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Abstract: The magnetic biochar material CoFe2O4/PCPS (peanut shell powder) was prepared based
on the hybrid calcination method. The properties of prepared composites and the extraction effect of
magnetic solid phase extraction on phenoxy carboxylic acid herbicides were assessed. The morphol-
ogy, crystal structure, specific surface area, and pore size distribution of the material were analysed
using a transmission electron microscope (TEM), infrared Fourier transform infrared spectroscopy
(FTIR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and N2 absorption
surface analysis (BET). The results of the magnetic solid phase extraction of a variety of phenoxy
carboxylic acid herbicides in water using CoFe2O4/PCPS composites showed that, when the mass
ratio of CoFe2O4 and PCPS was 1:1, 40 mg of the composite was used, and the adsorption time was
10 min at pH 8.50. Methanol was used as the eluent, and the recovery rates of the three phenoxy
carboxylic acid herbicides were maintained at 81.95–99.07%. Furthermore, the actual water sample
analysis results showed that the established method had good accuracy, stability, and reliability.

Keywords: magnetic biochar material; phenoxy carboxylic acid herbicides; magnetic solid phase
extraction; actual water sample

1. Introduction

Phenoxy carboxylic acid herbicides are widely used due to their low cost, effectiveness
in weed control, and high water solubility [1,2]. However, they still have the potential
to cause harm to animal and human populations, even though their concentrations in
environmental water samples are relatively low. Long-term exposure will increase the risks
of leukemia and non-Hodgkin lymphoma in children, endocrine disorders in organisms,
and metabolic imbalance [3–6]. Therefore, it is of theoretical and practical significance to
develop a method for detecting trace amounts of phenoxy carboxylic acid herbicides.

As a new technology for sample pretreatment, magnetic solid phase extraction (MSPE)
can fully contact the target analyte and quickly enrich the analyte. The magnetic sorbents
can be directly recycled by a magnet [7]. Consequently, MSPE has a high separation
efficiency and convenient operation [8]. The key to the MSPE is the choice of sorbent.
Generally, graphene oxide (GO), metal–organic frameworks (MOFs), covalent organic
frameworks (COFs), carbon nanotubes (CNTs), and biochar (BC) may be used as sorbents.
Biochar with a large specific surface area enables the efficient extraction of the target analyte
from water [9]. In this work, the preparation of CoFe2O4/PCPS (peanut shell powder) and
its physicochemical properties have been characterized. The magnetic biochar material
CoFe2O4/PCPS was synthesized with peanut shell as the carbon source and CoFe2O4 as
the magnetic nucleus. The CoFe2O4 had a face-centered cube structure formed by Fe3+,
Co2+, and O2−. Three substances, including 4-chlorophenoxyacetic acid, 2,4-dichloropheno-
xyacetic acid, and 2,4-droplet propionic acid, were chosen as the target analytes, then the
effects of preparation conditions and external factors on the recovery of analytes were
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discussed. Finally, a pretreatment method to concentrate the phenoxy carboxylic acid
herbicides and their subsequent analysis was established.

2. Materials and Methods
2.1. Preparation of CoFe2O4 Nanoparticles

A total of 0.01 mol Co(NO3)2·6H2O and 0.02 mol FeCl3·6H2O were added to beakers
with 30 mL pure water. The pH was adjusted to 12 using a 30% NaOH solution. The
mixture was stirred and sonicated for 1 h. Subsequently, the mixture was transferred to a
vacuum drying oven and reacted at 120 ◦C for 10 h. The product was washed, dried, and
stored for subsequent use.

2.2. Preparation of CoFe2O4/PCPS Composites

The fresh peanut shells were washed and oven-dried at 110 ◦C for 24 h, crushed into
powder by a grinder, and then sieved. Particles with a diameter of 0.25–0.425 mm were
collected. CoFe2O4 (1.0000 g), peanut shell powder (PCPS, 1.0000 g), and KCl (2.0000 g)
were placed in a mortar and ground evenly. After this, the CoFe2O4, peanut shell powder
(PCPS), and KCl mixture was stirred with 20 mL water for 24 h and oven dried at 120 ◦C for
12 h. Subsequently, the material was placed into a tube furnace with an argon atmosphere
and calcined at 600 ◦C for 3 h. Finally, the sample was cleaned, dried, and named CS1 for
subsequent use. Similarly, the materials with mass ratios of CoFe2O4 and PCPS of 1:0.5,
1:1.5, and 1:2 were named CS0.5, CS1.5, and CS2, respectively.

