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Abstract: Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis (M. tb). It
is regarded as a major health threat all over the world, mainly because of its high mortality and
drug-resistant nature. Toxin-antitoxin (TA) systems are modules ubiquitously found in prokaryotic
organisms, and the well-studied MazEF systems (MazE means “what is it?” in Hebrew) are implicated
in the formation of “persister cells” in the M. tb pathogen. Here, we report cocrystal structures of
M. tb MazF-mt1 and -mt9, two important MazF members responsible for specific mRNA and tRNA
cleavages, respectively, in complexes with truncated forms of their cognate antitoxin peptides. These
peptides bind to the toxins with comparable affinities to their full-length antitoxins, which would
reduce the RNA-cleavage capacities of the toxins in vitro. After structural analysis of the binding
modes, we systemically tested the influence of the substitutions of individual residues in the truncated
MazE-mt9 peptide on its affinity. This study provides structural insight into the binding modes
and the inhibition mechanisms between the MazE/F-mt TA pairs. More importantly, it contributes
to the future design of peptide-based antimicrobial agents against TB and potentially relieves the
drug-resistance problems by targeting novel M. tb proteins.

Keywords: tuberculosis; Mycobacterium tuberculosis; TA system; MazEF; antimicrobial peptide; cocrys-
tal structure

Key Contribution: Our study systemically tested the influence of the residue substitutions in de-
signed peptides on their affinity to the M. tb. toxins and provides structural insight into the inhibition
mechanisms of these peptides. We also showed that the peptides bind to the toxins with compara-
ble affinities to their full-length antitoxins; and thus this study contributes to the future design of
peptide-based antimicrobial agents against TB.

1. Introduction

Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis (M.
tb). It is easily transmitted among people and about a quarter of the world’s population
is estimated to be infected with this pathogen. In recent years, ten million people fall ill
annually due to the TB infection around the globe [1]. More importantly, without proper
treatments, the mortality rate from TB is quite high. In fact, TB is also the leading cause
of death among transmitted diseases, even more lethal than HIV/AIDS. To make things
worse, the drug-resistance problem of TB is a formidable challenge to TB care, as it is
difficult to treat and takes longer to cure. Despite the global efforts to fight the disease, it
continues to be a major public health threat.

Toxin-antitoxin (TA) systems in prokaryotes are modules composed of a toxin and an
antitoxin. They are expressed independently although transcribed from the same operon.
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Under normal growth conditions, they tend to form a stable complex, but their expression
can be up-regulated to respond to stressful stimuli such as nutrient deficiency, antibiotic
treatment, bacteriophage infection, etc. [2–8]. Eventually, dormant persister cells may
form, characterized by slow cell growth or cell cycle arrests [9]. The TA system has been
considered as one of the most promising antibacterial targets due to its wide occurrence
and distribution in nearly all of the bacterial pathogens but not in eukaryotes [10,11].
The standard strain of M. tuberculosis H37Rv possesses more than 90 TA systems [12,13],
including at least 30 functional TA operons. By contrast, Mycobacterium smegmatis, the
non-pathogenic strain, harbors only three functional TA operons.

Over the past decades, a large number of divergent bacterial TA systems were identi-
fied and characterized. The type II TA families, whose components are both proteins, are
the most studied type. Structural studies were carried out on the TA families including
MazEF, CcdB, and YefM-YoeB, etc., which provided the interaction details of the protein
pairs. All the MazF members are RNases, responsible for the cleavage of all types of RNAs
participating in translation. Consequently, the activation of MazF RNases often leads to the
inhibition of the translation process, reduction in metabolic rates, and eventually the for-
mation of “persister cells” [10,14–16]. Because bacteria-caused infectious diseases are still
the leading causes of human mortality worldwide, antimicrobial strategies targeting the
toxin-antitoxin interactions are attractive, especially for the type II TA systems. However,
inhibitors such as small molecules are too small to engage the large clefts between the two
monomers of the MazF dimer. Consequently, peptides are more realistic due to their large
sizes and versatile interactions with the toxins, and thus display higher affinities.

