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Abstract: Ensuring the material durability of an electrolyte is a prerequisite for the long-term service
of all-solid-state batteries (ASSBs). Herein, to investigate the mechanical integrity of a solid polymer
electrolyte (SPE) in an ASSB upon electrochemical operation, we have implemented a sequence
of quasi-static uniaxial tension and stress relaxation tests on a lithium perchlorate-doped poly
(vinyl alcohol) electrolyte, and then discussed the viscoelastic behavior as well as the strength of SPE
film during the physical aging process. On this basis, a continuum electrochemical-mechanical
model is established to evaluate the stress evolution and mechanical detriment of aging electrolytes
in an ASSB at a discharge state. It is found that the measured elastic modulus, yield stress,
and characteristic relaxation time boost with the prolonged aging time. Meanwhile, the shape factor
for the classical time-decay equation and the tensile rupture strength are independent of the aging
history. Accordingly, the momentary relaxation modulus can be predicted in terms of the time–aging
time superposition principle. Furthermore, the peak tensile stress in SPE film for the full discharged
ASSB will significantly increase as the aging proceeds due to the stiffening of the electrolyte composite.
It may result in the structure failure of the cell system. However, this negative effect can be suppressed
by the suggested method, which is given by a 2D map under different lithiation rates and relative
thicknesses of the electrolyte. These findings can advance the knowledge of SPE degradation
and provide insights into reliable all-solid-state electrochemical device applications.
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1. Introduction

With the deepening research on all-solid-state batteries (ASSBs), an intensive scientific interest
in the development of inherent safety, non-leakage, and stable high-performance electrochemical
equipment has emerged to accommodate a wide range of new engineering applications, including
medical implants, flexible electronics, and textiles [1,2]. In contrast to inorganic counterparts
with a brittle crystalline phase, the solid polymer electrolyte (SPE) exhibits excellent interfacial
compatibility, and superior elasticity to endure greater mechanical deformation, contributing
to be cast into the complicated architectures for lithium-ion and lithium-metal batteries [3–5].
Consequently, a wide array of polymers such as poly (ethylene oxide) (PEO) [6–9], polyacrylonitrile
(PAN) [10–13], poly (vinylidene fluoride) (PVdF) [14,15], and its copolymer with hexafluoropropylene
(PVdF-HFP) [16,17], poly (methyl methacrylate) (PMMA) [18–20], and poly (vinyl alcohol)
(PVA) [21–24], as well as their mixtures [25–28], have been adopted as the potential matrices for
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solid electrolytes. Especially, the outstanding inherent advantages (nontoxicity, biocompatibility,
biodegradable, good mechanical strength, relatively high dielectric constant, and charge storage
capacity) of PVA make it one of the preferred choices for such applications [29–31]. Actually, with
the help of dimethyl phthalate (DMP) and lithium perchlorate (LiClO4), PVA-based SPEs exhibited
an ionic conductivity of 0.149 × 10−3 S·cm−1 at room temperature [32]. In addition, the rich hydroxyl
groups attached to the polymer chain of PVA also provide strong hydrogen binding, contributing
to an excellent mechanical stability and high melting point [33]. However, due to a rapid solvent
volatilization or the steep cooling from melting temperature in the process of solidification, all of above
amorphous or semi-crystalline polymers are inevitably in the high nonequilibrium state. The electrolyte
material with excess thermodynamic quantities would spontaneously evolve with time to equilibrium,
which is referred to as physical aging [34,35], leading to pronounced variations in the microstructure
and also macroscopic properties under storage and servicing operations. Accordingly, the physical
aging process of SPEs and its effects on ASSB performance is a pivotal scientific problem to be solved.

Evolution of the aging time-dependent conductivity of SPEs is indispensable to predict
the long-term life of an electrochemical apparatus accurately. Therefore, growing attentions have been
paid to experimentally investigate the ionic conduction of polymer electrolyte materials and the potential
relaxation mechanism during the physical aging. In the first place, it was reported that physical aging
could cause a decrease in the size of the coordinating sphere around the cation. As a consequence,
the conductive performance of PEO-LiClO4 enhanced as the storage time increased [36]. On the other
hand, SPEs consisting of poly (acrylonitrile-co-butyl acrylate) and LiTFSI or LiI, as well as a LiTFSI salt
mixture, exhibited a dropped conductivity with elapsed time because the continuity of conductivity
pathways ground on ion–ion interactions had been damaged to some degree [37]. In addition, for
the SPE based on the hybrid of PEO and PMMA with lithium triflate, the ionic conductivity was
found to initially rise markedly, followed by a reduction by over one order of magnitude as the aging
process extended up to one year [38]. These distinct experimental results imply that the time-aging
process played a complicated role on the lithium-ion diffusion in solid ion-polymer complexes. It is
still an open question how the evolution of the structure-related behavior of the electrolyte material
subjected to the physical aging couples lithium salts.

