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Purpose
Artificial intelligence (AI)-based image analysis tools to quantify the brain have become commercialized. However, insufficient data for learning 
and scanner specificity is a limitation for achieving high quality. In the present study, the performance of personalized brain segmentation soft-
ware when applied to multicenter data using an AI model trained on data from a single institution was improved.

Methods
Preindicators of brain white matter (WM) information from the training dataset were utilized for preprocessing. During learning, data of cogni-
tively normal (CN) individuals from a single center were utilized, and data of CN individuals and Alzheimer disease (AD) patients enrolled in mul-
tiple centers were considered the test set.

Results
The preprocessing based on the preindicator (dice similarity coefficient [DSC], 0.8567) resulted in a better performance than without (DSC, 
0.7921). The standard deviation (SD) of the WM region intensity (DSC, 0.8303) had a more substantial influence on the performance than the 
average intensity (DSC, 0.6591). When the SD of the test data WM intensity was smaller than the learning data, the performance improved 
(0.03 increase in lower SD, 0.05 decrease in higher SD). Furthermore, preindicator-based pretreatment increased the correlation of mean cor-
tical thickness of the entire gray matter between Atroscan and FreeSurfer, and data augmentation without preprocessing did not.Both preindi-
cator processing and data augmentation improved the correlation coefficient from 0.7584 to 0.8165.

Conclusion
Data augmentation and preindicator-based preprocessing of training data can improve the performance of AI-based brain segmentation soft-
ware, both increasing the generalizability and stability of brain segmentation software. 
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Introduction 
Cortical thinning and regional atrophy of the brain is associat-

ed with various health conditions, such as long-standing hy-

pertension [1], diabetes [2], obesity [3], neurodegenerative 

disease, and normal aging [4]. Neuroinflammation has been 

suggested as a plausible mechanism of cortical thinning [4]. 

Quantitative characterization of the brain in neurodegenera-

tive diseases, such as Alzheimer disease (AD), has been per-

formed using cortical and hippocampal segmentation and vi-

sualized on magnetic resonance imaging (MRI). For brain im-

aging, statistical parametric mapping and FreeSurfer have 

been widely used [5]. Recently, image data with processing 

techniques and deep learning methods have been used for 

research in various ways. Studies based on convolutional neu-

ral networks (CNNs) have mainly focused on deep learning 

using medical images [6–8]. These methods perform well in 

detecting brain tumors and stroke lesion segmentation [9,10]. 

In dementia, factors such as segmentation, gray matter (GM) 

tissue maps, and cortical thickness, have high predictive value 

in AD. Therefore, determining how segmentation can be im-

proved is critical to achieving accurate clinical decisions. 

Deep learning analysis of MRI can potentially assist in detect-

ing biomarkers before the appearance of dementia symptoms 

which can help clinicians determine a confirmatory diagno-

sis. In addition, image biomarkers can be utilized for disease 

assessment, differential diagnosis, monitoring, and treatment 

[11]. However, obtaining a sufficient number of medical imag-

es for artificial intelligence (AI) learning is difficult. Further-

more, the AI models may have low performance if the images 

utilized for learning are acquired using different procedures 

and scanners at multiple institutions with insufficient vari-

ability in resolution, noise, and tissue appearance [12,13]. 

To address these issues, images should be standardized with 

preprocessing methods, such as brain registration, warping, 

and voxel-based morphometry [14–16]. In addition, data aug-

mentation, which increases the sample responsiveness of a 

model, can be applied [17–19]. However, verifying whether an 

AI model exhibits satisfactory performance before imple-

menting these methods is difficult. Therefore, we developed a 

system that complements model performance using prelimi-

nary indicators. The preindex system used in this study in-

cludes GM as the detection object and white matter (WM) as 

the preindicator. 

In our preliminary indicator hypothesis, signals acquired in 

medical images have characteristic information based on de-

vices and acquisition methods. Data derived from a specific 

area have a higher signal-to-noise ratio (SNR) than that ob-

tained from the entire image. The performance of AI models 

generally decreases when external data are used without 

training. Furthermore, converting the external data based on 

the characteristics of the training data improves performance. 