We previously determined the crystal structures of several members of the M. tb
MazEF families and studied their detailed biochemical properties [17–19]. The structures
of MazF-mt9 in its apo form and in complex with its antitoxin indicated that the antitoxin
binds to a highly positively charged interface formed by the MazF-mt9 dimer, which we
proposed to coincide with the binding site of tRNA substrates (PDBs 5WYG and 6A6X).
Further mechanistic studies revealed that MazF-mt9 not only binds to its cognate antitoxin
but also to the noncognate antitoxin MazE-mt1. We went on to determine the crystal
structure of MazF-mt1 in various forms and characterized the association mode between
the pair (PDBs 6L29, 6KYS, 6KYT, and 6L2A). Despite overall similarities between MazF-
mt1 and MazF-mt9, their major structural differences reside in the dimer interface. While
the MazF-mt9 interface is open with the relevant loops forming a disordered region, the
MazF-mt1 interface is “locked” by swapped loops, which explains the extra effort needed
for the antitoxin to bind and a relatively lower affinity for the latter. Our studies suggested
that toxins and antitoxins from different families could crosstalk, and this mechanism may
be used to counteract the toxicity of M. tb cells.

In this study, we obtained the structures of MazF-mt9 and MazF-mt1 complexed with
their corresponding antitoxin fragments, respectively. These peptides bind to the toxins
with high affinities, accounting for the major driving forces of the TA pairings. We also
conducted in-vitro experiments to show that the binding of the peptides would disable the
toxins as RNases. The mechanistic and biochemical studies conducted in this study provide
insight into the action modes of two important MazF family members and contribute to
the future design of peptide-based antimicrobial agents against TB.

2. Results
2.1. The Heterologous Interactions between the MazEF Families

We previously determined the cocrystal structures of the M. tb MazEF-mt1 and -
mt9 complexes, and characterized their interactions by various techniques [18,19]. We
showed that MazE-mt1 could be bound by MazF-mt9 with a moderate affinity both in vitro
and in vivo but not vice versa. That is, MazE-mt9 does not bind MazF-mt1 although the
sequences between the two antitoxins are very similar. When performing the sequence anal-
ysis on all the M. tb MazE sequences, we noticed that the N-terminus of MazE-mt3 shares
homology with that of MazE-mt9, but differs in sequence at the C-terminus (Figure 1A).
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This discovery motivated us to test the idea of the possible non-orthogonal interactions
between the two families. However, co-expression of MazE-mt3 with MazF-mt9 failed
to produce either protein (data not shown), suggesting that the similarities between the
N-termini were not the main factors mediating the interactions between the TA proteins.
Consequently, we attempted to switch the last helix of MazE-mt3 (Val74-Trp82) to that of the
α4-helix in MazE-mt9 (MazE-mt9/α4). We first changed the sequence to “WEGTVGDGLG”
(named “MazE-mt3/QC1” in this study), a fragment of α4 with a length of 10 residues.
However, the trial expression result was the same and no co-expressed proteins were
evident on the SDS-PAGE gel (Figure 1B). We then changed the C-terminus of MazE-mt3
to the entire α4-helix with a sequence of “DEDREWEGTVGDGLG” (15 residues) (named
“MazE-mt3/QC2” in this study). This complex (MazF-mt9/MazE-mt3/QC2) could be
successfully co-expressed and purified to homogeneity, suggesting that the engineering
did not affect the folding of the MazE-mt3 antitoxin and more importantly, conferred
binding capacity to MazF-mt9, so the toxicity of the latter could be suppressed, and the
host bacterium survived (Figure 1C). In accordance with this result, the tRNA-cleavage
activity assays using M. tb tRNALys(UUU) showed that the activity of the MazF-mt9 toxin
could be effectively inhibited by the engineered MazE-mt3, the potency of which was
comparable to that of the cognate antitoxin MazE-mt9 (Figure 1D, left). Therefore, the
last helix alone is enough to mediate the binding event, whereas the rest of the sequence
moderately contributes to the association of the TA complex, consistent with our previous
observation [18].
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Figure 1. The investigation of the possible heterologous interactions between MazE-mt3 and MazF-mt9 and the engineering
of MazE-mt3. (A) The sequence alignment between the MazE-mt9 sequence and that of MazE-mt3. (B,C) The first (B,C)
second round of engineering of the MazE-mt3, and its subsequent co-expression profiles with MazF-mt9, which were named
MazE-mt3/QC1 and MazE-mt3/QC2, respectively. M: molecular marker; I: Whole cell lysate of induced cells; SUP: the
supernatant of ultrasonication after centrifugation; IB: the inclusion body after ultrasonication and centrifugation; UB: the
unbound part from Ni-NTA column; Elution: the eluted fractions from the Ni-NTA column. (D) The inhibition against
the tRNA-cleavage activity of the MazF-mt9 toxin by the engineered MazE-mt3/QC2 protein. Ctrl: MazF-mt9 without
corresponding peptides. The ratios represented the molar ratios of toxin to various peptides used in the experiments.

