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Background: Advances in machine learning (ML) technology have opened new avenues

for detection and monitoring of cognitive decline. In this study, a multimodal approach to

Alzheimer’s dementia detection based on the patient’s spontaneous speech is presented.

This approach was tested on a standard, publicly available Alzheimer’s speech dataset

for comparability. The data comprise voice samples from 156 participants (1:1 ratio of

Alzheimer’s to control), matched by age and gender.

Materials and Methods: A recently developed Active Data Representation (ADR)

technique for voice processing was employed as a framework for fusion of acoustic

and textual features at sentence and word level. Temporal aspects of textual features

were investigated in conjunction with acoustic features in order to shed light on the

temporal interplay between paralinguistic (acoustic) and linguistic (textual) aspects of

Alzheimer’s speech. Combinations between several configurations of ADR features and

more traditional bag-of-n-grams approaches were used in an ensemble of classifiers

built and evaluated on a standardised dataset containing recorded speech of scene

descriptions and textual transcripts.

Results: Employing only semantic bag-of-n-grams features, an accuracy of 89.58%

was achieved in distinguishing between Alzheimer’s patients and healthy controls. Adding

temporal and structural information by combining bag-of-n-grams features with ADR

audio/textual features, the accuracy could be improved to 91.67% on the test set.

An accuracy of 93.75% was achieved through late fusion of the three best feature

configurations, which corresponds to a 4.7% improvement over the best result reported

in the literature for this dataset.

Conclusion: The proposed combination of ADR audio and textual features is capable

of successfully modelling temporal aspects of the data. The machine learning approach

toward dementia detection achieves best performance when ADR features are combined

with strong semantic bag-of-n-grams features. This combination leads to state-of-the-art

performance on the AD classification task.

Keywords: Alzheimer’s dementia detection, speech, language, acoustic features, lexical features, natural language

processing, speech processing, machine learning

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2021.642647
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2021.642647&domain=pdf&date_stamp=2021-06-14
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:s.luz@ed.ac.uk
mailto:matej.martinc@ijs.si
https://orcid.org/0000-0002-5150-3359
https://orcid.org/0000-0002-4380-0863
https://orcid.org/0000-0001-8430-7875
https://doi.org/10.3389/fnagi.2021.642647
https://www.frontiersin.org/articles/10.3389/fnagi.2021.642647/full


Martinc et al. Textual and Acoustic Features for AD Diagnosis

1. INTRODUCTION

While the natural history of Alzheimer’s Disease (AD) and the
form of dementia it causes are mainly characterised by memory
impairment, a wide range of cognitive functions are known
to be affected by the process of neurodegeneration triggered
by the disease. Several standardised neuropsychological tests
are currently employed to detect such impairments for the
purposes of diagnosis and assessment of disease progression.
However, these tests often take place in clinics and consist of
constrained cognitive tasks, where the patient’s performance may
be affected by extraneous factors such as variations in mood,
poor sleep the night before the test, etc. Recent progress in
artificial intelligence (AI) and machine learning (ML) technology
has opened new avenues for more comprehensive monitoring
of cognitive function, and tests based on spontaneous speech
and language data have emerged as possible tools for diagnostic
and prognostic assessment (de la Fuente Garcia et al., 2020;
Petti et al., 2020). In this paper we investigate the hypothesis
that integration of acoustic and textual data into a unified ML
model enhances the accuracy of AD detection. Specifically, we
present a model that integrates acoustic and textual modalities
on a temporal (i.e., time-based) dimension. The motivation for
doing so arises from the nature of the task used to elicit the
speech data used in this study. These data consist of spontaneous
speech elicited through the Cookie Theft description task from
the Boston Diagnostic Aphasia Exam (Goodglass et al., 2001),
which involves visuospatial as well as verbal ability.

