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A complex network of transcription factors regulates genes
involved in establishing and maintaining key biological prop-
erties of the human airway epithelium. However, detailed
knowledge of the contributing factors is incomplete. Here we
characterize the role of Krüppel-like factor 5 (KLF5), in con-
trolling essential pathways of epithelial cell identity and func-
tion in the human lung. RNA-seq following siRNA-mediated
depletion of KLF5 in the Calu-3 lung epithelial cell line iden-
tified significant enrichment of genes encoding chemokines
and cytokines involved in the proinflammatory response and
also components of the junctional complexes mediating cell
adhesion. To determine direct gene targets of KLF5, we defined
the cistrome of KLF5 using ChIP-seq in both Calu-3 and
16HBE14o− lung epithelial cell lines. Occupancy site concor-
dance analysis revealed that KLF5 colocalized with the active
histone modification H3K27ac and also with binding sites for
the transcription factor CCAAT enhancer-binding protein beta
(C/EBPβ). Depletion of KLF5 increased both the expression
and secretion of cytokines including IL-1β, a response that was
enhanced following exposure to Pseudomonas aeruginosa
lipopolysaccharide. Calu-3 cells exhibited faster rates of repair
after KLF5 depletion compared with negative controls in
wound scratch assays. Similarly, CRISPR-mediated KLF5-null
16HBE14o− cells also showed enhanced wound closure. These
data reveal a pivotal role for KLF5 in coordinating epithelial
functions relevant to human lung disease.

Genes governing the major biological functions of the hu-
man airway epithelium are tightly regulated by a complex
network of transcription factors (TFs). This coordination of
gene expression is essential in the maintenance of the
epithelial cell identity and integrated function of the epithe-
lium. The role of specific factors in lung development and the
consequences of misregulation are well characterized. Pioneer
TFs such as members of the GATA (1, 2) and FOX (3–5)
families are required for the differentiation of endoderm-
derived tissues including the lung. An intricate network of
TFs and downstream signaling pathways are necessary for lung
epithelial specification (6), and many additional TFs support
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the unique properties of the fully differentiated lung epithe-
lium. The heterodimeric factor activator protein 1 (AP-1) and
members of this complex regulate gene expression for many
critical processes in lung biology such as the response to
external stimuli (7, 8). In addition to their role in coordinating
the proinflammatory phenotype, a number of TFs also are
essential in the tissue response to wounding, including SAM-
pointed domain ETS factor (SPDEF) (9, 10) and ETS homol-
ogous factor (EHF) (11–14). The FOXA family members
Forkhead box A1 and A2 (FOXA1 and FOXA2) are also
involved in the barrier functions of primary human airway
epithelium (15).

Here we focus on the transcriptional network controlled by
Krüppel-like factor 5 (KLF5) in the airway epithelium. First
discovered in the crypt cells of the intestinal epithelium (16),
KLF5 is among carboxyl-terminal C2H2 zinc finger tran-
scription factors with roles in cellular proliferation and dif-
ferentiation (17, 18). Another KLF family member, KLF4, is
extensively studied for its role in reprogramming somatic cells
into induced pluripotent stem cells (iPSCs) (19). KLF2, KLF4,
and KLF5 act in concert to regulate the key transcription
factor network controlling embryonic stem cell self-renewal
(20–23). KLF5 controls key biological processes in several
normal cell and tissue types including muscle (24) and the
cardiovascular system (25), and its direct targets also have
roles in cancer (26, 27). KLF5 has been implicated in pre-
venting epithelial-to-mesenchymal transition (EMT) in human
cells, thus maintaining epithelial characteristics (28, 29). In
contrast, little is known about the role of KLF5 in the human
airway epithelium. Homozygous KLF5-null mice die from
respiratory failure shortly after birth, supporting an essential
role for the factor in airway morphogenesis (30). We also
found that KLF5 was among the most potent repressors of
cystic fibrosis transmembrane conductance regulator (CFTR)
gene transcription in airway epithelial cells (31), suggesting
tasks critical for normal lung function.

Our goal was to determine the gene targets and biological
pathways regulated by KLF5 in the human airway epithelium
to establish its contribution to the hierarchy of the transcrip-
tional network in this tissue. In order to define the KLF5
transcriptome, we performed RNA-seq following siRNA-
mediated depletion. Enriched cellular pathways affected by
the reduction of the factor were determined by performing
gene ontology (GO) process and gene set enrichment analysis
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KLF5 regulates genes involved in airway epithelial function
on the differentially expressed genes. The cistrome of KLF5
was defined by chromatin immunoprecipitation followed by
deep sequencing (ChIP-seq). In addition to determining the
genome-wide occupancy of KLF5, we used gene annotation to
identify its direct targets. Intersection of the differentially
expressed genes with the direct target datasets showed that
KLF5 regulates genes involved in several critical functions of
the airway epithelium, including cell adhesion and the proin-
flammatory response. Next, we used functional assays in
airway epithelial cells to validate the genomic predictions.
Using KLF5 depletion by siRNA and KLF5-null (CRISPR-
generated) cell lines, we showed that KLF5 deficiency dysre-
gulated key proinflammatory cytokines and enhanced recovery
from wounding in comparison to negative controls or clonal
wild-type respectively.
Results