2.2. The Interactions of MazE-mt9/α4 with MazF-mt9

The interactions with the MazF-mt9 toxin are mostly concentrated in the last helix
of MazE-mt9 (α4), with the residue Asp74 conferring a dominant impact to the mutual
binding (Figure 2A). The single mutation D74A would reduce the affinity by three-fold [18].
We synthesized the α4-peptide (Asp63–Gly77) and measured its affinity to the toxin by
ITC. As expected, α4 bound to MazF-mt9 with a high affinity, and the kd value was 87 nM,
comparable to that of the full-length MazE-mt9 (kd = 25 nM) [18] (Figure 2B). Next, the
binding strength of the peptide to the toxin was also evaluated by its effects against the
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MazF-mt9 activity. At a molar ratio of 10:1, the α4-helix completely abolished the cleavage
activity of the MazF-mt9 enzyme toward tRNALys(UUU) (Figure 2C).
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Figure 2. The interactions between the α4-helix of MazE-mt9 and the MazF-mt9 dimer. (A) The
cocrystal structure (PDB 7DU4) showing the interactions of MazE-mt9 (α4) and the toxin. The
hydrogen bonds and the salt bridges concerning the sulfate ion and Asp74 are indicated by the red
dashed lines. The sequence alignment between MazE-mt9 (α4) and the C-terminus of MazE-mt1
was shown in the inset. (B) The quantitation of the MazE-mt9/α4 (15 residues) interactions as
characterized by ITC. (C) The inhibitory effects of the α4 peptide against the tRNase activity of
MazF-mt9.

To reveal the interaction details between the pair, we obtained the structure of MazF-
mt9 bound with the 15-residue α4-peptide (Figure 3A). The 2.2-Å high-resolution cocrystal
structure (Table 1) shows that the peptide is bound in a mode similar to that of the last
helix of the full-length MazEF-mt9 complex (PDB 6A6X), explaining the tight affinity
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of α4 to the toxin. The peptide binds in the interfacial groove of the MazF-mt9 dimer
and forms a heterotrimeric structure, but the first four residues and the last residue were
disordered. The rest of the structure assumes an overall helical conformation, and it
retains most interactions observed in the full-length protein. In addition, the bulky Trp68
allows the helix to insert into the active site and makes hydrophobic contacts. An obvious
difference between the two structures is the presence of a sulfate ion in the full-length
structure, which came from the crystallization buffer. This sulfate is located at the contact
point where the three molecules meet: Arg26 from chain A (MazF-mt9), Arg54’ from
chain B (MazF-mt9’, the other monomer), and Leu76 from chain C (the antitoxin peptide)
(Figure 2A). The anionic sulfate acts like a “molecular glue” to “pull” the macromolecules
together and explains why the cocrystals of the MazEF-mt9 complex only grew in mother
liquors containing sulfate. Interestingly, the peptide appeared to bind to the interface
symmetrically with the isosteric residues Thr71Val72 acting as the central residues, which
are located exactly in the middle of the resolved peptide (we only observed ten residues,
Table 2). In the structure, the two central residues do not make any contacts with the
toxin, and they are neighbored by glycines in sequence. The glycines, Gly70 and 73, are in
turn neighbored by Glu69 and Asp74, respectively, which carry similar charges in nature.
Additionally, the first and last visible residues are Glu67 and Leu76, respectively, similar
in sizes as well. In short, the sequence arrangement pattern of the peptide is symmetrical,
which prompted us to the idea that the peptide could be reversed without losing the affinity
to MazF-mt9.
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Figure 3. The recognition mechanism of the MazE-mt9 (α4) peptide by MazF-mt9. (A) The cocrys-
tal structure of the MazF-mt9/α4 complex (PDB 7DU4), with the detailed interactions of Asp74
highlighted. The electron density of the OMIT map is shown by the blue mesh (contoured at 2σ).
(B,C) The test and optimization of the peptide based on the α4-peptide, which was measured by the
inhibition against the tRNase activity of MazF-mt9.