As the mechanical failures of cell components are thought to be crucial factors for the capacity
degradation of ASSB, a great deal of researchers have oriented their efforts toward clarifying
the mechanical response and the potential endangerment mechanism of the cell systems in the recent
three years [39–44]. One has gradually recognized that the Vegard stress induced by the electrochemical
reaction at the cathode can not only imperil both active substances and bonding materials in
the composite electrode, but also injure the solid electrolyte which acts as the separator sandwiched
between the anode and cathode. For example, in terms of a fully coupled electro-chemo-mechanical
model, Bucci et al. quantitatively explored the mechanical reliability of ASSB for the first time,
and found that the deformation of lithium embedded in active particles could cause inorganic electrolyte
fracture [44]. Notedly, even for the polymer electrolyte material, the stress magnitude was indeed high,
and also resulted in the material degradation of SPEs during service [39]. On the other hand, the stress
development in the inorganic solid electrolyte might also originate from the interfacial incompatibility
of the electrode and electrolyte [43]. The crack initiation and propagation in the solid electrolyte for
a Li/Li1+xAlxGe2−x(PO4)3(LAGP)/Li cell were captured by in situ X-ray computed tomography under
a charging–discharging cycle, and the fracture occurred in the interphase region between the electrolyte
and electrode [45]. The simulation also demonstrated that lithium insertion would produce dendritic
cracking in ceramic solid electrolytes [46]. Similarly, Herbert and co-workers reported that localized
stress intensification at the lithium/solid electrolyte interface might contribute to the short-circuiting
of ASSB [47]. Compared to extensive research on the internal stress in ASSB with inorganic solid
electrolytes, very little literature has documented the mechanical-electrochemical behavior of cells
based on SPEs. Although some progress has been achieved on the issue [39,40], the structure relaxation
of electrolyte materials has not been taken into account. Up to now, major challenges remain in
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developing polymer electrolyte materials to meet the requirements of commercialization, and one
of the pressing tasks is how to control the mechanical deterioration of ASSB with time-aging SPEs
under the circumstance of usage.

The objective of this study is to disclose the physical aging and viscoelastic behavior of polymer
electrolyte and further investigate its underlying impact on the mechanical stability of cell systems in
service, and give the theoretical support for the optimal design and utilization of advanced secondary
batteries. To achieve this goal, we add LiClO4 salt into PVA with a weight ratio of 40% to prepare
the SPE film, and then carry out a series of quasi-static uniaxial tension and stress relaxation tests on
the glassy electrolyte. Subsequently, the dependency of SPE viscoelasticity on elapsed time is discussed
in detail. Following that, a continuum electrochemical-mechanical model is built to analyze the stress
evolution and mechanical integrity of time-aging electrolytes in an ASSB upon various electrochemical
rates and the relative thickness of SPE film to the cathode, respectively. Further, a feasible method
for improving SPE integrity will also be proposed in the light of massive simulations. This work
is expected to thoroughly understand the long-term mechanical responses of a polymer electrolyte
composite and provide insights into durable energy conversion and storage devices.

2. Experimental

2.1. Materials

Poly (vinyl alcohol) (Mowiol® PVA-203, Aladdin, Shanghai, China) particles with an alcoholysis
degree of 86.7–88.7% were adopted as the matrix of solid electrolyte, while LiClO4 (Aladdin, Shanghai,
China) had a weight fraction of 40% and used as the lithium salt for the electrolyte materials. Moreover,
SPE films were prepared using the following procedure. First, PVA-203 was fully dissolved in deionized
water with a mass ratio of 1:10 at 95 ◦C for 2 h under mechanical agitation at 90 r/min. Then, LiClO4

powders were added into the PVA aqueous solution, which was cooled at 50 ◦C, and entirely mixed
for about 2 h. Secondly, the obtained PVA-LiClO4 aqueous solutions were slowly cooled to ambient
temperature (28 ◦C), and then degassed for 30 s. Finally, they were casted onto leveled Teflon-coated
glass plates, and then dried at 40 ◦C for 72 h in the vacuum oven. Dried SPE films with a thickness of 100
µm were cut into dimensions of 20 mm × 5 mm, annealed at 100 ◦C for 30 min to erase the previous
thermal history, and then kept in a glove box with a protective argon atmosphere at 28 ◦C prior to
all of the following experiments including thermogravimetric analysis (TGA), differential scanning
calorimetry (DSC), and uniaxial tension, as well as stress relaxation.