KLF5 regulates key biological processes in the human airway
epithelium

To determine the target genes of KLF5 in human lung
epithelial cells, we performed RNA-seq on triplicate samples of
Calu-3 cells treated with either negative control (NC) siRNA
or siRNA specific for KLF5. Using a fold change of ≥1.5 and an
adjusted p-value threshold of 0.05, we identified 533 upregu-
lated genes and 443 genes that were downregulated (Fig. 1A).
Among the most significantly upregulated genes were those
encoding several chemokines and cytokines such as C-X-C
Motif Chemokine Ligand 6 (CXCL6), C-C Motif Chemokine
Ligand 2 (CCL2), and C-X-C Motif Chemokine Ligand 8
(CXCL8), also known as IL-8. Also, several genes encoding
proteins involved in cell adhesion and tight junction com-
plexes were significantly upregulated, for example, intercel-
lular adhesion molecule 1 (ICAM1) and claudin 2 (CLDN2).
The efficacy of the siRNA treatment was confirmed by a
consistent, greater than threefold reduction in KLF5 transcript
abundance (Fig. 1B). This result was confirmed at the KLF5
protein level by western blot (Fig. S1). A 2-fold increase in
CFTR transcript levels (Fig. 1B) also confirmed our early ob-
servations (31) on the repressive role of KLF5 on the gene in
airway epithelial cells. KLF5 depletion also caused a significant
downregulation of SPDEF and upregulation of FOXA1 tran-
scripts, two TFs that are well characterized in the transcrip-
tional network of these cells. To further examine the effect of
KLF5 depletion on the TF expression landscape, the RNA-seq
data were filtered for known human TFs using the v1.01 hu-
man TF database (32) (Fig. 1C). Twenty-seven TFs were found
to be upregulated and 19 were downregulated, with genes
encoding major developmental factors such as NOTCH1,
RUNX1, and RUNX3 among the most significantly down-
regulated. Next, GO process enrichment analysis was per-
formed for all upregulated DEGs (Fig. 1D). Recurrent in both
the biological process (BP) and molecular function (MF)
ontology terms were enrichments of genes involved in cell
adhesion and the inflammatory response. Furthermore, the top
cellular compartment (CC) terms were involved in the cell
surface and extracellular matrix. A significant proportion of
2 J. Biol. Chem. (2021) 297(2) 100932
upregulated DEGs were also involved in the extracellular
signal-related protein kinase 1 and 2 (ERK1/ERK2) cascade.
Gene set enrichment analysis was then performed using the
Hallmark database to further classify all genes that were
differentially expressed on KLF5 depletion (Fig. 1E). When
both up- and downregulated genes were assessed simulta-
neously, significant enrichment for pathways involved in (a)
tumor necrosis factor alpha (TNFα) signaling via nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB)
and (b) EMT was identified, with some evidence for the
enrichment of genes involved in the inflammatory response.
The KLF5 cistrome reveals indirect regulation

The genome-wide occupancy of KLF5 in airway epithelial
cells is currently uncharacterized though identification of its
direct targets, based upon binding site location within or near
gene loci, would be valuable. To address this KLF5 ChIP-seq
was performed in replicate in both the Calu-3 and
16HBE14o− cell lines. Peaks were filtered for read enrichment
passing an irreproducible discovery rate threshold of 0.05 and
a q value ≥3. We identified a total of 2105 and 3520 significant
peaks in Calu-3 and 16HBE14o respectively. Consistent with
the biological processes that were impacted upon KLF5
depletion, coincidence of KLF5 sites of occupancy was found
in both cell lines at multiple genes involved in cell adhesion,
for example, the catenin beta 1 (CTNNB1) and epithelial cell
adhesion molecule (EPCAM) gene loci (Fig. 2A, i and ii). KLF5
was bound primarily at promoters, intergenic regions, and
within genes. To determine which of the genes that were
differentially expressed on KLF5 depletion were direct targets,
we intersected the Calu-3 ChIP-seq dataset with the DEGs
identified by RNA-seq (Fig. 2B). Among 1221 genes with at
least one KLF5 peak within 20kb of the locus, only 64 were
differentially downregulated and 52 upregulated (Table S1).
GO process enrichment analysis of the overlapping gene sets
identified response to external stimulus to be associated with
genes upregulated following KLF5 depletion. These results
suggest that the extensive alterations in the transcriptome,
which were evident upon KLF5 depletion, were largely indi-
rect. Next, the KLF5 IDR peak sets from Calu-3 and
16HBE14o− were intersected to generate a consensus airway
cell ChIP-seq dataset. Although KLF5 was found to bind pri-
marily at promoters or distal intergenic regions, over half of
the consensus sites were within 1kb of the gene start site
(Fig. S2). Gene annotations for consensus KLF5 peaks were
filtered for transcription factors and stratified by location of
the KLF5 peak (Fig. 2C). In contrast to the relatively equal
distribution of KLF5 occupancy between gene promoters and
nonpromoter elements, 30 of the 35 transcription factor genes
had a KLF5 peak within the 3kb promoter region. Further-
more, the only one of these TFs differentially expressed in the
RNA-seq was NF-kappa-B inhibitor zeta (NFKBIZ).