Along with language, visuospatial function is affected early
in AD. This is manifested in the form of non-salience of visual
input stimulus, and degraded attentional focus and visual search,
among other disturbances (Cronin-Golomb, 2011). Using a
similar picture description task, Meguro et al. (2001) observed
hemispatial visual searching impairment in some participants
with AD, in correlation with decreased contralateral parietal
blood flow. Other studies involving picture descriptions have
associated AD with simultanagnosia, a disorder of attentive
exploration of the spatial field (Vighetto, 2013). They found
that persons with AD tended to produce “slow and partial
[descriptions], one detail after the other, without ability to
capture a global perception of the drawing.” Our assumption is
that such disturbances of visuospatial function will be reflected in
differences in temporal order between the descriptions produced
by participants with AD and those produced by non-AD
participants. As Cummings (2019) observed, while the Cookie
Theft picture is a static scene, causal and temporal relations can
be inferred from the various elements depicted in it. Capturing
these relations is necessary to give a complete description of the
picture, as “certain events in the scene must take place before
other events in order for a description of the picture to make
sense.” If, as seems likely, degraded attention focus hinders the
participant’s ability to identify such events, one should expect the
temporal organisation of events in the scene description to differ
in AD.

We therefore propose an approach to speech and language
which incorporates temporal information. Unlike most other
approaches, where content is represented as order-agnostic

features with at most short distance dependencies, our model
accounts for temporal aspects of both linguistic and acoustic
features. We employ our recently developed Active Data
Representation (ADR) processing technique (Haider et al., 2020)
and present a novel way of fusing acoustic and text features
at sentence and word level. We show that these features are
capable of modelling temporal aspects of text and audio, but fall
short of semantic modelling. To address this shortcoming, we
propose combining ADR features with term frequency-inverse
document frequency weighted bag-of-n-grams features, which
proved effective in modelling semantics in previous studies
(Martinc and Pollak, 2020). The final combination of ADR and
bag-of-n-grams features leads to state-of-the-art performance on
the AD classification task1.

2. RELATED WORK

The complex multimodal ways in which AD symptoms
may appear calls for increasingly interdisciplinary research
(Turner et al., 2020). Current research on AD involves not
only biomedicine, neuroscience, and cognitive psychology, but
also increasingly AI and machine learning methods. Studies
connecting language and AD have focused mostly on formal
aspects of language (i.e., lexicon, syntax and semantics), but the
analysis of continuous speech has been progressively seen by
researchers as a source of information that may support diagnosis
of dementia and related conditions (Lopez-de Ipiña et al., 2015,
2016; Luz et al., 2018; Toth et al., 2018; Haulcy and Glass, 2021;
Mahajan and Baths, 2021).

Language research into AD has employed high-level features
such as information content, comprehension of complexity,
picture naming and word-list generation as predictors of disease
progression (Reilly et al., 2010). A study by Roark et al.
(2011) used natural language processing (NLP) and automatic
speech recognition (ASR) to automatically annotate and time-
align a few spoken language features (pause frequency and
duration), and compared these methods to manual analysis.
They analysed audio recordings of 74 neuropsychological
assessments to classify mild cognitive impairment (MCI) and
healthy elderly participants. Their best classifier obtained an
area under the receiver operating curve (AUC) of 86% by
including a combination of automated speech and language
features and cognitive tests scores. Jarrold et al. (2014) worked
with a dataset consisting of semi-structured interviews from 9
healthy participants, 9 with AD, 9 with frontotemporal dementia,
13 with semantic dementia, and 8 with progressive nonfluent
aphasia. With an automatic speech recognition (ASR) system,
they extracted 41 features, including speech rate, and the mean
and standard deviation of the duration of pauses, vowels,
and consonants. They used a multilayered perceptron network,
achieving an accuracy of 88% for AD vs. healthy subjects
based on lexical and acoustic features. A more recent study
by Luz et al. (2018) extracted graph-based features encoding

1The source code for the experiments and methods described in this paper is

available under the terms of the MIT free software license at https://github.com/

matejMartinc/alzheimer_diagnosis.
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turn-taking patterns and speech rate (Luz, 2009) from the
Carolina Conversations Collection (Pope and Davis, 2011) of
spontaneous interviews of AD patients and healthy controls.
Their additive logistic regressionmodel obtained 85% accuracy in
distinguishing dialogues involving an AD speaker from controls.