2.3. Collection of Environmental Water

Three river water samples were randomly gathered from the Yellow and Yangtze Rivers
in addition to water samples from the Xuanwu Lake in Nanjing. The snow water was taken
from the school campus. All the water samples were stored in the dark at low temperature.
The samples were cleaned preliminarily through filtration using a 0.45 µm membrane.

2.4. Magnetic Solid Phase Extraction Experiment

A total of 40 mg magnetic nanocomposite was added into a 100 mL water sample
and treated with ultrasonic waves for 10 min so that the mixture attained equilibrium
of adsorption and desorption. Under the action of an external magnetic field, the water
sample and the composite material were separated. Subsequently, 2 mL methanol was used
to elute the analyte absorbed by the composite material. The eluent was analysed, and the
analyte was detected by high performance liquid chromatography (HPLC). The material
synthesis and MSPE process are shown in Figure 1. HPLC instrument configuration and
chromatographic conditions are shown in Table 1. The standard curve is shown in Table 2.

Table 1. The HPLC instrument configuration and chromatographic conditions.

Item Parameter

Instruments Waters 2489
Detector An UV/Visible detector

Chromatographic column A Lichrospher C18 column (150 mm × 4.6 mm, 5 µm)
Detection wavelength 230 nm

Mobile phase (volume ratio) Methanol to water to acetic acid = 50:50:0.2
Flow rate 1.0 mL·min−1

Injection volume 20.0 µL
Column temperature 30 ◦C
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Detection wavelength 230 nm 
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Flow rate 1.0 mL·min−1 
Injection volume 20.0 µL 

Column temperature 30 °C 

Table 2. Analytical parameters of MSPE-HPLC-UV method for the determination of phenoxy car-
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pan) and X-ray powder diffraction (XRD) (XRD-6000, Shimadzu, Tokyo, Japan). N2 ab-
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distribution (ASAP2050, Micromertics, Norcross, GA, USA). Chromatographic analysis 
was recorded on a Waters HPLC (Waters 2489, Waters, Milford, MA, USA). 
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Table 2. Analytical parameters of MSPE-HPLC-UV method for the determination of phenoxy car-
boxylic acid pesticides in standard solution.

Analyte Standard Curve
Linear
Range

(µg·L−1)

Correlation
Coefficient

(r2)

LOD
(µg·L−1)

LOQ
(µg·L−1)

4-PA y = 60.4608x + 240.4391 1.0–1000 0.9996 0.30 0.98
2,4-D y = 37.6800x + 984.8045 2.0–1000 0.9978 0.58 1.94

2,4-DP y = 35.9193x − 832.7198 2.0–1000 0.9995 0.59 1.96

2.5. Analysis Methods

A transmission electron microscope (TEM) (JEM-200 CX, JEOL, Tokyo, Japan) and scan-
ning electron microscopy (SEM) (S-3400N II, Hitachi, Tokyo, Japan) were used to examine
the morphological and chemical properties for the CoFe2O4/PCPS. A spectrometer (Tensor
27, Bruck, Germany) was used to obtain the infrared Fourier transform spectroscopy (FTIR)
spectra of the CoFe2O4/PCPS. The samples were also analysed using X-ray photoelectron
spectroscopy (XPS) (PHI 5000 Versa Probe, Ulvac-Phi, Chigasaki, Japan) and X-ray powder
diffraction (XRD) (XRD-6000, Shimadzu, Tokyo, Japan). N2 absorption surface analysis
was used to characterize the specific surface area and pore size distribution (ASAP2050,
Micromertics, Norcross, GA, USA). Chromatographic analysis was recorded on a Waters
HPLC (Waters 2489, Waters, Milford, MA, USA).

2.6. The Determination of Zete Potential

The samples were added to 50 mL purified water at a solid–liquid ratio of 1:1. After
ultrasonic dispersion, the pH of the system was adjusted with 0.1 mol·L−1 HCL and NaOH.
The potential of supernatant was determined by Zeta potentiometer. Each sample was
measured three times.

3. Results
3.1. Morphology Analysis

The material surface morphologies are shown in Figure 2, in which Figure 2A–C
displays the transmission electron microscope (TEM), high-resolution transmission electron
microscopy (HRTEM), and selected area electron diffraction (SAED) images of CoFe2O4,
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respectively. Figure 2F displays the TEM and HRTEM images of PCPS. Finally, Figure 2G–I
shows the TEM, HRTEM, and SAED images of CoFe2O4/PCPS, respectively.
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and HRTEM (F); the TEM, HRTEM, and SAED images of CoFe2O4/PCPS (G–I).