To confirm that KLF5 occupancy directly impacts gene
expression in vitro, we evaluated the mucin 1 (MUC1) gene
promoter. MUC1 is significantly downregulated upon KLF5
depletion and shows a robust peak of KLF5 occupancy within
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Figure 1. The impact of KLF5 depletion on the transcriptome of Calu-3 cells. Analysis of RNA-seq data. A, volcano plot of RNA-seq expression analysis of
KLF5-depleted Calu-3 compared with negative control (NC)-treated cells. Plots show -log10 adjusted p-value against log2 fold change. Genes with ≥ 2-fold
absolute value fold change passing a 0.01 adjusted p-value threshold are noted in red. B, normalized counts for transcript abundance of KLF5, CFTR, FOXA1,
and SPDEF in NC cells and KLF5-depleted cells. C, heatmap and dendrogram of all 27 upregulated and 19 downregulated TFs reaching statistical signif-
icance. D, dot plots for top ten biological process (BP), cellular compartment (CC), and molecular function (MF) gene ontology terms enriched in DEGs
upregulated upon KLF5 depletion. E, hallmark gene set enrichment analysis of the complete DEG dataset with a normalized enrichment score ≥1.5.

KLF5 regulates genes involved in airway epithelial function
1kb of the transcription start site in the Calu-3 ChIP-seq data.
We showed earlier that elements within the MUC1 promoter
controlled gene expression and recruited DNA-binding pro-
tein complexes (33). Matrix-scan using Regulatory Sequence
Analysis Tools (RSAT) (34) identified a putative KLF5-binding
motif in the MUC1 promoter, corresponding to the ChIP-seq
peak at –533 bp to –539 bp with respect to the transcription
start site. We performed site-directed mutagenesis to abolish
this KLF5 motif in a luciferase reporter gene vector driven by
the MUC1 promoter. The WT and mutant promoter plasmids
were transiently transfected into 16HBE14o− cells and lysates
subjected to a dual-luciferase assay (Fig. S3). Mutation of the
J. Biol. Chem. (2021) 297(2) 100932 3
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KLF5-binding motif significantly reduced the relative lucif-
erase expression compared with WT.

Genome-wide motif analysis was then performed on the
airwayKLF5 consensus peak set with a 50 bpwindow around the
center of the peak (Fig. 2D). The similarDNA-bindingmotifs for
KLFs were the most enriched, as expected in ChIP-seq data for
KLF5. Among the top 25 identified, the onlymotif not belonging
to KLFs or members of the AP-1 complex was that of C/EBPβ.
The interaction between KLF5 and C/EBPβ has been well
characterized in adipocytes (35, 36), though not yet in the airway
epithelium. GO analysis was next performed for the closest
genes to consensus KLF5 peaks (Fig. 2E). As was seen in the
RNA-seq dataset, the most significantly enriched terms were
those involved in cell adhesion and the cell–cell junctions.
These include both the catenin alpha 1 and beta 1 genes
(CTNNA1 and CTNNB1) and keratin 18 (KRT18). Comparison
of the annotated genes in the airway peak sets to those of gastric
adenocarcinoma cell lines YCC3 and AGS (37) (GEO:
GSE51706) revealed an overlap around 5–10% (Fig. S4A).
However, GO analysis of annotated genes within 20kb of KLF5
peaks was also significantly enriched for terms related to cad-
herin binding and cell adhesion. (Fig. S4B).
KLF5 binds at active gene promoters and enhancers

