
�ww+ terms in Eq .3 are

equivalent to a uniform displacement of the entire membrane

(Galilean transformation) which does not change the shape

evolution. We obtained similar results when the analysis was

carried out using an osmotic pressure restoring force (see Text S1).

The elastic forces acting on the membrane are derived

variationally from the free energy, which is the energy (Eq. 2)

plus the entropy of the activators. Together with the forces due to

actin polymerization (Eq. 3) we get

Lh

Lt
~

d

4g
{

dF
dh

zfactin

� �
ð4Þ

assuming local hydrodynamic interactions, where g is the viscosity

of the fluid surrounding the membrane and d is the typical extent

of the hydrodynamic interactions [8,17], which represents the

effective distance of fluid flow between the membrane and the

cytoskeleton elements [29]. This approximation of local hydrody-

namic interactions is more relevant for a membrane near a dense

network of actin filaments, which is the situation for membranes

that are deformed by the cortical actin cytoskeleton [30]. Note that

Eq. 4 describes how the membrane shape is locally dependent on

the activators’ distribution which promote the actin protrusive

force, leading to an increase in h (feedback scheme Fig. 2c).

We consider two distinct cases for the dynamics of the

activators, either diffusive in the membrane or adsorptive from

the cytoplasm. For the case of diffusive dynamics the total amount

of activators is conserved, so the equation of motion derived from

the free energy (details in Text S1) is given by

Lwi

Lt
~

Di

ns
i T
~++: wi

~++
dF
dwi

� �� �
ð5Þ

where i~z,{, Di is the diffusion coefficient of the curved

activator, ns
i is the saturation concentration i.e. the maximal

concentration at which these complexes cover the whole cell

membrane and T is the temperature. Note that the current of

activators in response to the local membrane curvature, is

proportional to: Hiwi
~++ +2h
� �

. This term in Eq. 5 describes how

the diffusive activators’ distribution depends on the local

membrane shape (curvature), since this current of activators

carries them towards regions where the membrane curvature

matches their spontaneous shape (feedback scheme Fig. 2c).

For the case of adsorptive dynamics, the rate constants of the

binding/unbinding process are governed by a Boltzmann factor of

the mismatch in the bending energy between the local membrane

curvature and the activator’s spontaneous curvature

ki
on

ki
off

~exp m{
k

ns
i T

+2h{Hi

� �2
� �

, ð6Þ

where m is the chemical potential describing the affinity for

adsorption on a membrane of matching curvature, and the

equation of motion for wi is of first-order kinetics in the form

Lwi

Lt
~ki

on{ki
off wi ð7Þ

where we assume that the cytoplasmic concentration of curved

activators is approximately constant and uniform due to the fast

diffusion of proteins in the cytoplasm, compared to the typical

oscillation time of the waves. For small undulations of the

membrane, the equation is linear in the curvature +2h. Eq. 7

describes how the adsorptive activators’ distribution depends on

the local membrane shape (curvature), since they adsorb in regions

where the membrane curvature matches their spontaneous shape

(feedback scheme Fig. 2c).

Linear stability analysis
For the linear stability analysis we linearize the equations of

motion, for all types of dynamics (Eqs. 4, 5, 7). We expand in small

deflections around the uniform steady-state, where the membrane

is flat and the uniform concentrations are �ww+. The domain of

wave instability is bounded by the red and brown lines in Fig. 3

(calculated in Text S1). In this region there are oscillatory unstable

modes where: Imfvig=0 and Refvigw0. The amplitude of

these modes grow exponentially from small initial perturbations,

and oscillate or propagate on the membrane surface. The system is

stable below the red line, such that initial perturbations decay

exponentially: Refvigv0.

Non-linear simulations
The one-dimensional simulations are done using a finite-

difference scheme for the full nonlinear model with translational

symmetry, using Matlab. We used periodic boundary conditions,

and the initial perturbation in the membrane shape was Gaussian

(uniform initial distributions of the activators). The exponential

growth in the amplitude of the membrane wave is arrested in the

real cell due to the finite membrane area, which we describe by

adding a non-linear tension term [31], in the form:

s! exp b(L=L0{1), where L is the total membrane length, L0

is the initial length and b is the non-linear coefficient. We used a

value of b which limited the amplitude of the waves to be of order

1 mm, as is estimated for CDRs.

Strong concave activator approximation
In the diffusive(2)–adsorptive(+) model, for strong concave

activator levels (Az&1) we can gain a deeper understanding of

the source of the wave velocity. In this limit we can simplify Eqs. 4,
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7, neglecting the effect of the forces due to the convex activator,

and get

Lh

Lt
&

d

4g
Azwz ð8Þ

Lwz

Lt
&kz

off
�wwz 1z

2Hzk

ns
zT

+2h

� �
ð9Þ

From these equations we can derive a wave equation of the form

L2h

Lt2
~

d

4g
Azkz

off
�wwz 1z

2Hzk

ns
zT

+2h

� �
ð10Þ

with the wave velocity given in Eq. 1. In this limit the dispersion

relation is acoustic-like, it is almost linear in q.

Supporting Information

Text S1 PDF of the supporting information file.

(PDF)

Movie S1 Time-lapse video microscopy of MEF cells
serum-starved and pre-treated with vehicle (upper
panels) or Blebbistatin (lower panels) and subsequently
treated with PDGF to induce CDRs fomation (see
Methods section for details). The film segment shown starts

10 minutes after PDGF addition and lasts 3.5 minutes. Bar,

20 mm.

(AVI)

Movie S2 Simulation for the diffusion(-)–adsorption(+)
system (Fig. 4b–d). The top panel shows the membrane height

displacement, the middle panel gives the concentration distribution

of the convex activator, and the bottom panel gives the

concentration distribution of the concave activator.

(AVI)

Movie S3 Simulation for the diffusion(-)–diffusion(+)
system (Fig. 4f–h). The top panel shows the membrane height

displacement, the middle panel gives the concentration distribu-

tion of the convex activator, and the bottom panel gives the

concentration distribution of the concave activator.

(AVI)

Movie S4 Simulation for the formation and coalescence
of protrusions in the diffusion(-)–diffusion(+) system.
The top panel shows the membrane height displacement, the

middle panel gives the concentration distribution of the convex

activator, and the bottom panel gives the concentration distribu-

tion of the concave activator.

(AVI)

Movie S5 Simulation of solitary propagating structure
that arose within our model when we removed the effects
of the non-linear tension (b~0), using the same values for
the parameters as used for the calculation shown in
Fig. 4B–D (diffusion(-)–adsorption(+). In this calculation we

used the full expression for the exponential form of the adsorption of

wz given in Eq.S6. Note that the membrane amplitude is clearly

beyond the validity of the Monge representation of the membrane

curvature. In this simulation we find that the CDR has a central

bump where the convex activators are localized, while the concave

activators form displaced bands at the front and the back.

(AVI)
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