In order to check whether a crystallinity change and phase separation of the aging SPE would
occur in absorbed water, TGA and DSC experiments were respectively carried out for the PVA-LiClO4

specimen during the aging process. TGA was used by TA-Q500 (TA Instruments-Waters LLC,
New Castle, DE, USA) in the temperature range from 28 ◦C to 400 ◦C at a scan rate of 10 ◦C/min under
a nitrogen atmosphere. As can be seen in Figure 1, no weight loss is found below 100 ◦C, indicating
that there is no water absorbed in the testing PVA-LiClO4 films aged for 1 or 7 days. That is to say,
the residual water in SPE films had been eliminated with the help of the annealing step at 100 ◦C,
and the specimen was kept well-dried under the storage environment.

The thermal behaviors of the pure PVA and LiClO4-doped specimens were measured using
modulated DSC of TA-Q2000 (TA Instruments-Waters LLC, New Castle, DE, USA) in the temperature
range from 28 ◦C to 210 ◦C at a scan rate of 30 ◦C/min under a highly purified nitrogen atmosphere.
According to DSC heating thermograms of the PVA, as seen in Figure 2a, it is observed that the glass
transition had occurred at 70 ◦C for the freshly quenched specimen (elapsed time: 0 day), and the peaks
at around 120 ◦C and 181 ◦C correspond to the crystallization temperature (Tc) and melting temperature
(Tm) of the semicrystalline polymer, respectively. Due to the decrease in free volume of the system
during the annealing period, the values of Tc and Tm, as well as glass transition temperature (Tg),
tend to rise slightly with the elapsed time. Furthermore, PVA samples aged for 15 and 30 days
exhibit an observable endothermic overheating peak near the glass transition region, which indicates
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the recovery of heat loss during the enthalpy of relaxation [48]. This peak area would increase with
the physical aging, and the corresponding apex temperature is also found to slightly shift toward higher
temperatures as a consequence of declining molecular mobility. Compared to pure PVA, a similar
DSC heating thermogram is indicated in Figure 2b for the LiClO4-doped PVA complex except at lower
Tg, Tm, and degree of crystallinity owing to the plasticization of lithium salts on PVA. For both PVA
and PVA-LiClO4, the almost constant enthalpy of fusion means that the crystallinity may maintain
stability as the elapsed time increased from 0 to 30 days. In other words, the phase separation did not
take place under the aging condition.
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Figure 1. TGA of PVA-LiClO4 aged for different elapsed times.

Polymers 2020, 12, x FOR PEER REVIEW 4 of 17 

 

aged for 15 and 30 days exhibit an observable endothermic overheating peak near the glass transition 
region, which indicates the recovery of heat loss during the enthalpy of relaxation [48]. This peak 
area would increase with the physical aging, and the corresponding apex temperature is also found 
to slightly shift toward higher temperatures as a consequence of declining molecular mobility. 
Compared to pure PVA, a similar DSC heating thermogram is indicated in Figure 2b for the LiClO4-
doped PVA complex except at lower gT , mT , and degree of crystallinity owing to the plasticization 

of lithium salts on PVA. For both PVA and PVA-LiClO4, the almost constant enthalpy of fusion means 
that the crystallinity may maintain stability as the elapsed time increased from 0 to 30 days. In other 
words, the phase separation did not take place under the aging condition. 

 

Figure 1. TGA of PVA-LiClO4 aged for different elapsed times. 

 

Figure 2. Effect of elapsed time on DSC thermograms of (a) PVA and (b) PVA-LiClO4. 

2.2. Test Methods 

Mechanical properties of SPE films upon various aging times were measured in terms of uniaxial 
tension by a DMA and DMA-RH accessory (Q800, TA Instruments-Waters LLC, New Castle, DE, 
USA) under a dried environment (RH < 5%) at ambient temperature (28 °C). The experiments were 
fulfilled at the elapsed time of 1, 5, 10, 20, and 30 days, which followed the snapshot assumption 
proposed by Struik [34]. 

 

50 100 150 200 250 300 350 400
40

50

60

70

80

90

100

W
ei

gh
t (

%
)

Temperature (°C)

1day

7days

20 40 60 80 100 120 140 160 180 200 220 240

30 days
15 days

H
ea

t f
lo

w
 (m

W
/g

)

Temperature ( )℃

 0 day

(a)

20 40 60 80 100 120 140 160 180 200 220 240

(b)

30 days
15 days
 0 day

H
ea

t f
lo

w
 (m

W
/g

)

Temperature ( )℃  

Figure 2. Effect of elapsed time on DSC thermograms of (a) PVA and (b) PVA-LiClO4.