More recently, multimodal representations have been
explored, combining linguistic and paralinguistic aspects of
communication (Haider et al., 2020; Mahajan and Baths, 2021),
as well as eye-tracking and other sensor modalities (Jonell et al.,
2021). Those studies combined signal processing and machine
learning to detect subtle acoustic signs of neurodegeneration
which may be imperceptible to human diagnosticians. Toth
et al. (2018), for instance, found that filled pauses (sounds
like “hmmm,” etc.) could not be reliably detected by human
annotators, and that detection improved by using ASR-generated
transcriptions. Using ASR features with a random forest
classifier, Toth et al. (2018) reported an improvement over
manually generated features (75 vs. 69.1% accuracy) for AD
detection. Similar machine learning methods were used by
König et al. (2015), who reported an accuracy of 79% when
distinguishing MCI participants from healthy controls; 94%
for AD vs. healthy; and 80% for MCI vs. AD. However, their
tests involved different data collection procedures, including
semantic fluency and sentence repetition tasks, in addition to
a picture description task, with most features extracted from
non-spontaneous, non-connected speech data. Motivated by
the prospect of comprehensive cognitive status monitoring
(Luz, 2017), studies in this field have moved toward analysis of
spontaneous speech, and toward languages other than English.
Weiner et al. (2016) analysed semi-structured German dialogues
employing linear discriminant analysis to classify participants
as healthy controls, Alzheimer’s or age-associated cognitive
decline, obtaining a mean accuracy score of 85.7%. This work has
later been extended for prediction of development of dementia
within 5 and 12 years in participants of the Interdisciplinary
Longitudinal Study on Adult Development And Aging (ILSE),
using a combination of acoustic and linguistic features (Weiner
et al., 2019). Others have investigated the use of virtual agents as
a data collection strategy for AD detection. Tanaka et al. (2017)
collected dialogue, eye-tracking and video data from 29 Japanese
participants who conducted structured dialogues with a virtual
agent. They obtained 83% accuracy in classifying AD and control
participants, using combined acoustic and textual modalities
on a support vector machine (SVM) classifier. Mirheidari et al.
(2019a) compared the accuracy of automated conversational
analysis (ML with a combination of acoustic and linguistic
features) for detection of AD on recorded doctor-patient
consultations and on dialogues recorded through human-robot
interaction. They reported similar accuracy for both settings
using manual transcriptions (≈ 90%), suggesting that automated
dialogue collection could be useful in mental health monitoring.

These studies evidence the heterogeneity with which language
and speech impairments are displayed in AD and related diseases.
Duong et al. (2005) ran a cluster analysis with data from picture
narratives and concluded that, rather than a common profile,
there were several discourse patterns that could be indicative of
differences between healthy ageing and AD. This heterogeneity

seems to be more evident in AD than in specific disorders such
as primary progressive aphasia (Ahmed et al., 2013), especially
in early stages of AD (Hodges and Patterson, 1995). Therefore,
we hypothesise that a comprehensive analysis of state-of-the-art
paralinguistic feature sets which have been successfully used in
different prediction tasks may help identify such patterns and
enhance accuracy of early AD detection.

The Pitt Corpus (Becker et al., 1994), which forms
part of the DementiaBank (MacWhinney, 2019), and more
specifically its Cookie Theft test sub-corpus, remains one of
the very few available datasets to link spontaneous speech
from dementia patients and healthy controls (recordings and
transcriptions) with clinical information. Therefore, this dataset
has been used in several studies, including the studies by
Fraser et al. (2016), Hernández-Domínguez et al. (2018), and
others (Yancheva and Rudzicz, 2016; Luz, 2017; Orimaye
et al., 2017; Guo et al., 2019; Mirheidari et al., 2019b;
Haider et al., 2020). These studies used different combinations
of information coverage measures, linguistic features and
acoustic features for automatic classification of dementia
under different representation methods, ranging from simple
descriptive statistics to more complex feature embedding
representations. Among these studies, only Mirheidari et al.
(2019b) investigated the possible relation, which we discussed
above, between the temporal organisation of picture descriptions
and cognitive impairment. In that work, verbal references were
used to simulate the participants gaze and extract features
corresponding to “areas of interest.” By combining such features
with timing and pause information, and GloVe word vectors
(Pennington et al., 2014) they were able to achieve 80% F1 score
on manually transcribed data, and F1 = 72% on ASR outputs.