To learn more about the cis regulatory elements (CREs)
bound by KLF5 and identify possible cofactors, we intersected
the significant peaks of KLF5 in Calu-3 (Fig. 3A, i) and
16HBE14o− (Fig. 3A, ii) with the ChIP-seq data for the active
histone modification H3K27ac and RNA Polymerase II
(RNAPII) in the same cell lines (38). In both cell lines, KLF5
peaks were consistently found in regions enriched in H3K27ac
with a distinct bimodal distribution around the center of the
peak, indicating nucleosome depletion at the TF site. A similar
coincidence was found between sites of KLF5 and RNAPII
occupancy (Fig. 3A, iii and iv), confirming the activity of the
factor at sites of transcription initiation. To assess if the
enrichment of the C/EBPβ motif under KLF5 peaks seen in
Figure 2D coincided with co-occupancy of this factor across
the genome, we performed ChIP-seq for C/EBPβ in Calu-3
cells. Direct co-occupancy of these 2 TFs was found at
several gene loci. These include differentially expressed genes
such as CFTR and NFKBIZ, as well as mucins 5AC and 5B
(MUC5AC/MUC5B) and caspase 9 (CASP9) (Fig. S5). We then
visualized the signal intensity for C/EBPβ binding around
KLF5 peaks and included the H3K27ac and RNAPII occu-
pancy data (Fig. 3B). A distinct subset of KLF5 peaks over-
lapped with C/EBPβ sites, significantly correlating with the
bimodal distribution of the histone mark and concurrent
signal of RNAPII at the center of the peak. To further char-
acterize the co-occupancy of KLF5 and C/EBPβ genome-wide,
we intersected the two Calu-3 ChIP-seq peak sets. Binding of
the two TFs intersected at 775 sites, corresponding to 33.2% of
all KLF5 peaks and 8.02% of C/EBPβ peaks (Fig. 3C). Anno-
tation of the closest gene to these co-occupied sites revealed a
similar distribution to KLF5 binding alone between promoters
and distal intergenic regions.
Cytokine and chemokine expression and secretion are
enhanced in KLF5-depleted cells

As shown in Figure 1A, we found significant enrichment of
genes involved in the immune response among DEGs following
KLF5 depletion in Calu-3 cells, for example, CXCL6 and inter-
leukin 1 beta (IL1B). These cytokines are released by the airway
epithelium in response to external stimuli such as lipopolysac-
charides (LPS) of the cell wall of Gram-negative bacteria (39, 40).
To validate whether KLF5 regulated the expression and secretion
of these chemokines/cytokines at the basal level and following
external stimulus, Calu-3 cells were treated with nontargeting
siRNA or siRNA specific for KLF5, followed by treatment of each
groupwith either vehicle control (PBS) or P. aeruginosaLPS for 4
h. Chemokine/cytokine expression (CXCL1, CXCL6, and IL-1β)
was measured by RT-qPCR (Fig. 4A). LPS treatment resulted in a
significant increase in the expression of all three cytokines.
Consistent with the RNA-seq data, a significant increase in the
expression of the CXCL6 and IL1B genes was observed when
KLF5 was depleted, with an enhanced increase following LPS
treatment. In contrast, CXCL1 levels were unchanged between
the control and KLF5-depleted cells. To determine if the change
in gene expression coincidedwith an alteration in IL-1β secretion
following KLF5 depletion and LPS treatment, conditionedmedia
was tested using colorimetric sandwich ELISAs (Fig. 4B). IL-1β
secretion was significantly increased in the media conditioned by
KLF5-depleted cells with a greater increase in the media of cells
also treated with LPS, consistent with the gene expression
changes under the same conditions. Though IL-1β protein levels
in the cell lysate also increased slightly after KLF5 depletion, no
evidence for a change in the ratio between the precursor and
mature forms of IL-1β was evident (data not shown).
Depletion of KLF5 augments wound repair response

Among the most enriched gene sets identified in both the
KLF5 depletion RNA-seq and KLF5 ChIP-seq datasets were
those involved in focal adhesion, the extracellular matrix, and
cadherin binding. Dysregulation of the wound repair response
is pivotal to several airway diseases and is also associated with
EMT. To evaluate the contribution of KLF5 to coordinating
wound repair processes in vitro, Calu-3 cells treated with
negative control or KLF5-targeted siRNA were grown to
confluency. The confluent monolayers were scratched/
wounded and subsequently imaged every 3 h for 12 h (Fig. 5A).
Though no statistically significant difference was observed
between treatment groups at the 6-h timepoint, the relative
wound size of the KLF5-depleted cells compared with the 3-h
timepoint was lower than controls, and this difference reached
statistical significance for the 9- and 12-h timepoints (Fig. 5B).
Thus, depletion of KLF5 was associated with a significantly
enhanced speed of wound repair.

To confirm these observations in an orthogonal model
system and in a second airway cell line, 16HBE14o− clonal cell
lines without detectable KLF5 protein (KLF5-null) were
generated by CRISPR/Cas9 modification. Wound scratch as-
says were then performed in two wild-type (WT) clonal lines
compared with three independent KLF5-null clones (Fig. 3C).
J. Biol. Chem. (2021) 297(2) 100932 5
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KLF5 regulates genes involved in airway epithelial function
Loss of KLF5 protein in the KLF5-null clones was confirmed
using western blot analysis (Fig. 5D). Despite the overall faster
rate of wound closure in 16HBE14o− compared with Calu-
3 cells, KLF5-null clonal lines recovered from the scratch at a
faster rate than the clonal WT lines, and this difference was
statistically significant as early as 6 h post-wounding (Fig. 5E).
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Importance of KLF5 in primary human bronchial epithelial
cells