2.2. Test Methods

Mechanical properties of SPE films upon various aging times were measured in terms of uniaxial
tension by a DMA and DMA-RH accessory (Q800, TA Instruments-Waters LLC, New Castle, DE, USA)
under a dried environment (RH < 5%) at ambient temperature (28 ◦C). The experiments were fulfilled
at the elapsed time of 1, 5, 10, 20, and 30 days, which followed the snapshot assumption proposed by
Struik [34].
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(1) For the purpose of determining the tensile properties of SPE films in the period of physical aging,
quasi-static uniaxial tension was conducted at the strain rate of 5 × 10−3 s−1.

(2) The stress relaxation was carried out at 0.4% strain, which could ensure that the mechanical
response of the sample was within a linear range. The stress required to keep a constant strain
was recorded with a sampling rate of 10 Hz.

3. Model Formulation

As solid polymer electrolytes in ASSB usually exhibit the coupling behavior of electrochemistry
and mechanics, the issue that specifies the cell system accounting for the electrolyte relaxation can
become more complicated. Herein, concentrating on exploring the evolution stress of aging SPEs
and related mechanical integrity problems, we follow the recent work of Grazioli et al. [39] and consider
a uniform planar half-cell comprising a multilayered SPE and cathode (active layer and corresponding
current collector), as shown in Figure 3. The anode of the metal lithium layer is ignored because
of its low modulus to simplify the model. Upon discharging or charging operations, lithium inserts
into or extracts from the active material as a result of the electrochemical energy conversion, drives
deformation within the structure, and thus leads to internal stress in the electrode and SPEs.
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3.1. Migration of Lithium

Considering that lithium diffusion in the active layer obeys Fick’s law, the mass conservation
describes the migration of lithium as

∂cLi

∂t
+ divJ = 0 (1)

where J = D∇cLi is the flux of lithium and D is the related diffusion coefficient of lithium.

3.2. Internal Stress

Internal stress arises when the active particles inflate or deflate as a consequence of lithium
migration. According to the literature [49], the additional strain occurring in this process can be
analogous to the thermal strain and expressed as

εLi =
Ω
3
(cLi − cLi,init)I (2)

where Ω is the partial molar volume of the host material, (cLi − cLi,init) represents the change in lithium
concentration relative to the initial state, and I is the identity tensor.

In the case of elastic electrode material, the total strain is the sum of the lithiation strain shown
above in Equation (1) and the elastic strain caused by the structural deformation, i.e.,

ε=εe+εLi (3)
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To specify the stress associated with the above lithium insertion or extraction, additional governing
equations in solid mechanics should be introduced. First, the balance of force for any solid element
without the action of body force in static equilibrium provides divσ=0. Then, considering that
the deformation of cathode material would be small as the maximum swelling deformation investigated
here is less than 10%, the strain tensor is thus defined by ε=

(
∇u +∇uT

)
/2, where u is the displacement

vector. In addition, to describe the relation between strain and stress, the constitutive equation should
also be introduced. For an isotropic linear elastic medium, like the active layer and collector, we
can write

σ=2G devε− pI (4)

Here, G is the shear modulus, and devε = ε− trε/3 I is the deviatoric component of the strain,
where trε =

∑
i
εii is the related trace. The pressure (p) is equal to −trσ/3 and is proportional to

the volume change of the material, namely, p = −K[trε−Ω(cLi − cLi,init)], where K is the bulk modulus.
Yet, for the viscoelastic SPEs, the first term on the right of Equation (4), i.e., the deviatoric stress (devσ),
is not linearly related to the deviatoric strain (devε), but also depends on the strain history, which is
normally defined by the hereditary integral as

devσ = 2
∫ t

0
Γ(t− t′)

∂devε
∂t′

dt′ (5)

Here, Γ(t) is the relaxation modulus function, and can be obtained by measuring the stress
variation of SPEs against loading time at a constant strain.

3.3. Solving Conditions

To solve the elastic-viscoelastic problem hereinabove, proper initial and boundary conditions
should also be determined. With regard to the lithium concentration, one may consider that the SPE
is initially lithium-free, i.e., cLi,init = 0, and then undergoes lithiation at a constant current (CC) until
the maximum concentration is achieved at the inlet surface (z = hc + ha). Thereafter, it is set as
constant to mimic the constant voltage (CV) operation and to make the electrode fully lithiated in
the following electrochemical process. Thus, the corresponding initial and boundary conditions for
lithium diffusion are

cLi = 0 at t = 0
−n ·J|z=hc

= 0, −n ·J|z=hc+ha
= in

F at constant current stage
−n ·J|z=hc

= 0, c|z=hc+ha = cmax at constant voltage stage
(6)

where F is Faraday’s constant, and in and cmax are the surface current density and stoichiometric
maximum concentration of the solute atoms, respectively.