The sequence and the binding mode of the peptide are interesting, and we therefore
investigated the details of the complexes that it forms. We synthesized a series of peptides
based on the original sequence (α4) and tested their influence on the activity of the toxin
(Table 3). We found that the removal of the first four residues and the last residue (E9-α4
(10-residue)) from the peptide made a remarkable difference, as evidenced by its inability
to inhibit the toxin, although these residues were disordered in the complex structure.
The ITC titration also indicated that the 10-residue peptide lost its ability to associate
with the toxin (Figure 3B). Additionally, the replacement of the central Thr71 residue by
an aspartate (E9-15AA2) in the original 15-residue α4-peptide completely abolished the
binding ability of the peptide. On the other hand, the replacement of the Val72 or Glu69
residues by an aspartate (E9-15AA3 and E9-15AA4, respectively) would barely affect the
associations of the TA pairs. Two-residue substitutions normally led to total losses of the
affinity (data not shown) except for the E9-13 and E9-14 peptides, both of which were
based on the predecessor E9-15AA4 and MazF-mt9 showed reduced cleavage efficiencies
when the peptides were at great excesses. E9-14 replaced Gly75 with a tryptophan on top
of E9-15AA4, which created an even more symmetrical pattern with the WDGTVGDW
residues in the sequence (Figure 3C). However, the addition of such a hydrophobic residue
to the sequence also made the peptide more difficult to dissolve. Meanwhile, to fully
assess the role of the bulky Trp68 residue in the formation and stability of the complex,
which apparently makes no specific contacts with MazF-mt9 in the structure, we replaced
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it with two smaller residues (alanine) on top of E9-15AA4. The resulting peptide (E9-9)
also severely impaired the binding affinity. These results may be attributed to the fact that
Trp68 makes important hydrophobic interactions, namely with Val47, Val12’, and Val14’
of MazF-mt9. Furthermore, E9-16 completely reversed the sequence of α4, which did not
show any association either. Lastly, we extended the original 15-residue sequence to 18
(E9-15), by further taking account the symmetry of the sequence into consideration (the two
half sites are mirroring each other with the central TV residues). E9-15 demonstrated full
activity, which took full advantage of the sequence symmetry (Figure 3C). Nevertheless, to
completely understand the differential performance of the peptides, factors such as lengths,
stabilities, as well as polarities should be taken into consideration.

Table 1. Data collection and refinement statistics.

PDB IDs
MazF-mt9-α4 MazF-mt1-α3

7DU4 7DU5

Data collection SSRF BL19U1 SSRF BL19U1

Wavelength 0.979 0.979

Space group P65 P6522

Cell dimensions

a, b, c (Å) 74.61, 74.61, 104.35 83.27, 83.27, 141.27

α, β, γ (◦) 90.0, 90.0, 120.0 90.0, 90.0, 90.0

Resolution (Å) 50.0–2.18 (2.26–2.18) a 41.64–2.65 (2.78–2.65)

Rmerge
b (%) 20.5 (75.9) 6.1 (55)

I/σ(I) 13.2 (4.2) 30.5 (6.5)

Completeness (%) 100 (99.9) 99.8 (99.6)

Redundancy 19.2 (16.2) 18.8 (20.1)

Refinement

Resolution (Å) 37.31–2.18 (2.32–2.18) 41.64-2.65 (3.03–2.65)

No. reflections 16599 8909

Rwork
c/Rfree

d 0.183/ 0.225 0.254/0.280

No. atoms

Protein 1558 1746

Ligand (peptide) 74 127

Water 117 0

B-factors (Å2)

Protein 31.4 81.3

Ligand (peptide) 45.8 90.1

Water 38.7 -

R.m.s deviations

Bond lengths (Å) 0.007 0.006

Bond angles (◦) 0.98 1.10

Ramachandran favored (%) 99.06 95.90

Allowed (%) 0.94 4.10

Outliers (%) 0 0
a: Values in parentheses are for the highest-resolution shell. b: Rmerge =Σ |(I − <I> )|/σ(I), where I is the observed
intensity. c: Rwork = Σhkl ||Fo| − |Fc||/ Σhkl |Fo|, calculated from working data set. d: Rfree is calculated from
5.0% of data randomly chosen and not included in refinement.
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Table 2. The summary of the interactions between the peptides and their cognate MazF-mt toxins.