As shown in Figure 2A–C, the CoFe2O4 was composed of homogeneous nanoparticles
with diameters of 10–20 nm. The lattice planes with separation distances of 0.4882, 0.2906,
0.2573, and 0.1282 nm corresponded to the (111), (220), (311), and (533) CoFe2O4 lattice
planes, respectively [10,11]. Figure 2D,E exhibited the presence of carbon quantum dots
that were distributed uniformly within the size interval of 1.3–2.5 nm. Two groups of
lattice fringes in Figure 2F represented the crystal planes (100) and (101) for graphite
carbon [12–14]. Figure 2G exhibited that many holes were distributed on the PCPS lamellar
structure. The CoFe2O4 lattice-stripe nanoparticles appeared in Figure 2H,I. This indicated
that CoFe2O4 nanoparticles had been successfully compounded with PCPS.

3.2. XRD Analysis

Figure 3A–C represents the typical XRD pattern for PCPS, CoFe2O4, and CoFe2O4/PCPS
XRD, respectively.
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Figure 3A shows broad peaks at 24.0◦, which were indexed as the (002) graphite carbon
planes [15–19]. Nine discernible diffraction peaks are observed in Figure 3B, including
those at 18.2◦, 30.1◦, 35.5◦, 43.5◦, 53.9◦, 57.2◦, 62.7◦, 65.7◦, and 74.0◦. They can be ascribed
to the (111), (220), (311), (400), (422), (511), (440), (531), and (533) planes, respectively [20].
Figure 3C shows that the diffraction peaks of CoFe2O4 were diminished due to the covering
PCPS; however, the crystal shape did not change.

3.3. FTIR Analysis

The infrared spectra of CoFe2O4 (A), PCPS (B), and CoFe2O4/PCPS (C) are shown in
Figure 4.
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The band at approximately 3405 cm−1 represented the O-H stretching vibration [21]
and is shown in Figure 4A–C. The bands at 1635 cm−1, 1384 cm−1, and 400–650 cm−1

were assigned to the O-H, NO3−, Fe-O, and Co-O groups [22], respectively. These bands
are shown in Figure 4A. The bands at 1588 cm−1, 1379 cm−1, and 980–1200 cm−1 were
attributed to the C=C, -COOH, C-O, and OH groups [23,24], respectively. As shown in
Figure 4C, all the generally observed peaks for CoFe2O4 and PCPS were present in the syn-
thesized materials, but their spectrum intensities decreased slightly. All the results indicate
that the composite possessed oxygen-containing and carbon-containing functional groups
on the surface. These groups can adsorb target molecules by hydrophobic interaction and
hydrogen bonding [25].

3.4. XPS Analysis

Figure 5 shows the XPS spectra in the prepared CoFe2O4/PCPS composite. The spectra
for C, O, Fe, and Co along with their chemical bonding states are shown in Figure 5A–D,
respectively. The illustration shown in Figure 5A displays the full spectrum of these elements.

As shown in Figure 5A, the C 1 s, O 1s, Fe 2p, and Co 2p binding energies were
285.9 eV, 529.4 eV, 714.0 eV, and 782.8 eV, respectively. The atomic ratio for Co and Fe
was 1:2, which corresponds with the atom number ratio of Co and Fe in CoFe2O4. The
binding energies 284.5 eV, 284.8 eV, 286.1 eV, and 288.8 eV were attributed to the C=C, C-H,
C-O, and (C=O)OH functional groups. The binding energies of 530.3 eV, 531.0 eV, 532.0 eV,
and 533.2 eV in Figure 5B were attributed to lattice oxygen, Fe-O-C, C(O)OH, and C-OH,
respectively. In addition, the binding energies shown in Figure 5C,D—712.1 eV, 725.8 eV,
781.2 eV, and 782.6 eV—were attributed to the Fe 2p3/2 and Fe 2p1/2 octahedron along
with the Co2+ tetrahedron, respectively [26,27].
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Figure 5. XPS for CoFe2O4/PCPS: full scan spectra [the inset in (A)], C 1s spectra (A), O 1s spectra
(B), Fe 2p spectra (C), and Co 2p spectra (D).

3.5. N2 Adsorption-Desorption Analysis

Figure 6A–C represents the nitrogen adsorption–desorption curves for CoFe2O4, PCPS
and CoFe2O4/PCPS, respectively. The illustrations in each figure displayed their pore size
distribution, which was also shown in the figure panels.