As for the solid mechanics simulation, the composite electrode is assumed stress-free at the initial
state and then experiences the deformation as the active materials are lithiated. The SPE film is
assumed to be a homogeneous material and perfectly bonded to the electrodes. This contributes to
the continuity of the normal stress and displacement at the interfaces between each layer. As we focus
on the electrolyte stress generated by the electrode exposed to lithium insertion, the outer surfaces
of the structure are thus in traction-free conditions. In addition, side reactions are not taken into
account in the simulations.

4. Results and Discussions

4.1. Mechanical Performance of SPEs during Physical Aging

The uniaxial stress–strain curves of PVA-LiClO4 films aged with various time durations are
indicated in Figure 4a. It is observed that due to the plasticization of lithium salt on the semi-crystalline
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PVA, the tensile response of SPEs seemed to resemble that of a representatively ductile material,
exhibiting a yield point before fracture happened. As one would expect, the tensile behavior
of electrolyte material evolved with elapsed time (ta). The impact of aging was not confined to the linear
stage, but was also found in the nonlinear range. Further, an increasing aging time led to the rise in
both Young’s modulus (E) and yield stress (σy), which can be ascribed to the decrease in the fraction
of free volume in the aging SPEs. However, the influence on the value of σy would gradually decrease
as the physical aging proceeded (see Figure 4b). After an aging time of 20 days, the yield strength
might level off and remain constant at around 36.2 MPa thereafter. Besides, the rupture stress appeared
not to be dependent on the aging process as a result of the mechanical rejuvenation, i.e., the plastic
deformation could erase the prior thermal history to a certain extent. Even so, the effect of physical
aging should be taken into account due to the dramatic increase in the stiffness of the SPE film, as
shown in Figure 4b, where the magnitude of E at the thirtieth day was nearly twice that for the unaged
specimen. Therefore, the time-dependent-elastic modulus needs a more in-depth discussion as follows.
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Figure 4. Effect of aging time on the (a) stress–strain curves and (b) tensile properties of solid polymer
electrolyte (SPE) films.

Under a constant small strain (0.4%), the variation in tensile stress (σ) against loading time (t) for
the SPE film aged from 1 to 30 days is indicated in Figure 5a. All experimental curves of σ(t) − log t
showed a profound time-related stress reduction, but with obviously different relaxation extents,
implying that the physical aging acted upon an important role on the viscoelastic behavior of electrolyte
composites. At each aging time, the stress magnitude reduced up to nearly half of the initial value
(t = 0) after the Struik loading time, i.e., t = 0.1ta [34]. In addition, the earlier the aging stage,
the more rapid the relaxation in stress. This thus demonstrated that the physical aging would slow
down the relaxation process of SPE films. As present relaxation behaviors were in the range of linear
viscoelasticity, the relaxation modulus E(t) = σ(t)/ε0 was irrelevant to the strain level. Hence,
the evolution of E(t) could be analyzed by the following Kohlrausch–Williams–Watts (KWW) equation
for the purpose of elucidating the fundamental mechanism.

E(t) = E0 exp
(
−

t
τ

)β
(7)

where E0 is the initial relaxation modulus (t = 0), t is the loading time, τ is the characteristic relaxation
time, and β is the shape factor for the relaxation curves.
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Figure 5. Effect of physical aging on (a) stress relaxation curves and Kohlrausch–Williams–Watts
(KWW) parameters: (b) E0 and τ, (c) β.

As expected, the regression correlation correlations are more than 0.99, meaning that relaxation
modulus curves of SPE films during isothermal physical aging were fitted very well by the above
KWW formula, and the evolutions of relaxation characteristics (E0, τ, and β) are shown in Figure 5b,c.
As observed from the KWW parameter curves, with increased aging time, the magnitudes of both
E0 and τ linearly ascended steeply in double logarithmic coordinates, while β kept a constant of 0.30.
This suggests that all curves of E(t) − t for SPE films at various aging stages had a similar shape
and could be superimposed by the Struik shift method [34], which was based on effective time theory.
For convenience of processing data, the relaxation curve at the longest aging time (30 days) was
selected as the reference, and the modulus data at other aging times were horizontally and vertically
shifted until they completely overlapped the reference curve. The shifting results and associated
horizontal and vertical shift factors given by Equations (8) and (9) are shown in Figure 6a,b, respectively.
The smooth master curves indicate the validity of the time–aging time superposition principle, as seen
Figure 6a. Moreover, it can be further verified from Figure 6b wherein both the horizontal and vertical
shift factors linearly increased with aging time in double logarithmic coordinates. Therefore, as long as
the loading time is less than or equal to one tenth of the aging time, one might obtain the predicted
elastic modulus of SPEs in the process of physical aging according to the relaxation master curve
and shift factor. As our longest aging test lasted for one month (720 h), it was obviously larger than ten
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times the electrochemical operation time of the lithium secondary battery. Hence, based on the data
indicated in Figure 6, we deliberate the stress variation and mechanical integrity of the time-aging SPE
in an ASSB in next sections.