MazF-mt9-α4 MazF-mt1-α3

Peptide MazF-mt9
(Chain A)

MazF-mt9
(Chain B) Peptide MazF-mt1

(Chain A)
MazF-mt1
(Chain B)

Gly70 (O) Arg87 (NH2) Tyr47
(stacking) Phe61

Glu69 Arg87’ (NH2) Tyr47 (OH) His113 (ND1) Asn31’ (ND2)

Asp74 (OD2) Ala84 (N) Glu53 (OE2) Asn54 (ND2)

Asp74 (OD1,
OD2)

Arg87 (NE,
NH2) Glu53 (OE1) Lys77(NZ)

Asp74 (O) Arg81’(NH1,
NH2) Trp54 (NE1) Asn54 (ND2)

Trp54
(stacking) Asn54

Ser55 (OG) Arg24 (NH2)

Ser55 (O) Arg24 (NH1)

Table 3. List of peptides used in this study.

Name Sequence Binding Affinity

E9 α4 (10 residue) EWEGTVGDGL No binding

E9 α4 DEDREWEGTVGDGLG Strong binding
E1 α3 TLEDDYANAWQEWSAAG Strong binding to MazF-mt1
E9-9 DEDREAADGTVGDGLG No binding

E9-10 DEDRAAADGTVGDGLG No binding
E9-12 DEDRAAADGTDGDGLG No binding
E9-13 DEDRLWDGTVGDGLG Strong binding
E9-14 DEDREWDGTVGDWLG Strong binding
E9-15 DEDREWDGTVGDWERDED Strong binding
E9-16 GLGDGVTGEWERDED No binding

E9-15AA2 DEDREWEGDVGDGLG No binding
E9-15AA3 DEDREWEGTDGDGLG Strong binding
E9-15AA4 DEDREWDGTVGDGLG Strong binding
E9-15AA5 DEDREGDGTVGDGLG No binding
E9-15AA6 DEDRLGDGTVGDGLG No binding
E9-15AA7 DEDRLGDGTTGDGLG No binding

2.3. The Interactions of the MazE-mt1/α3 Helix with MazF-mt1

In terms of the MazEF-mt1 TA system, our previous studies demonstrated that while
η1 (Asp59-Arg76) did not bind to the cognate toxin, α3 (Thr42-Gly58) bound with a
stronger affinity even greater than that of the full-length antitoxin. η1 was a small helix that
follows α3, and the binding of η1 necessitates the conformational opening of the swapped
loops (β1–β2) covering the MazF-mt1 dimer interface. Both the η1- and α3-helices make
numerous interactions with MazF-mt1 in the cocrystal structure of the MazF-mt1/MazE-
mt1 complex (PDB 6KYT), but the hindrance between the swapped loops and η1 requires
extra energy to unravel these interlocked loops, which reduces the overall binding energy
of the full-length antitoxin [19].

To explore the possible binding mode between the α3-helix and MazF-mt1, we ob-
tained the cocrystal structure of the MazF-mt1/MazE-mt1 (α3) complex (PDB 7DU5).
Except for the two residues Trp54Ser55, the overall conformation and interactions are
maintained in the cocrystal structure, when compared to that of the full-length MazE-mt1
complex (Figure 4A). The close-up of the interaction details revealed that the peptide
complex is maintained by the interactions on residues Tyr47 and Glu53-Ser55 of the α3-
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peptide. However, the last three residues of the peptide failed to maintain the helical shape
with Trp54 of the antitoxin swinging to the other side (Figure 4B). Additionally, the knot
structure of MazF-mt1 became open due to the binding of the antitoxin peptide. Due to the
extra energy needed to pry open this interface, the affinity of the MazF-mt1/MazE-mt1
complex is lower than the MazF-mt1/MazE-mt1 (α3).
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Figure 4. The recognition mechanism of the MazE-mt1 (α3) peptide by MazF-mt1. (A) The cocrystal
structure of the MazE-mt1 (α3)/MazF-mt1 complex (PDB 7DU5) and detailed interactions are shown
on the right. The electron density of the OMIT map is shown by the blue mesh and was contoured
at 2σ. (B) The structure of the MazEF-mt1 complex with only the α3-peptide of the antitoxin being
shown. Two orthogonal views of the latter are shown, and the Trp54Ser55 dipeptide is shown in
sticks. Note that the view on the right was the same as that of Figure 4A.