To confirm that the regulatory roles of KLF5 that were
observed in experiments in the Calu-3 and 16HBE14o− cell
lines are equally relevant to primary human airway epithelial
cells, we repeated key experiments in primary HBE cells.
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Figure 4. KLF5 depletion in Calu-3 cells alters expression and secretion of IL1B. A, gene expression of CXCL1, CXCL6, and IL1B measured by RT-qPCR in
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KLF5 regulates genes involved in airway epithelial function
Wound scratch assays were performed in triplicate on HBE
cells from two donors after siRNA-mediated depletion of KLF5
compared with an NC siRNA (Fig. 6A). As observed in the cell
lines, HBE cells depleted for KLF5 recovered from scratch at a
significantly faster rate than controls (Fig. 6B). The slight lag
(15 h instead of 9 h) in significant differences in wound closure
between KLF5-depleted cells and controls, when compared
with the cell lines, is probably due to the slower growth rate of
primary epithelial cells. KLF5 expression does not significantly
change during scratch induction or recovery in HBE cells
(Fig. S6) (GEO:GSE127696) (41). Differential gene expression
in KLF5-depleted HBE cells was assayed by RT-qPCR, focusing
on the DEGs identified in the Calu-3 RNA-seq data (Fig. 6C).
As in Calu-3, the key airway transcription factors SPDEF and
FOXA1 were significantly downregulated and upregulated,
respectively upon loss of KLF5. We also observed substantial
upregulation of ICAM1, CXCL6, and CCL2.

Discussion

The roles of TFs in coordinating the differentiation and
development of the lung has been studied extensively (42–45).
However, the TF network that maintains the functions of the
healthy lung epithelium is less well characterized. Several
previous studies focused on members of the Krüppel-like
family including KLF4 (46) and KLF15 (47), though exami-
nation of the regulatory landscapes of each TF focused pri-
marily on the progression to disease states such as
adenocarcinoma. Here, we used genome-wide methods to
identify the indirect and potential direct gene targets for KLF5
in these cells. We found that KLF5 regulates genes involved in
both the response to external stimuli and cell–cell adhesion,
which are two critical functions of the normal lung epithelium
with distinct relevance to respiratory health and disease.

The transcriptome in Calu-3 cells showed significant enrich-
ment of genes involved in intercellular junctions and the in-
flammatory response that were repressed by KLF5. These results
are consistent with our previous findings for other members of
the TF network such as EHF (14) and FOXA1 (15), where both
repress expression of KLF5 (14). The regulatory relationship is
further supported by the finding that 46 TFs are differentially
expressed upon KLF5 depletion and 37 of these have a peak of
KLF5 occupancy close to the gene body. Interestingly, only one of
these differentially expressed TFs (NFKBIZ) had KLF5 enrich-
ment at the promoter (Fig. 2C), suggesting that KLF5 may have a
potent yet indirect role within the TF network. The indirect
regulatory potential of KLF5 is further supported by the
remarkably low overlap between the direct binding targets
identified from our ChIP-seq data in airway epithelial cell lines
and the DEG dataset in Calu-3. It is unlikely that this lack of
correlation is due poor antibody specificity, as this was validated
bywestern blots of both depletion andCRISPR-null experiments.
Further, the reagent has been used elsewhere in ChIP (48, 49).

Direct interaction between KLF5 and other transcription
factors plays important roles in other cell types such as with
histone deacetylase 1 (HDAC1) in HeLa cells (50) or cyclin-
dependent kinase 2 interacting protein (CINP) in the TSU-
Pr1 bladder cancer cell line (51). TFs that bind together at
cis-regulatory elements such as enhancers may also act as
cofactors with KLF5. To identify these, we examined the motif
enrichment under Calu-3 KLF5 peaks. In addition to the
observation of similar motifs for other members of the KLF
family, we found enrichment of motifs for the AP-1 family of
TFs including c-Jun and JunD. The only other highly enriched
motif was that of C/EBPβ, a TF with an important role in the
cascade of adipocyte development where it coregulates the
expression of genes involved in differentiation, in combination
with KLF5 and KLF4 (36). ChIP-seq for C/EBPβ in Calu-3 cells
confirmed co-occupancy of this factor with KLF5 at several
genes with important roles in airway epithelial biology. As C/
EBPβ is recruited to substantially more sites in the genome
than KLF5, it may have a more general role at enhancers
genome-wide. Nevertheless, comparable enrichment of C/
EBPβ and AP-1 motifs under KLF5 peaks supports a possible
coregulatory role for C/EBPβ in the epithelium.
J. Biol. Chem. (2021) 297(2) 100932 7
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KLF5 regulates genes involved in airway epithelial function
The consensus KLF5 peaks integrating the cistrome in Calu-
3 and 16HBE14o− were found near genes involved in the cell
periphery and cadherin binding as was observed from the
transcriptome. The genomic results emphasize the complexity
of the regulatory role of KLF5 in the airway epithelium. We
found substantial changes in gene expression following
depletion of the factor, including genes encoding TFs, yet an
almost completely different subset of genes and TFs have KLF5
8 J. Biol. Chem. (2021) 297(2) 100932
occupancy near the gene body. Of note, KLF5 binds primarily
in regions marked by H3K27ac and occupied by RNAPII. One
possibility is that the regulatory role of KLF5 on genes near its
binding sites is part of a cascade altering expression of
downstream genes. The lack of overlap between TFs with
nearby KLF5 peaks and those that are differentially expressed
may be due to two or more distinct pathways of regulation.
Alternatively, it is possible that KLF5 depletion in Calu-3 does
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KLF5 regulates genes involved in airway epithelial function
not completely eliminate functional protein. The minimal
amounts remaining may be sufficient to occupy sites at some
key genes. KLF5 may also act in a tightly monitored feedback
loop critical to the airway epithelial cell identity, with the
detectable functional consequence of its loss being a shift in
the expression of those genes involved in the response to
external stimuli and the cell–cell boundary.