ah =
τ(ta)

τ(tre f
a )

(8)

av =
E0(ta)

E0(t
re f
a )

(9)

where ah and av are horizonal and vertical shift factors, respectively, and tre f
a is the reference aging time.
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4.2. Impact of Physical Aging on SPE Stress during Electrode Lithiation

During the electrochemical operation of an ASSB, one recognizes that internal Vegard stress
within the cell system is mainly induced by the swell or contraction of active layers. As the material
properties of SPE films evolved as the aging time elapsed, we are very interested in whether their
mechanical integrity in service can be threatened. Hence, Figures 7 and 8a,b were prepared to show
the evolution of lithium-ion concentration in the active layer and the stress profile as well as the peak
stress within the SPE film, respectively. To obtain a maximum influence of the electrochemical loading
on the solid electrolyte, the active materials were completely lithiated with a constant current−constant
voltage operation through the method described in Section 3 above. The related model parameters are
listed in Table 1.
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Table 1. Sets of material parameters used in simulation.

SPE
(PVA-40% LiClO4) Cathode (LiCoO2:PVdF:CB(Carbon Black) = 85:10:5) Current Collector (Al)

Elastic modulus, E (GPa) Indicated in Figure 4 1.97 * 70

Poisson ratio, µ 0.3 0.31 * 0.3

Partial molar volume of solute
Ω (m3

·mol−1) / 4.17 × 10–6 [50] /

Diffusion coefficient, D (m2
·s−1) / 1.76 × 10–15 [51] /

Stoichiometric maximum concentration,
cmax (mol m−3) / 2.33 × 104 [51] /

Thickness, h (µm) 5 10 10

* The elastic modulus and Poisson ratio of composite cathode determined by the S-combining rule [52] can be seen
in Supplementary Materials.

The detailed lithiation process of the LiCoO2/PVdF/CB(carbon black) cathode is demonstrated
in Figure 7. Initially, the electrode showed a uniform lithium-ion concentration of c0 = 0 mol/m3.
Subsequently, it was intercalated galvanostatically with a current rate of 1 C until the inlet surface
z = ha attained saturation, where the normalized discharging time (t = Dt/h2

a) for this stage was
about 3.25. Further, in order to make the composite electrode totally lithiated, potentiostatic operation
by holding the surface concentration had been implemented before the active material near current
collector was also full of lithium ions. Then, with the obtained distribution of lithium-ion concentration
across the active layer, a set of viscoelastic solid mechanics problems considering physical aging were
solved with the help of the finite element method. That is to say, the stress distribution in the aging
SPE film for an ASSB at any lithiation could be obtained. Figure 8a tracks the stress profile across SPE
thickness at the time of completed lithiation on the cathode. All the SPE stresses are found to be tensile
and significantly increased as the aging advanced, and the maximum value occurred near the free
surface of SPE. Furthermore, we are centered on the variation in the peak stress (σPeak

SPE ) in the SPE film
during the entire galvanostatic-potentiostatic (CC-CV) loading process against various aging times
as depicted in Figure 8b. It can be seen that the magnitude of σPeak

SPE raised rapidly at the CC stage
while beginning to climb slowly at the CV operation. As anticipated, physical aging led to a dramatic
enlargement in this peak stress level due to the stiffening of the electrolyte material. Although
the negative effect gradually decreased with the elapsed time, σPeak

SPE at the completely discharged
state for the SPE film after 30 days of aging was about one and a half times that of the one-day-aged
specimen. These findings indicate that physical aging of the SPE film may degrade the structure
firmness of an ASSB and need to be controlled. Therefore, the potential design factors, including
the geometric parameter and electrochemical conditions, are discussed in the following sections.
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4.3. Impact of Relative Thickness of SPE Film

As an SPE film plays the dual role of both electrolyte and separator, on the one hand, it should be as
thin as possible to reduce the resistance of lithium-ion transport. On the other hand, increasing the SPE
thickness is beneficial to enhancing the safety index of the component. It is a primary problem how to
rationally make a choice for the cell geometric parameter to meet a compromise in electrochemical
performance and mechanical integrity of the electrolyte material during the aging process.