As shown in Figure 6, the N2 adsorption–desorption isotherms for CoFe2O4 con-
formed to type III, while the PCPS isotherms and the CoFe2O4/PCPS conformed to type
IV. The pore sizes of CoFe2O4, PCPS, and CoFe2O4/PCPS were 9.7–20.3 nm, 0.6–2.0 nm,
and 1.8–20.5 nm, respectively. This indicated that CoFe2O4/PCPS was microporous and
mesoporous materials. In addition, the specific surface areas of CoFe2O4, PCPS, and
CoFe2O4/PCPS were 4.64, 152.90, and 146.03 m2·g−1, respectively, which indicated that
PCPS still had a large specific surface area after covering CoFe2O4.
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Figure 6. N2 adsorption–desorption isotherms and the pore size distribution of the CoFe2O4 (A),
PCPS (B), and CoFe2O4/PCPS (C).

3.6. MSPE Condition Optimizing
3.6.1. Material Components

Magnetic solid phase extraction was performed using the prepared materials to discuss
the influence of material components on extraction effects. For each treatment, 40 mg CS0.5,
CS1, CS1.5, and CS2 composite materials were added into four samples containing 100 mL
analyte (4-PA, 2,4-D, 2,4-DP) at concentrations of 0.04 mg·L−1 each. Subsequently, they
were eluted by 2 mL acetonitrile. The results were shown in Figure 7.
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Figure 7. The effect of material composition on the magnetic solid phase extraction.

As shown in Figure 7, the CS1 composite possessed the best magnetic solid phase
extraction effect for three analytes. The principal reason was that when the carbon content
was lower, the material had fewer adsorption sites. This was not conducive to adsorption
of the analyte on the material surface, resulting in a relatively low recovery rate. When the
carbon content increased, the magnetic properties of the composite diminished, and the
composites were difficult to separate from the water sample under external magnetic fields.
Therefore, the CS1 material with a CoFe2O4 and PCPS mass ratio of 1:1 was selected in the
following experiments.

3.6.2. Conditional Experiment

The effects of composite dosage, pH, eluent type, adsorption time, and enrichment
factor on the pretreatment of the target analyte in the magnetic solid phase extraction
process are shown in Figure 8.

Figure 8A shows that the recovery rates of the analytes increased with increasing
dosages of CS1. When the SC1 dosage reached 40 mg, the recovery rate of the analytes
exceeded 82.17%, but as the usage of CS1 continued to increase, the recoveries of the
three analytes remained between 81.17% and 99.77%. However, the elution process in the
subsequent treatment became more difficult. Therefore, 40 mg should be selected as the
appropriate dosage. From the results of Figure 8B, we found that the target analyte had
the optimum recovery at a pH of 8.50. A possible cause is that the surface of the material
was negatively charged in the weakly alkaline system (Figure 8C). The carboxylate ions
dissociated from the target pollutants may have combined with the material through the
electrostatic effect of NH4

+ in the buffer solution; this is beneficial to the adsorption process.
As Figure 8D shows, the magnetic solid phase extraction effect was optimal when methanol
was used as the eluent and the recovery rate of phenoxy carboxylic acid herbicides was
between 82.17 and 99.07%. Consequently, methanol was used as the eluent in the magnetic
solid phase extraction experiment.

The speed of magnetic solid phase extraction determined the viability of this method
for practical application. As shown in Figure 8E, the recoveries of the three phenoxy
carboxylic herbicides increased initially and subsequently stabilized. When the adsorption
time was less than eight minutes, the recoveries of the analytes were less than 55.72%.
When the adsorption time was greater than ten minutes, the recovery rate was between
81.95% and 99.07%. Equilibrium between adsorption and desorption was observed. The
enrichment factor condition experiment from Figure 8F showed that when the enrichment
factor was greater than 75, the recovery rates of the three phenoxy carboxylic herbicides
were all less than 80%. This was because increasing the sample volume reduced the mass of
material contained per sample volume; consequently, the analyte could not be completely
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adsorbed. Therefore, 50 was determined as the enrichment factor in the magnetic solid
phase extraction experiment. According to Figure 8G, the recovery of SC1 does not decrease
significantly after 10 recycles.
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Figure 8. The effect of dosage (A), pH (B), Zeta potential (C), eluent type (D), adsorption time (E),
enrichment factor (F), and cycles (G) on three phenoxy carboxylic acid herbicides.