In the present study, brain WM was used as a preindicator be-

cause it occupies an extensive area in the brain compared 

with the cortex or other specific areas. Furthermore, the in-

tensity of this area appears relatively uniform on MRI scans. 

Because this area is large, even if some portions of the WM are 

not detected, or other small areas are falsely detected, the ef-

fect on the average and standard deviation (SD) of all the di-

vided pixels would be small. Preindicator-based preprocess-

ing and data augmentation were utilized to improve mod-

el-based segmentation processes and improve software- 

based clinical evaluations and diagnostic efficacy. 

Methods 
This study was performed in accordance with the Declaration 

of Helsinki. The study was approved by the Institutional Re-

view Board of Seoul National University Hospital (No. 1712-

038-905) and written informed consent was waived due to its 

retrospective nature.

Dataset preparation 

Alzheimer’s Disease Neuroimaging Initiative 
Data used in these analyses were obtained from the Alzhei-

mer’s Disease Neuroimaging Initiative (ADNI) database 

(http://www.loni.ucla.edu/ADNI/Data/index.shtml, adni.

loni.usc.edu), a publicly available database launched in 2003 

as a public-private partnership. MRI T1 sagittal data (n =  480) 

were collected. The data were labeled during the data acquisi-

tion process. Subjects were divided into cognitively normal 

Table 1 The demographic data for the training dataset

Variable Male (n) Female (n) Age (yr)

ADNI (model evaluation data)
  AD 144 132 76.63 ±  5.84
  CN 122 82 77.51 ±  5.71
One institute (model training data)
  CN 137 164 63.51 ±  9.50

ADNI, Alzheimer’s Disease Neuroimaging Initiative database (adni.loni.usc.edu); 
AD, Alzheimer disease; CN, cognitively normal.
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(CN, n =  204) and AD (n =  276) groups. The demographics of 

the study population are shown in Table 1. 

Local medical check-up center 
Another dataset of MRIs from 301 individuals (male, 137 and 

female, 164) was randomly selected from a healthy cohort in 

the Seoul National University Hospital Healthcare System 

Gangnam Center (IRB number, H-1712-038-905). Subjects 

who had undergone brain MRI including three-dimensional 

(3D) magnetization-prepared rapid gradient-echo sequence 

as part of dementia screening were considered. Whether the 

subjects were CN was determined with a comprehensive neu-

ropsychological battery using the Korean version of the Con-

sortium to Establish a Registry for Alzheimer’s Disease and 

clinical counseling by an experienced neurologist (Park KI) 

and psychiatrist (Yoon DH). 

The local dataset was used for training and model selection 

and the ADNI data were used to evaluate the final model per-

formance. 

Data processing 

Ground truth image segmentation 
GM and WM in the brain were annotated using the FreeSurfer 

software package (version 6.0.0, available at http://surfer.nmr.

mgh.harvard.edu), which was recently summarized by Fischl 

[20]; this software facilitates the automated parcellation of the 

brain cortex and subcortical structures. The GM and WM ar-

eas were automatically measured using FreeSurfer on a Linux 

workstation. The sagittal MRI was reformatted to an axial im-

age and then converted to FreeSurfer mgz format. The proce-

dure for GM and WM parcellation automatically assigns a 

neuroanatomical label to each voxel in an MRI volume based 

on probabilistic information estimated automatically from a 

manually labeled training set. The optimal linear transform 

was calculated by maximizing the likelihood of the input im-

age. An atlas constructed from manually labeled images of 14 

young and middle-aged subjects was utilized and nonlinear 

transformation was applied. Bayesian segmentation was per-

formed and the maximum posteriori estimate of the labeling 

was determined. 