Under the same electrochemical operation condition as Section 4.2 above, the great dependency
of σPeak

SPE on the thickness ratio of the SPE film to the active layer (hs/ha) is displayed in Figure 9.
First, for the specimen aged after one day, this stress dropped nearly 20% as the relative thickness
rose from 0.1 to 1.0. This is ascribed to the fact that an increase in the SPE thickness contributed to
the stronger structural limitation on the lithiation expansion of the LiCoO2/PVdF/CB electrode due to
the competitive modulus between the solid electrolyte to the composite cathode. Hence, the induced
internal stress in the SPE/cathode interface, i.e., the magnitude of σPeak

SPE , could linearly lessen with hs/ha.
Further, the stress inhibition resulting from the thicker SPE film would become more prominent with
the physical aging process as a consequence of more significant deformation constraints caused by
the hardening of the aging electrolyte. Second, at the same thickness ratio, the peak stress exhibited
a non-linear growth trend with the aging. It is wondered whether the thinner and deeply aging
electrolyte in service retains structural integrity or not. As seen in Figure 9, for the extremely thin
SPE film (hs/ha = 0.1), the value of σPeak

SPE augmented up to 28.0 MPa after 30 days of aging. However,
recalling the aforesaid mechanical testing results, the yield stress (σy) of SPE films at the aging time
from 1 to 30 days was larger than 32.0 MPa, as shown in Figure 4b, suggesting that the yield would not
occur for either thin or thick PVA-LiClO4 films in an ASSB among one month. Conversely, with regard
to the longer aging time, this situation may change. In this case, one can optimize the cell geometries by
controlling hs/ha < [hs/ha], where [hs/ha] is the critical thickness ratio at which aging SPE reaches its
allowable stress such as the yield stress. On the basis of the fact that the time–aging time superposition
can be applied for the PVA-based SPE (see Figure 6), we extrapolated the experimental data of relaxation
modulus to one year and two years, respectively. As the σy value of the PVA-LiClO4 specimen increased
very slightly after an aging time of 20 days, the value at 30 days may be approximately regarded
as the related yield stress (σy = 36.2 MPa) for the long-term-aged SPE film. From Figure 8, [hs/ha]

is found as 0.2 for the PVA-LiClO4 film aged for one year. Although the critical value needed to be
further amplified with prolonged aging time, it implies that the aging-induced mechanical damage
of the SPE in an ASSB may be eliminated by properly designing the electrolyte thickness.
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4.4. Impact of Electrochemical Loading Rate

Similarly, to investigate the influence role of the electrochemical condition on the mechanical
integrity of SPE upon aging, the peak tensile stresses of SPE films for an ASSB with respect to the current
density at various aging periods are also tracked and plotted in Figure 10. To ensure that the results
are applicable to a wide range of operations, the dimensionless surface current density (in), which
involves the current density (in), the thickness of the active layer (ha), the lithium diffusion coefficient
(D), as well as the stoichiometric maximum concentration of lithium (cmax) based on the analytical
work, were applied [53], i.e., in = inha/(FDcmax). From Figure 9, for each aging SPE film with a relative
thickness ratio of 0.2, the peak stress revealed a non-linear enlargement in the process of the lithiation.
Initially, the value of σPeak

SPE clearly boosted as the dimensionless parameter in raised to about 0.3,
and then continued to grow toward a plateau slowly. Meanwhile, a distinct increase in the SPE stress
resulting from prolonged aging could also be observed, regardless of the electrochemical loading
rate. The reason behind this phenomenon may be ascribed to the fact that the influence of modulus
relaxation caused by the discharging/charging operation is far less compared to the aging-induced
stiffening effect, as the prior elapsed time is much longer than the lithiation process. It is worth noting
that this tensile stress in the SPE film for an ASSB at in = 0.28 extended by at least 1.5, 2.1, and 2.3
times, reaching 26.1, 36.5, and 39.5 MPa, respectively, when the physical aging advanced from 1 to 30
days, one year, and two years. This means that a relatively higher lithiation rate (in ≥ 0.28) would
cause yielding for the one-year-aged PVA-LiClO4, and the two-years-aged SPE could not maintain
the structure integrity unless the critical current density further diminished to below 0.08. That is to
say, decreasing the operation current can significantly improve the resistance to the mechanical failure
in the aging SPE film.Polymers 2020, 12, x FOR PEER REVIEW 13 of 17 
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As stated above, the mechanical completeness of SPE films in an ASSB is closely related to the surface
current density and thickness ratio of the electrolyte to the electrode. In order to demonstrate the combined
effects of the two important factors, and also obtain the optimized values for engineering purpose, a set
of simulations were accomplished with the results depicted in Figure 10.