On the determination of the structure of the MazF-mt1/α3 complex, we compared it to
that of the MazF-mt1/RNA complex (PDB 5HJZ). Interestingly, we found that the 4-nt RNA
ACCU occupies the site that α3 binds. Although the active site of MazF-mt1 is currently
unclear, because the study concerning this PDB has not been published, we believe that
this site at the dimer interface is very likely to be the RNase activity site for MazF-mt1. The
tetranucleotide was probably from the cleaved substrate (the recognition site of MazF-mt1 is
CU/ACC with “/” as the cleavage site), and the structure mimics the product-bound stage
after the reaction. We therefore deduced that MazF-mt1 would be inhibited by the α3-helix
as well. Similar to MazF-mt9, as we described above, we carried out the mRNA cleavage
assay. We employed two substrates with different sequences and lengths by following the
studies of Zhu et al., who reported that an unmodified, 15-nt RNA oligo containing the
UAC motif could serve as the substrate for MazF-mt1 [20]. However, we failed to reproduce
the mRNase activity of MazF-mt1 somehow, as the enzyme was incapable of generating the
product even at excessive concentrations or prolonged incubation periods. Taken together,
we found two peptides that could bind to MazF-mt1 and -mt9, respectively, with high
affinities to their putative RNA-binding sites, and thus would inhibit the activities of their
own cognate toxins.

3. Discussion

Tuberculosis has been a great threat since ancient history. In recent years, the TB
crisis widely spreads out and has become more and more severe, especially in developing
countries. In 2020, tuberculosis has become the number-one killer of all infectious diseases,
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which greatly adds to the financial burden of every country and threatens the health of
humankind. The major reason for TB prevalence is the appearance of the drug-resistant
M. tb strains, which render the first-line anti-TB drugs ineffective or even useless against
their original targets. Therefore, treatments of this disease call for novel strategies against
new targets. M. tb has more than 90 TA systems and 11 MazEF families, one of the salient
features that distinguishes itself from other bacteria. Consequently, the idea of targeting
MazEF TA systems was increasingly popular, and peptides against the RNase activities
were designed and tested.

In this study, we started by sequence analysis of the similarities between various M. tb
MazE members, hoping to identify possible novel heterologous TA interactions. Due to its
similarities at the N-terminus to that of MazE-mt9, we wonder if MazE-mt3 could interact
with MazF-mt9. While unmodified MazE-mt3 protein was unable to bind and co-express
with the MazF-mt9 toxin, we found that the last helix of MazE-mt9 was mainly responsible
for the protein-protein interactions. On the other hand, the N-termini of MazE members
are mainly involved in the formation of their dimers, which would allow them to bind the
operators of their operons.

Next, we studied two fragments/peptides from the antitoxin of MazE-mt1 and -
mt9, respectively, by obtaining the co-crystal structures with their cognate toxins. The
structures revealed that the peptides adopt conformations similar to their full-length
antitoxin proteins, i.e., they occupy the same putative substrate-binding sites. Additionally,
the factor providing the binding affinity mainly resides in a single helix of the antitoxin
while other elements are mainly structural. Therefore, these peptides bind so efficiently to
their cognate toxins that they play a major role in mediating the protein-protein interactions.

To find out the contribution of each residue of the peptide to the binding affinity, we
systematically studied the single, double, or even multiple substitutions of the residues in
α4. We first found that the sizes of the peptides matter because the removal of disordered
residues abolished binding. Next, we found the sequence requirement is quite stringent
in that the replacement of seemingly non-essential residues also greatly affected the per-
formance of the peptides. Only isosteric residues or residues of similar properties were
effective (E9-13 and E9-14). Two- or three-residue substitutions were generally not allowed
(E9-15AA5, E9-9, E9-10, and E9-12). Lastly, noticing that the dimeric enzyme binds the pep-
tide in an almost symmetrical fashion, we tried out a series of peptides with “symmetrical”
sequences in order to increase the affinity of the peptides further. To overcome the chiral
problem of amino acids, we even synthesized several peptides with mixed L- and D-type
amino acids to accomplish the exact structural symmetry (data not shown). These trials led
to the discovery of a few candidates potentially useful for further testing (peptides E9-13,
14, and 15AA4), whose efficacies were demonstrated in the tRNA-cleavage activity assays.
Taken together, our cocrystal structures and mutational studies provided in-depth details
of the recognition mechanism by the toxins. Especially in the MazF-mt9 case, we obtained
candidate peptides with different affinities, polarities, and sizes, which would aid in future
peptide-based drug design against this toxin.