Data augmentation 
The factor considered during the data augmentation process 

was whether the image could occur. In general, for image data 

augmentation, several processes, such as translation, flipping, 

rotation, stretching, sharing, elastic deformation, and contrast 

augmentation were performed. However, because sharing 

and elastic deformation can alter the shape of the brain, and 

flipping did not significantly occur, 3D translation and rota-

tion (n =  5) and contrast augmentation (n =  5) were per-

formed. Finally, a dataset that was 10 times the data held was 

obtained. Translation and 3D rotation were performed by ap-

plying randomly generated values from the normal distribu-

tion of the average of 0 and the scale of 0.1 to the transforma-

tion matrix. The contrast augmentation shifted the average of 

the entire image by adding randomly generated values from 

the average distribution of 0 and the scale of 5 to intensity val-

ues between −20 and 20. 

Gray matter and white matter segmentation training 
Atroscan (http://jlkgroup.com/#/platform/aihub), which pro-

vides complete segmentation of the brain cortex and subcor-

tical structures, was used for GM and WM segmentation. The 

Atroscan segmentation algorithm is shown in Supplementary 

Figure 1. The 3D U-Net has a downsampling and an upsam-

pling path, each with four resolution steps. In the downsam-

pling path, each layer has three 3 ×  3 ×  3 convolutions and 

batch normalization, which is followed by a rectified linear 

unit (ReLU) activation function, and a 2 ×  2 ×  2 max pooling 

layer for downsampling. In the upsampling path, each layer 

uses a deconvolution with a kernel size of 2 ×  2 ×  2, followed 

by three 3 ×  3 ×  3 convolutions and batch normalization with 

ReLU. The network has shortcut connections between corre-

sponding layers with the same resolution in the downsam-

pling and upsampling paths. 

For the loss function, dice similarity coefficient (DSC) was 

used, a key measure to determine the performance for se-

mantic segmentation and calculated as follows:  

DSC =  
     2 ×  area of overlap          

(Equation 1)
 

                  Total combined pixels

For model training, the initial value of the model was set as a 

random variable. During learning, 100 epochs were per-

formed and the training model that showed the highest DSC 

in the test set was selected as the final model. Input data for 

learning were downloaded from data 256 ×  256 ×  256 to 128 

×  128 ×  128 in size. Each data point was used for learning af-

ter rescaling to have a maximum intensity of 255 and dividing 

the rescaled data point by the mean and SD of the entire data. 

Before data augmentation, 80% of the single-center data were 

randomly selected. These data were reorganized into a data 

set multiplied 10 times with a data augmentation process and 
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a data set that had not undergone augmentation. The remain-

ing 20% of the data were used as a validation set to verify the 

performance of the model and applied to the collected ADNI 

data to evaluate whether a change in performance based on 

the pretreatment and data augmentation process on the WM 

occurred. 

The DSC and correlation coefficient of the cortical thickness 

determined model performance. DSC evaluated model seg-

mentation and the correlation coefficient determined model 

capabilities such as structural characteristics extraction. 

Preprocessing methods using white matter  
Brain WM was detected with a model of the same structure as 

the CNN model designed to segment the detection target. The 

average and SD of the area were measured. Accordingly, the 

3D MRI data were shifted to the training mean and SD of the 

data. For comparison, the cortical GM, WM, and cerebrospi-

nal fluid areas were determined.

               		    
xoutput =      	        ×  (xinput− xinput_wm) + xtrain_wm

					     (Equation 2)

where xinput, xoutput, xtrain_wm, xinput_wm, xinput_wm, nvoxel_train_wm, nvox
el_in-

put_wm, ntrain denote the input MRI T1 image, preprocessing im-

age, signal intensity under WM area of training data, signal in-

tensity under WM area of input data, voxel number under 

WM area of training data, and the number of training data, re-

spectively. The 255-upper area of xoutput was converted to 255 

and the 0-under area of xoutput was converted to 0. Figure 1 de-

picts the preprocessing changes in representative images.  