Figure 11 further verifies the coupled dependence of parameters in and hs/ha on peak tensile stress
in SPEs during the cell discharging operations. It can be seen that increasing the relative thickness
of the electrolyte film resulted in a larger stress magnitude. As enhancing in significantly shortened
the relaxation extent of the SPE elastic modulus, a greater impact was exhibited on this stress. With
the help of the obtained yield stress (σy = 36.2 MPa) of the electrolyte composite, the above 2D map is
divided into two regions by a magenta curve, i.e., a safe region I that reaches the resistance to yield
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failure of the PVA-LiClO4 can be obtained as depicted in the right area of Figure 11. It is important
to find that the two-years-aged SPE could void the mechanical damage under the normal lithiation
condition where the discharging rate is less than 2.0 for an ASSB, i.e., in ≤ 0.5, if the thickness ratio
of the electrolyte to the electrode is kept above 0.355. These results have provided essential insight
into how to control the integrity degradation of the aging electrolyte material during electrochemical
operation. It should be noted that the addition deformation generated by anion and cation diffusion has
not been taken into account in the present investigation, due to the lack of necessary material constants
such as the partial molar volume of solute (Ω) and stoichiometric maximum concentration (Cmax) for
PVA-LiClO4. However, the ion migration-induced strain of the electrolyte actually alleviates the tensile
stress in the SPE film for an ASSB at the discharging state. In addition, the nature and concentration
of lithium salts in solid electrolyte and operation temperature can also affect the SPE durability.
Although one may expect that a higher lithium salt content and lithiation temperature cannot only
improve the ionic conductivity of the SPE but also cut down the mechanical stress due to the softening
or plasticization effect, it accordingly weakens the electrolyte strength and speeds up the physical
aging. Similarly, the addition of a small-molecule plasticizer such as dibutyl phthalate (DBP) and ionic
liquid is also confronted with the same challenge. Moreover, the ionic conduction and mechanical
strength of the polymer electrolyte materials SPE may be enhanced by crosslinking the polymer or
introducing nonorganic fillers. However, it will increase the elastic modulus because of the hardening
effect, giving rise to enlarging the peak tensile stress of the electrolyte. Actually, the interface between
the SPE film and the electrode is not a perfectly bonding structure, and the contact area will decrease
during the physical aging. Therefore, the effect of the above important factors on the mechanical
behavior of SPEs should be considered in future research.
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The interfacial stability between the solid electrolyte and electrode is a critical requisite for
aging-resistant secondary lithium polymer batteries. It may be effectively improved by (1) adding
nano-size TiO2, Al2O3, or SiO2 particles [54–56]; (2) the dispersion of ferroelectric microparticles
(BaTiO3, LiNbO3, PbTiO3 [57], or g-LiAlO2 [58]); or (3) constructing a semi-interpenetrating polymer
networks (s-IPN) structure [59]. However, it is still unclear how these modified measures affect
the mechanical integrity degradation of SPEs in a lithium cell during calendar aging; one should have
paid close attention to the issue.
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5. Conclusions

(1) The PVA-based SPE films exhibited a pronounced physical aging trend under ambient storage
conditions, in which both stiffness and yield strength enhanced with the elapsed time. However,
the tensile rupture stress nearly did not rely on the aging time, due to the mechanical rejuvenation
in the process of plastic deformation.

(2) The KWW time-decay function could describe the evolution of elastic modulus for aging SPEs
during the stress relaxation period. Furthermore, it is found that the physical aging contributed to
the increase in initial modulus and characteristic relaxation time, while the shape factor remained
constant for the specimen at different aging stages. Accordingly, the ideal momentary relaxation
master curve could be obtained using the classical Struik shift method in terms of the time–aging
time superposition.

(3) The peak tensile stress in the SPE film occurred at the electrolyte/cathode interface for a full
discharged ASSB, it would significantly enlarge with the aging on account of the stiffening
of the electrolyte composite easily resulting in the mechanical failure of the cell system. However
this negative effect may be restrained by increasing the relative thickness of the solid electrolyte to
the composite electrode. In addition a lower rate discharge is a benefit of the durability of the SPE
during physical aging.

(4) In order to meet the requirement of a two-year lifetime needed for potential commercialization,
the relative thickness of the electrolyte to the electrode should be larger than 0.355 for the ASSB
of the Li/PVA-40% LiClO4/LiCoO2 in the viewpoint of mechanics.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/9/1886/s1,
Table S1: Material properties of the constituents of LiCoO2 cathode composite.
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