Although the sequences of the last helices of the two antitoxins (η1 and α4 in MazE-
mt1 and -mt9, respectively) and the structures of the two toxins are quite similar, η1 in
MazE-mt1 does not provide most of the binding energy for the MazF-mt1, unlike α4. This
came as a surprise, initially. The structural basis for this phenomenon is that MazF-mt1
forms swapped loops across the interface. These loops need to open up for the antitoxin to
enter. In contrast, MazF-mt9 harbors intrinsic disorder at the corresponding regions, and it
would be relatively easy for its cognate antitoxin to bind. Thus, the major binding energy
to MazF-mt1 mainly comes from α3 of MazE-mt1, and this result becomes more evident
after the superimposition of the MazF-mt1/MazE-mt1 complex with that of MazF-mt1
cocrystallized with RNA (PDB 5HJZ). The α3-helix poses severe clashes against the 4-nt
RNA fragment, which is a putative substrate/product. Therefore, the RNA-binding site, as
shown in PDB 5HJZ, very likely overlaps with that of α3 of MazE-mt1. Although we failed
to prove this point directly in our subsequent RNA-cleavage experiment due to unknown



Toxins 2021, 13, 319 11 of 13

reasons, the strong affinity of α3 toward MazF-mt1 and the structural coincidence with the
RNA fragment both suggested that the α3-helix would prevent the binding of the potential
RNA substrate as well. Therefore, MazF proteins are intriguing molecules in evolving
the substrate-binding sites and recognition modes despite their small sizes. Although
similar in overall sequences and structures, MazFs appear to harbor different potential
RNA-binding sites, which contribute to their wide substrate specificities.

We lastly tested the antimicrobial efficacies of the peptides by inhibiting the growth
of the H37Ra strain. While the peptides were efficient in inhibiting the activities of the
toxins in vitro, our preliminary results showed that their in-vivo activities were poor (data
not shown). The idea of using antitoxin fragments as potential bactericidal agents was
first tested on the B. anthracis PemIK TA system, where the structural and biochemical
data of its binding mode was employed to inhibit the TA interactions. PemK cleaves
single-stranded RNAs, but this activity is neutralized by PemI. A peptide mimicking the C-
terminal region of the antitoxin was designed by Chopra and coworkers, which decreased
the ribonuclease activity of the toxin [21]. Recently, Kang et al. designed peptides that
triggered Streptococcus pneumoniae cell death based on their structural studies and the
recognition mechanism of the HigBA TA system [22]. Using a stapling strategy, they also
achieved the penetration of the peptides across the membranes with an MIC50 smaller
than 6.25 µM. These peptides targeting the direct active or allosteric sites of the toxins
accomplished a series of successes in inhibiting or killing the bacterial pathogens. In
retrospect, one of the reasons for the failure of our in-vivo experiments could be the limited
capability of the peptides to penetrate the membrane due to their relatively large sizes,
which would be a major obstacle for their in-vivo applications. Additionally, stabilities
of the peptides could also be an issue, and whose pharmacokinetic data are currently
unavailable. Chemical modifications such as cyclization or PEGylation of the peptides are
currently underway to increase their half-lives as well as chances to reach the cytoplasm
and to boost their efficacies.

4. Materials and Methods
4.1. Cloning, Expression, and Purification of the Proteins

The preparation of MazF-mt1 and MazF-mt9 proteins were described in previous
papers [17,19]. The gene encoding MazE-mt3 was inserted into cloning site 1 (MCS1) of
the modified pETDuet1 vector (Novagen, Madison, WI, USA) to give pETDuet1/mazE-3.
The protein was expressed similarly to that of the MazF-mt1 and MazF-mt9 proteins and
isolated by a two-step purification protocol using affinity and anion-exchange purification
techniques. The N-terminal 6 × His-tag was cleaved off, and the target protein was obtained
by passing through the Ni-NTA column a second time and collecting the unbound fractions.
The co-expression vector with mazF-mt9 was achieved by inserting mazF-mt9 into MCS2
of the modified pETDuet1 to produce pETDuet1/mazE-mt3/mazF-mt9. Mutants of these
genes were generated by the QuikChange method (Agilent, Santa Clara, CA, USA) using
this vector as the template.