Cortical thickness measurement 
In the 3D space, 173 direction vectors were calculated, repre-

senting all the direction vectors that can occur in a 6 ×  6 ×  6 

space and were measured under the assumption that cortical 

thickness does not exceed 6 mm. In addition, each pixel of the 

GM determined the minimum fulfilled direction [21]. The 

minimum length of each voxel eliminated the upper 90% and 

lower 10%. Furthermore, the minimum length group was av-

eraged. When comparing our data with the FreeSurfer results, 

a Pearson correlation of 0.9623 (r-value) was obtained (Sup-

plementary Figure 2).  

Statistics
For statistical comparison, multicenter MRI data from ADNI 

were used. Two tests were performed to compare the perfor-

mance of the preindicators. The change in DSC (ΔDSC) was 

evaluated with different techniques and the cortical thickness 

in dementia and nondementia groups was measured using 

each technique. A paired t-test and an independent t-test 

Figure 1 Representative images depicting changes due to preprocessing based on signal intensity of white matter

In cases with a small standard deviation (SD) of signal intensity, (A) white matter SD increased and (B) decreased in cases with large SD. (C) Repre-
sentative figure of cortical thickness measurement. Images have been color-coded for visualization purposes only in this figure.
DSC, dice similarity coefficient.
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were used to compare the cortical thickness between demen-

tia and nondementia groups. In addition, Cohen’s D was used 

to compare effect sizes based on differences between means 

as follows: 

Cohe’s D =     , s =       

where x1, n1, and s1 denote the average of sample, sample 

number, and SD of the sample, respectively. 

Results 
Model performance evaluation using dice similarity 
coefficient 
Whether DSC, an indicator of the model performance of GM 

segmentation, changes with data augmentation and WM pre-

processing was investigated. Model performance was lower 

when multicenter data were validated using a model trained 

on data from a single institution. However, the performance 

improved with data augmentation during learning and WM-

based preprocessing of the test data. The average DSC in-

creased by approximately 0.06 when both methods were im-

plemented (Table 2). When using a test dataset of dementia 

patients, the model algorithm performed well although it was 

trained on a CN database (Table 2). The ΔDSC after WM-

based preprocessing (p <  0.001) and data augmentation  

(p <  0.001) was statistically significant with a t-statistic of 

7.6762 after preprocessing and 6.2039 after data augmenta-

tion (paired t-test). Specifically, WM-based preprocessing en-

hanced the performance on test data with a lower WM inten-

sity SD than training data. In the AD and CN groups, similar 

patterns were observed within each group. In the AD group, 

ΔDSC after treatment for lower SD (n =  164) was +0.0536, and 

ΔDSC for higher SD (n =  114) was −0.0863. In the CN group, 

ΔDSC at lower SD (n =  149) was +0.0457 and ΔDSC at higher 

Figure 2 The difference in DSC based on white matter preprocessing

(A) Without augmentation and (B) with augmentation (red line denotes the average standard deviation [SD] of the training set, green circles indicate 
DSC lower than 0, indicating worse performance by preprocessing). The population with higher SD than the training set showed decreased DSC after 
preprocessing; augmentation complemented this effect.
DSC, dice similarity coefficient.
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Table 2 Dice similarity coefficients according to preindicator 
case

Preprocessing
Augmentation

No Yes

Cognitively normal
  No 0.7921 0.836
  Yes
    White matter 0.8298 0.8567
    Entire brain 0.5255 0.6989
Alzheimer disease
  No 0.7629 0.802
  Yes
    White matter 0.8024 0.8293
    Entire brain 0.3145 0.5276