Speech research aiming at dementia detection is
heterogeneous and comparisons are difficult to draw.
Heterogeneity of dataset hinders comparison among the
various studies on spontaneous speech for AD detection. The
ADReSS challenge dataset (Luz et al., 2020) was created to
mitigate this problem. In the shared task posed by ADReSS, all
participants used the same dataset, which was balanced for age
and gender and acoustically normalised. This is the dataset used
in the present study. The various approaches proposed to tackle
the ADReSS challenge included state-of-the-art deep learning
and word embedding methods, and focused mainly on linguistic
features extracted from the manually generated transcripts. The
winning team (Yuan et al., 2020) leveraged audio recordings
to obtain information about pauses in speech, encoding them
as punctuation. The modified transcripts with encoded pauses
were fed into an ensemble of 50 BERT (Devlin et al., 2019) and
50 ERNIE (Zhang et al., 2019) models, and majority voting was
employed to derive the final predictions on the test set. They
reported best accuracy (89.58%) when an ensemble of 50 ERNIE
models was applied.

3. DATASET

This study uses the ADReSS subset of the Pitt Corpus, derived
from a dataset gathered longitudinally between 1983 and 1988
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on a yearly basis as part of the Alzheimer Research Program at
the University of Pittsburgh (Becker et al., 1994; Corey Bloom
and Fleisher, 2000), and made available through DementiaBank
(MacWhinney, 2019). Participants are categorised into three
groups: dementia, control (non-AD), and unknown status. All
participants were required to be above 44 years of age, have
at least 7 years of education, have no history of nervous
system disorders or be taking neuroleptic medication, have an
initial Mini-Mental State Examination (MMSE) score of 10
or more and be able to provide informed consent. Extensive
neuropsychological and physical assessments conducted on the
participants are also included (Becker et al., 1994).

While the Pitt Corpus contains data elicited through several
tasks, our selected subset exclusively used the Cookie Theft
description task subset, where participants were asked to describe
the Cookie Theft picture from the Boston Diagnostic Aphasia
Examination (Becker et al., 1994; Goodglass et al., 2001). This
study specifically uses a subset of AD and control data matched
for age and gender provided by the ADReSS challenge (Luz
et al., 2020) to avoid bias, guarantee repeatability, and allow
direct comparison with other ML approaches. In the following
section, we provide a brief description of the methods used in
the generation of the ADReSS dataset. The dataset and baseline
results for the AD detection challenge are presented in detail by
Luz et al. (2020).

3.1. The ADReSS Dataset
The pipeline employed in the preprocessing of the audio files is
shown on the top part of Supplementary Figure 1. Initially, noise
was sampled from short intervals from each audio recording,
and subsequently spectral subtraction was applied to eliminate
any noise matching those samples. Other non-target sounds
such as background talk, ambulance sirens and door slamming,
were minimised through selection of audio files with signal-
to-noise ratio (SNR) ≥ −17 dB. Where multiple audio files
existed per participant, the ADReSS organisers chose a subset
that maximised audio quality and the number of samples in the
matched dataset by selecting the latest recording, subjected to age
and gender matching constraints. This resulted in a selection of
62 (≈ 40%) recordings taken on baseline visits, 57 (≈ 37%) on
first visits, 19 (≈ 12%) on second visits, 17 (≈ 11%) on third
visits and one (< 1%) on the fourth visit.

As age and gender are considered major risk factors for
dementia (Dukart et al., 2011), these variables are possible
confounders between the AD and non-AD groups. To eliminate
this possible confounding, these groups are matched for age and
gender in the ADReSS dataset. For age, 5-year ranges were chosen
empirically to optimise the number of recordings included in the
final dataset. As a result, 156 participants matched the inclusion
criteria. Of these, 78 were healthy and 78 were diagnosed with
probable AD. Supplementary Table 1 presents the demographics
of the data used for training and testing. We note that the only
patient in the [50, 55) age interval in the AD training set had
an MMSE of 30, which would not normally match the diagnosis
criterion for AD. Upon detailed inspection of the Pitt metadata
we found that this patient in fact had an MCI diagnosis (memory
only) and therefore should not have been included in the dataset.

However, we decided to keep this data point in our training set for
comparability with other models trained on the ADReSS dataset.

4. TEMPORAL ANALYSIS

As discussed in section 1, temporal aspects of the descriptions
might provide important predictors in distinguishing between
AD and non-AD speech. In this section, we present a
temporal analysis of the transcripts, investigating the underlying
assumption that the order in which specific situations in
the cookie theft picture (see Figure 1) are described differs.
More specifically, we investigate if there is enough information
available for the models to detect the temporal discrepancies
between the two diagnosis groups.