4.2. Crystallization, Data Collection, and Structure Determination

The initial screens for MazF/peptides cocrystals were manually set up using the
sitting-drop vapor-diffusion method. The sample was mixed with the well solution at a
1:1 ratio (v/v). The crystals were acquired under similar conditions to those of the WT
apo-proteins. Basically, the MazF-mt1 protein was concentrated to 2.0 mg mL−1, and
mixed with the α3-peptide at a molar ratio of 1:5. The cocrystals of the MazF-mt1 complex
were obtained at 20% PEG 3350, 0.1 M NaOAc pH 5.0, and 0.1 M NaCl. The MazF-mt9
protein was concentrated to 3.0 mg mL−1 and mixed with the α4-peptide at a molar ratio
of 1:10. The cocrystals of the MazF-mt9 complex were obtained at 1.5 M NaCl, 0.2 M
(NH4)2SO4, and 0.1 M NaOAc pH 5.0. The cocrystals typically needed two days to appear
and 3–5 days to grow to full sizes. All the fully grown crystals were soaked in a freshly
made cryoprotective solution containing all the components of the reservoir solution plus
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20% (v/v) glycerol. The soaked crystals were mounted on nylon loops and flash-cooled
in liquid nitrogen. Diffraction datasets were collected at beamline 19U1 (BL19U1) at the
Shanghai Synchrotron Radiation Facility (SSRF, Shanghai, China) and were processed with
the program HKL3000 [23].

The structures were solved by molecular replacement using the Phaser program with
the coordinates of PDB 6KYS and 5WYG as the search models. On the basis of the solution,
the models were further rebuilt manually with COOT according to the electron density
map [24]. Multiple cycles of refinement alternating with model rebuilding were carried out
with PHENIX.refine [25]. The final model was validated by molprobity [26]. The structural
figures were produced with PyMOL (www.pymol.org, accessed on 1 March 2021). All data
collection and refinement statistics are presented in Table 1.

4.3. tRNA Cleavage Assays

The preparation of the M. tb tRNALys(UUU) was described in a previous protocol [17].
When carrying out the MazF-mt9 cleavage assays in the presence of the MazE-mt9 peptides
or mutants, 25 pmol of peptides were mixed with 50 pmol MazF-mt9 or indicated amounts
of the toxin. All mixtures were incubated on ice for 30 min to allow the formation of the
complex. 0.6 µL of the complex was added to a reaction mixture of 20 mM HEPES (pH 7.5),
50 mM potassium chloride, 1 mM DTT, and 8 pmol of M. tb tRNALys(UUU) substrate, and
incubated at 37 ◦C. The reactions were stopped after 30 min by adding the 2 × formamide
gel-loading buffer (95% w/v formamide and 50 mM EDTA). The samples were denatured
at 95 ◦C for 5 min before electrophoresis in a 15% Urea-PAGE gel containing 7 M urea,
followed by ethidium-bromide staining.

4.4. Isothermal Titration Calorimetry (ITC)

ITC experiments were conducted at 25 ◦C using a PEAQ ITC titration calorimeter
(Malvern Instruments, Malvern, UK). To exactly match the buffer compositions, the MazE
and MazF proteins or peptides were dialyzed against the same buffer containing 20 mM
Tris-HCl (pH 8.0), 150 mM NaCl, and 1 mM DTT. The MazE-mt9 α4 (Asp63-Gly77: DE-
DREWEGTVGDGLG), MazE-mt1 α3 (Thr42-Gly58: TLEDDYANAWQE WSAAG), and
other peptides were synthesized by DGpeptides Co., Ltd.(Hangzhou, China) (Table 3). The
concentrations of the peptides or protein were adjusted according to the binding profiles.
The first injection of 0.4 µL was followed by 18–35 injections of 1 µL drops. The MICROCAL
ORIGIN software was used to determine the number of binding sites and the model that
produced good fits.
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