(Equation 3)
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SD (n =  55) was −0.0129. However, the differences between 

the groups were not statistically significant. Unlike WM-based 

preprocessing, data augmentation of learning data consis-

tently increased DSC regardless of test data WM intensity SD 

(Figure 2). However, this pattern was not evident based on the 

average WM intensity of the training data (Supplementary 

Figure 3). Based on the above observations, we believe that 

adjusting SD with data augmentation, which performs inten-

sity shift and rotation, can improve model performance. The 

performance with the single-center data was the highest (vali-

dation DSC, 0.9142), followed by the external multicenter CN 

validation (DSC, 0.8347) and AD (DSC, 0.7663) compared 

with pretreatment. This result indicated the internal valida-

tion performance improved from 0.9097 to 0.9142 compared 

with the model trained with augmentation and without SD 

adjustment; however, the external performance declined 

(DSC of CN validation, 0.8360 to 0.8347; DSC of AD validation, 

0.8020 to 0.7663). In addition, model performance was ana-

lyzed using entire brain values as an indicator. Although the 

analysis was performed using the same process, the DSC with 

data augmentation was 0.6989 and 0.5255 without augmenta-

tion. Thus, considering brain WM, model performance was 

better. 

When parcellation was taken into consideration, WM-based 

preprocessing did not show any meaningful positive effects. 

However, augmentation showed a significant increase in per-

formance, where the values improved from 0.6475, 0.6436, 

0.6383, and 0.5730 to 0.7226, 0.7075, 0.7293, and 0.6250 for the 

frontal, temporal, parietal, and occipital region, respectively 

(paired t-test, p <  0.001) (Supplementary Figure 4).  

Data augmentation and white matter preprocessing 
improve correlation coefficient 
In addition, whether data augmentation and WM preprocess-

ing can alter the correlation coefficient that indicates model 

performance in the entire GM segmentation was investigated. 

When comparing the cortical thickness in AD and CN groups, 

the AD group showed significantly lower cortical thickness 

than the CN group in all index methods. Regarding t-values 

with augmentation and preprocessing, only preprocessing, 

only augmentation, and without augmentation and prepro-

cessing were 16.764, 14.474, 12.206, and 13.404, respectively. 

Regarding Cohen’s D values with augmentation and prepro-

cessing, only preprocessing, only augmentation, and without 

augmentation and preprocessing were 1.737, 1.499, 1.264, and 

1.389, respectively (Figure 3). However, the correlation of cor-

tical thickness between FreeSurfer and Atroscan varied in dif-

ferent situations. Although data augmentation increased the 

segmentation DSC, the correlation of cortical thickness de-

creased. However, for index-based preprocessing, the correla-

tion of cortical thickness increased (Figure 4). The highest 

correlation (0.8165) between FreeSurfer and Atroscan was 

obtained with indicator processing as well as data augmenta-

Figure 3 Cortical thickness comparison between AD and CN groups based on index methods

Dice similarity coefficient (A) and mean cortical thickness (B) based on different procedures.
Aug, augmentation; Pre, preprocessing; CN, cognitively normal; AD, Alzheimer disease.
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tion (p <  0.001). A correlation coefficient of 0.7538 was ob-

tained without augmentation and indicator processing (p <  

0.001), and the correlation coefficient decreased to 0.6097 (p 

<  0.001) when only data augmentation was performed. When 

only indicator processing was performed without data aug-

mentation, the value was 0.7584 (p <  0.001). 

Discussion 
In the present study, preprocessing using preindicators was 

verified to improve model performance when a deep learning 

model trained on data from a single site was applied to data 

from multiple centers. To validate our preprocessing ap-

proach, uniform subjects with normal cognitive functions and 

data from a single institution with limited inter-device vari-

ability for learning were used. 

The performance of AI solutions in studying dementia has 

been extensively studied. Applications of AI in accurately di-

agnosing dementia and classifying it into subtypes have been 

compared with doctors’ diagnoses [22-27]. Correlation analy-

ses have been conducted in the segmentation area using pro-

grams such as arterial spin labeling, FreeSurfer [28], or manu-

al segmentation [29]. The advancement of technology has in-

creased analysis speed but generalizability can still be im-

proved. 

Data augmentation and preprocessing are widely used to im-

prove the performance of medical image segmentation tasks. 