3.7. Analysis of Environmental Water Samples

To verify the reliability of the established method, the MSPE method was used to
analyse actual water samples from the Yellow and Yangtze Rivers, Xuanwu Lake, and snow
melt. None of the collected water samples were contaminated by 4-PA, 2,4-D, or 2,4-DP. The
water samples were spiked with 0.02 mg·L−1 and 0.04 mg·L−1 of each analyte. Based on
magnetic solid phase extraction and high-performance liquid chromatography, the analyte
recoveries varied from 75.22% to 94.66%, and the relative standard deviation (RSD) ranged
from 0.08% to 3.70%, as shown in Table 3. Comparing the method established in this paper
with other reported methods, as shown in Table 4 [1,28–31], the results of the current study
showed that the pretreatment method based on CoFe2O4/PCPS magnetic biochar material
had good accuracy, stability, and reliability.
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Table 3. The recovery and RSD of the three analytes in real water samples (na = 3).

Water
Samples

Standard Addition
Concentration (mg·L−1)

Detection of Concentration (mg·L−1) Recovery Rate b/% (RSD/%)

4-PA 2,4-D 2,4-DP 4-PA 2,4-D 2,4-DP

Yellow River
0 —— —— ——

0.02 0.0164 0.0175 0.0189 81.75 (1.66) 87.45 (2.06) 94.66 (3.15)
0.04 0.0333 0.0346 0.0355 83.27 (2.39) 86.41 (1.52) 88.63 (1.99)

Xuanwu
Lake

0 —— —— ——
0.02 0.0150 0.0159 0.0177 75.22 (1.25) 79.66 (3.35) 88.29 (3.70)
0.04 0.0335 0.0333 0.0347 83.82 (0.85) 83.13 (3.15) 86.70 (2.97)

Yangtze
River

0 —— —— ——
0.02 0.0161 0.0163 0.0163 80.27 (0.61) 81.65 (1.89) 81.50 (1.25)
0.04 0.0336 0.0353 0.0370 84.04 (2.27) 88.15 (1.62) 92.61 (0.08)

Snow melt
0 —— —— ——

0.02 0.0155 0.0161 0.0162 77.30 (1.48) 80.36 (1.38) 81.08 (0.56)
0.04 0.0328 0.0339 0.0358 81.88 (2.62) 84.86 (1.73) 89.54 (1.46)

Detection times; b: average value of three parallel experiments.

Table 4. Method comparison.

Method
Analytical

Sample
Sample Volume

/mL
Pre-Conditioning

Time/min

LODs (µg·L−1)
RSD/% Recovery

Rate/% Reference
4-PA 2,4-D 2,4-DP

DSPE a
tap water
and lake

water
50 13 0.2–0.3 1.4–8.6 83.7–114.4 [1]

SPE
river water
and waste

water
750 11 0.3–6.3 1.1–11.4 95–104 [28]

SPE

distilled
water,

stream and
well water

200 100 0.02 0.2–4.0 80.0–110.0 [29]

SPE river water 400 90 0.01 50.0–80.0 [30]

µ-SPE
b-MSPE

Reservoir
raw water 10 45 0.2 1.7–5.1 89.0–103.0 [31]

MSPE

river water,
lake water
and snow

water

100 10 0.3 0.58 0.59 0.08–3.70 75.22–94.66 this text

a: Dispersed solid phase extraction; b: micro solid phase extraction.

4. Conclusions

In this paper, a CoFe2O4/PCPS composite was prepared via the biopyrolysis method
and applied to the magnetic solid phase extraction of three phenoxy carboxylic herbicides
(4-PA, 2,4-D, 2,4-DP) dissolved in water. The influence of material composition, dosage,
pH, adsorption time, eluent, enrichment factor, and cycles on the magnetic solid phase
extraction effect was discussed. The optimal conditions were applied for the actual detection
of the herbicides in environmental water samples, and the main conclusions were as follows:

(1) The characterizations such as TEM, XRD, FTIR, and BET demonstrated that the
CoFe2O4/PCPS composite was successfully synthesized. The material maintained
the original structure of PCPS and had a large specific surface area and pore volume.

(2) In the optimization experiment of magnetic solid phase extraction conditions, phe-
noxy carboxylic herbicides were extracted using 40 mg of the composite material,
and adsorption occurred in water samples with a pH of 8.50 for 10 min. The best
magnetic solid phase extraction effect was obtained with methanol as the eluent. The
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recovery rates of all the analyte were greater 82.17%. The material still maintains high
performance after ten cycles.

(3) When the established method was applied to environmental water samples, the
recoveries were 75.22–94.66%. The RSD was 0.08–3.70%.
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