To confirm the role of KLF5 on the biological processes
identified by genomic methods, we assayed a change in
phenotype following depletion of KLF5. As we previously
observed with EHF (14), we first assayed the expression and
secretion of cytokines and chemokines following KLF5 loss.
Subsequent addition of LPS allowed us to further determine if
KLF5 plays a role in the epithelial response to stimulus. Other
major TFs within the airway epithelial network were shown to
play essential roles in innate immunity such as AP-1 (52) as
discussed previously and the possible KLF5 cofactor C/EBPβ
(53). The dramatic increase in CXCL6 and IL-1β observed in
KLF5-depleted cells compared with negative control upon LPS
exposure may indicate that in addition to the generally
repression of the proinflammatory genes, KLF5 is involved in
properly modulating the response to bacterial stimulus.
Controlled expression and secretion of IL-1β are critical in the
development of the lung (54) and are involved in lung diseases
such as chronic obstructive pulmonary disease (COPD) (55).
The substantial increase in both expression and secretion of
IL-1β highlights the importance of KLF5 in the
proinflammatory response of the airway epithelium. Upregu-
lation of IL1B upon KLF5 depletion is not accompanied by a
change in the relative ratio of the precursor or mature forms of
the protein; thus the factor is unlikely to be involved in
NLRP3-inflammasome-mediated activation of the cytokine
and subsequent proinflammatory response. KLF5 may instead
only regulate the NFkB-mediated transcription of IL1B.
NLRP3 is not expressed in the airway cells utilized here, but
another inflammasome gene, NLRC4, is expressed. This may
be more relevant to the proinflammatory response of the
airway epithelium, since NLRC4 was found to be essential in
the response to P. aeruginosa (56, 57). Although we did not
find differential expression of IL1B in primary HBE, both
CXCL6 and CCL2 were still significantly upregulated. These
results support the role of KLF5 in the regulation of cytokine
gene expression in airway epithelium.

Interestingly, IL-1β is also known to promote cell migration
in the cancer microenvironment (58); thus in addition to the
proinflammatory response effect, the secretion of IL-1βmay be
involved in the processes of cellular adhesion and the response
to wounding. The role of KLF5 in regulating the expression of
genes involved in cell adhesion was previously shown in the
intestinal epithelium (59), but our observations on the airway
epithelium are novel. The integrity of intercellular junctions is
closely related to the processes of EMT, and their dysregula-
tion may cause a shift to a mesenchymal cellular identity. In
both Calu-3 cells depleted for KLF5 and 16HBE14o− KLF5-
J. Biol. Chem. (2021) 297(2) 100932 9
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null cells, we observed significantly increased rates of wound
closure. Maintenance of the cell-to-cell contacts and normal
barrier function are critical for ion transport and for the
integrity of the airway. As genes involved in cell adhesion were
both differentially expressed following KLF5 depletion and had
peaks of KLF5 occupancy within 20kb of the gene body, our
results indicate that this factor may have a pivotal role in
maintaining the integrity and health of the airway epithelium.
The same response was found in primary HBE, indicating that
the response is not unique to cell lines. Primary bronchial
epithelial cells better capture the heterogeneity of the human
lung surface epithelium and are among the best models for this
tissue. The significantly increased rate of scratch closure
following loss of KLF5 implicates this factor in the regulation
of genes involved in the intercellular matrix, such as differ-
entially expressed ICAM1. Dysregulation of genes involved in
this pathway contributes to the defective response to wound-
ing in the context of disease, as observed in cystic fibrosis (60).
Significant upregulation of the cytokines CXCL6 and CCL2 in
the cell lines and the primary HBE support the role of KLF5 in
the proinflammatory response in the context of both healthy
epithelium and in disease.