As the volume of training data decreases, this effect can be 

maximized [30]. In general, the state-of-the-art performance 

Figure 4 Correlation of cortical thickness obtained from the developed model with FreeSurfer results

Cortical thickness was compared between Alzheimer disease and cognitively normal groups based on index methods. (A) Original image and no 
pre-processing [A(−) P(−)]. (B) Original image and pre-processing [A(−) P(+)]. (C) Augmentation and no pre-processing [A(+) P(−)]. (D) Augmentation 
and pre-processing of white matter [A(+) P(+)].
Freesurfer: version 6.0.0, available at http://surfer.nmr.mgh.harvard.edu.
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of the top-ranked methods of tissue segmentation in the iSeg-

2019 challenge showed a dice coefficient of 0.85 in GM seg-

mentation [31]; similar DSC scores were obtained in our 

method (DSC, 0.8567). 

To test the first hypothesis that specific image areas may have 

a higher SNR and better information, preprocessing was per-

formed with different preindicators, and the model learned 

from data of CN individuals at a single site. The test index as 

an indicator was brain WM and the control was the entire 

brain. When the brain WM region was used as a preindicator 

instead of the entire brain, the performance significantly in-

creased. Thus, WM can alleviate some differences due to mul-

tiple devices. 

The second hypothesis that characteristics of the external 

data can be converted to fit those of the training data to im-

prove the performance of the AI model was also tested. Pre-

processing utilizing the training data with or without data 

augmentation improved the model performance. Compari-

son with the DSCs of preprocessed and non-processed train-

ing data indicated the performance improved in areas with a 

lower SD than the training data. The performance in areas 

with higher SD was lower. These issues can be resolved with 

data augmentation; without preprocessing of the preindicator 

method, better performance can be obtained when the SD of 

the WM of the test set is higher than the training data.  

Data normalization based on the learning condition may pro-

vide improved results in a condition-dependent manner. In 

addition, if a task matches the characteristics of the training 

data, the effect is based on SD data of intensity rather than the 

average intensity (Supplementary Figure 3). The SD indicates 

the variability of the amplitude and frequency and is less in-

fluenced by the shift effect [32]. Therefore, these features can 

affect the segmentation performance rather than average in-

tensity. 

In contrast, a notable trend was observed when the cortical 

thickness correlation was studied. The difference between the 

AD and CN groups was significant, however, the distribution 

of cortical thickness was wide when data augmentation was 

performed. Conversely, pretreatment narrowed the distribu-

tion of cortical thickness. When data augmentation and WM-

based preprocessing were used simultaneously, the highest 

correlation value of the entire GM thickness between Free-

Surfer and our model was obtained (Figure 4). The change in 

correlation due to preprocessing and data augmentation was 

mainly caused by segmentation because the cortical thickness 

measurement in the same segmentation was 0.9623 (Supple-

mentary Figure 2). This showed that when the corresponding 

index was used to distinguish between the AD and CN groups, 

stable differences could be obtained only with data augmen-

tation and preprocessing. Analysis of cortical thickness be-

tween the AD and CN groups showed that both the t-value 

and Cohen’s distance were highest when data augmentation 

and preprocessing were performed. 

In the present study, a preprocessing method based on a pre-

indicator to achieve better performance of AI algorithms was 

described. This technique, in addition to data augmentation, 

is useful for medical data analyses where obtaining sufficient 

data is difficult. This method showed a significant increase in 

performance under specific settings, thus, insights underpin-

ning performance improvement using data augmentation is 

possible. Although the preprocessing method using only 

mean and SD was used, subsequently, other effects using dif-

ferent techniques should be evaluated. Because the mean and 

SD are important features of MRI intensity, they play an im-

portant role in GM segmentation. However, in GM parcella-

tion, any influence of mean or SD of intensity after prepro-

cessing was not found probably because parcellated areas 

had similar intensity. Therefore, in the future, whether the 

preindicator method will be useful in tasks other than intensi-

ty-based segmentation can be determined. Furthermore, 

these analyses can promote stable measurements of brain 

cortical thickness and further the development of advanced 

methodology for generalizing brain segmentation software. 
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