It is of interest to integrate our data into previous studies on
the role of KLF5 in other tissues. Although Klf5−/− mouse
embryos died before embryonic day 8.5, Klf5+/− mice survived
but exhibited abnormal phenotypes in both the vasculature
and gastrointestinal track (25). Significant anatomical alter-
ations in these Klf5 deficient mice were accompanied by
changes in extracellular matrix components, consistent with
our findings of alterations in wound response rate and the
expression of genes encoding proteins involved in the cell
periphery of human lung epithelium. A role for Klf5 in the
response to injury was also found in mouse biliary duct
epithelial cells activated by cholestasis (61). Here, Klf5 regu-
lates genes involved in cellular proliferation following chole-
static injury as well as focal adhesion including Laminin A3
(LAMA3), which was also significantly downregulated
following KLF5 depletion in Calu-3 cells. Of note, earlier work
also found KLF5 to have an important role in the LPS-induced
proinflammatory response in a human intestinal epithelial cell
line (IEC6) (62) and in regulation of ICAM1 expression, as we
observed here in airway epithelial cells. Intersection of the two
gastric adenocarcinoma cell lines with the two airway epithelial
cell lines identified many shared direct targets for KLF5,
though the majority were specific to one cell lineage or the
other. GO analysis of the two gastric adenocarcinoma cell lines
showed a similar enrichment for those genes at the cell-to-cell
periphery. In combination with these observations on other
epithelial cells types, our data in human lung epithelial cells
provide strong evidence that KLF5 has a critical role in coor-
dinating the establishment and maintenance of the barrier
functions of epithelial tissues. The factor regulates multiple
genes within the cadherin and laminin families as well as key
components of the canonical Wnt signaling pathway including
β-Catenin.

Sites of KLF5 occupancy genome-wide in airway epithelial
cells coincide with regions marked by active histone marks
10 J. Biol. Chem. (2021) 297(2) 100932
(H3K27ac) and RNAPII recruitment, thus identifying active
promoters and enhancers. However, the factor likely exerts its
effects in combination with other TFs at the same elements. In
gastric epithelial cells, the key cofactors are probably GATA4/
6 and in adipocytes or lung epithelium C/EBPβ is implicated as
an important interacting factor. Co-occupancy of regulatory
elements could identify a subset of genes that drive the
downstream effects seen in RNA-seq, but are not coincident
with ChIP-seq targets. The underlying mechanisms may
involve chromatin reorganization and three-dimensional
structure alterations around coincident binding sites with
other TFs and RNAPII, as was found recently for the closely
related KLF4 (63). Furthermore, the incidence of this regula-
tory process at different subsets of gene loci in diverse cell
types may underlie the similarity between the pathways, yet
discordance of gene targets in epithelia from various tissues.

Experimental procedures

Cell culture

Calu-3 (64) and 16HBE14o− (65) cells were cultured in
Dulbecco’s modified Eagle’s medium with 10% fetal bovine
serum (FBS).

Primary human bronchial epithelial cell culture

Donor-derived primary human bronchial epithelial (HBE)
cells were obtained from the Marsico Lung Institute CF Center
Tissue Procurement and Cell Culture Core (University of
North Carolina [UNC]) and cultured according to the pub-
lished protocols (66) in accordance with relevant guidelines.
The cells were obtained under protocol #03-1396 approved by
the University of North Carolina at Chapel Hill Biomedical
Institutional Review Board. All donors or their authorized
representatives provided informed consent for research use of
explanted lungs. This work was also approved by the Case
Western Reserve University Institutional Review Board.

KLF5 depletion and RNA-seq

Calu-3 cells were treated with either negative control #2
siRNA (Dharmacon, D-001206-14-05), or KLF5 siRNA (Dhar-
macon, M-013571-01-0005), each at 30 nM using RNAiMax
transfection reagent (Life Technologies). Seventy-two hours
after transfection, RNA was isolated from three samples of each
treatment using TRIzol (Life Technologies). RNA-seq (SR
50 bp) was performed as described previously (67).

Raw reads were aligned with STAR 2.6 (https://github.com/
alexdobin/STAR) (68). Aligned reads were then assigned to
genomic features with featureCounts version 1.6.3 in the
Subread package (http://subread.sourceforge.net/) (69), and
differential gene expression was analyzed using DEseq2
version 1.22.1. (https://www.bioconductor.org/packages/
release/bioc/html/DESeq2.html) (70).

Gene ontology and gene set enrichment analyses

Differentially expressed genes were filtered to enrich for
genes with a fold change ≥1.5 and Benjamini–Hochberg

https://github.com/alexdobin/STAR
https://github.com/alexdobin/STAR
http://subread.sourceforge.net/
https://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
https://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
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adjusted p-value ≤ 0.01. RNA-seq gene lists were read into the
gProfiler GO program and database (71). Dot plots for clus-
tered results of each GO term were generated using the
genome-wide annotation for human database and mapped
using Entrez gene identifiers (72). Statistically significant re-
sults were filtered for categories passing a p-value of 0.001 with
the Bonferroni correction for multiple testing. Gene set
enrichment analysis was performed using the Hallmark human
v6.2 database.

ChIP-seq

ChIP-seq was performed using two antibodies against KLF5
(Santa Cruz sc-398470 and rabbit anti-KLF5 kindly donated by
Dr Jonathan Katz (73)) or CCAAT enhancer-binding protein
beta (C/EBPβ) (Santa Cruz sc-7962) as described previously
(13). Raw reads were processed using the ENCODE Tran-
scription Factor and Histone ChIP-Seq processing pipeline
(https://github.com/ENCODE-DCC/chip-seq-pipeline2) ac-
cording to the ENCODE (phase-3) guidelines on the hg19
reference genome. This includes mapping using BWA (74) and
peak calling with MACS2 (75). Peak data were filtered using
and processed for motif distribution using HOMER (4.7.2q)
(http://homer.ucsd.edu/homer/index.html) (76). Consensus
peak data were generated using Bedtools intersect (2.29.2) (77),
and subsequent annotation was performed using the ChIP-
seeker package (v3.10) (78). These packages were hosted on
the GALAXY platform (79).

Generation of KLF5-null cell line using CRISPR

A single-guide RNA was designed based on Diaferia et al.
(80) targeting exon 2 of KLF5: 50-CACCGAA-
GAACTGGTCTACGACTG-30 and cloned into pBlueScript
(pBS) with a modified multiple cloning site. 16HBE14o− cells
were transfected after 48 h with pMJ920 (wild-type Cas9
plasmid tagged with GFP) (Addgene, plasmid #42234) and pBS
containing the KLF5 exon 2 gRNA using Lipofectamine 3000
(Life Technologies). GFP-positive cells were sorted by
fluorescence-activated cell sorting and single cells were
manually diluted onto 96-well plates. Clones were expanded
and screened for homozygous null by western blot and
sequencing using primers shown in Table S2.

Transient reporter gene (luciferase) assays

Site-directed mutagenesis was performed on the predicted
KLF5 motif in the MUC1 promoter driving luciferase re-
porter gene expression in the pGL3B vector (33), using the
Agilent QuikChange Lightning Site-Directed Mutagenesis
kit. Cells were cotransfected with empty pGL3B, pGL3B
containing the WT MUC1 promoter, or the mutant sequence
and a modified pRL Renilla luciferase control vector at a 1:10
ratio using Lipofectamine 3000 (Thermo Fischer Scientific).
Cells were lysed after 48 h and assayed on a GloMax Navi-
gator (Promega) for firefly and Renilla luciferase activity us-
ing the Dual-Luciferase Reporter Assay Kit (Promega).
Transfections were performed in triplicate in two different
passages of 16HBE14o− cells.
LPS treatment and RT-qPCR

Cells were serum-starved for 24 h and then treated with PBS
or 1 μg/ml Pseudomonas aeruginosa LPS (Sigma L9143). RNA
was collected at 4h using TRIzol, and qRT-PCR was performed
using TaqMan Reverse Transcription Reagents kit (LT), oligo
(dT)16, and primer pairs specific to each gene and SYBR green.
β-2-microglobulin was the normalizer (For primers see
Table S2). Data were transformed using the delta delta Ct
method to calculate the difference between experimental and
control values. ANOVA was performed on values before (not
shown) and after transformation.

Enzyme-linked immunosorbent assay (ELISA)

Cell culture supernatant from siRNA-transfected cells was
collected, cleared by centrifugation at 300g for 10 min to
remove cell debris, and the supernatant was stored at –80 �C.
IL-1β secretion was quantified using the Mini ABTS ELISA
Development Kit (PeproTech 900-M95) with no dilution.
Standard curves were established using serial dilutions of 1:2
starting with 1000 pg/ml of each target. These assays were
performed using the ELISA Buffer Kit (PeproTech 900-K00)
according to the manufacturer’s protocol.

Wound repair assay

The wound closure assay was performed as described pre-
viously (81) on siRNA-treated Calu-3, using a Leica DMi1
microscope (5× objective) and an MC170 HD camera with Las
EZ imaging software v3.0.0.47. Wound width was calculated
using ImageJ. Experiments on KLF5-null 16HBE14o, clonal
wild-type 16HBE14o− and primary HBE cells were performed
using the Lionheart FX automated microscope with a bright
field 4× objective. The Biotek scratch assay v1.0 software was
used for analysis. All results are from three independent ex-
periments repeated in duplicate for each treatment group, null,
or clonal wild-type cell line.

Western blot

KLF5-null and clonal wild-type cells were lysed in NET
buffer (10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA,
1% Triton X-100, 1X Sigma Protease Inhibitor), and proteins
were analyzed by standard methods. The antibodies used were
specific for KLF5 (sc-398470), β-tubulin (T4026, Sigma-
Aldrich), or IL-1β (12242S, Cell Signaling).

Data availability

KLF5 and C/EBPβ Genome-wide data are deposited at
GEO:GSE164853. H3K27ac and RNAPII Genome-wide data
are deposited at GEO:GSE132808.
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