4.1. Training Set Analysis
In order to gain insight into whether the above hypothesis of
temporal contrast between AD and non-AD patients is plausible,
we conducted a statistical analysis on the training set, focusing
on nouns, due to their function of denoting objects that can
be easily connected to specific events in the image. Using the
Stanza library (Qi et al., 2020) for assigning part-of-speech tags
and lemmatisation, we extracted lemmas of nouns that appear
at least 20 times in the test set. A threshold of 20 was used to
filter out words used by a small minority of patients, which do not
necessarily describe the events depicted in the picture. Since we
are only interested in the differences between the target groups
in regards to temporal aspect of the patient’s description of the
image, we also removed nouns that appear only in transcripts
belonging to a certain group. This way we obtain a list of 20 nouns
presented in Figure 1, which correspond to the constituents of
the picture description task.

We determine a transcript position for each appearance of
each noun (e.g., if the noun appears as the first word in the
corpus, the position is one) and calculate an average noun
position for each class, that is, the average of all positions of a
specific noun in each class. The nouns in Figure 1 are sorted
according to the difference between the average positions in
each class.

One can see that the noun plate, for instance, has very different
positions in descriptions produced by the distinct groups. It
appears in sentences such as “Two cups and a plate are on the
counter there.” and “The lady is wiping a plate while the sink
overflows”., which are sentences describing details most likely
not noticed by all participants (Cummings, 2019). Another noun
with different positions is thing, which appears in sentences such
as “And the whole thing is going to collapse.”, describing more
than just one specific element or an action concerning several
constituents in the picture. Floor, the noun with the third biggest
difference between the average positions in each class on the other
hand appears in sentences such as “There’s water on the floor.” and
“And the stool is going to knock him on the floor.”, and is related
to more central parts of the action seen in the picture. While
both AD patients and non-AD control group use these nouns to
describe the picture and the actions related to these nouns, they
appear to focus on them at different times in their descriptions.
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FIGURE 1 | Average position of nouns that appear at least 20 times in the training set. AD and non-AD stand for average position in the speech transcripts of patients

with AD and control group patients, respectively. Difference denotes the absolute difference between these averages, and Freq denotes the frequency of the noun in

the corpus. The nouns are sorted according to the difference column.

The nouns at the end of the list are also interesting, since
they denote situations in the picture described synchronously by
both AD and non-AD patients. Noun hand is mostly related to a
situation of the boy grabbing a cookie (e.g., “He’s grabbing a cookie
in his hand.”) or to a situation of the girl reaching for a cookie
(e.g., “And the girl’s trying to help and she’s reaching her hand
up.”). The noun kitchen appears in sentences such as “Uh there’s
a set of kitchen cabinets.”, mostly describing static elements in the
image. Similarly can be said for the noun curtain, which mostly
appears in sentences describing static elements (e.g., Curtains
at the window.) but can nevertheless also appear in sentences
describing some rather detailed observations (e.g., “Curtains are
blowing I think.”).

4.2. Modelling Temporal Differences With
Temporal Bag-of-Words
While the statistical analysis above offers some evidence of
temporal differences in transcripts of AD and non-AD patients,
a question remains as to whether classification models can detect
these subtle differences. While assuming that they can is in our
opinion a reasonable hypothesis, there is at least one reason
to doubt this hypothesis. The presence of stronger features
(i.e., semantic features, such as unigrams appearing only in one
class) might cause the classifier to ascribe low importance to
less subtle temporal aspects. Since in this section our focus is
on ascertaining whether modelling of temporal aspects of the
transcripts is possible rather than obtaining optimal accuracy
(which is addressed in section 5.1), we can easily avoid this

problem by restricting the classifier’s model to contain only
temporal features.

Therefore, we employed a simple bag-of-words model (Baeza-
Yates and Ribeiro-Neto, 1999) to confirm or reject the hypothesis
that the temporal differences between the non-AD and AD
groups observed in the training set (see section 4.1) are relevant
to the classification model. To track temporal order each
transcript is divided into three sequential chunks of the same
word length2. Words in each transcript belonging to the first
chunk are given a suffix of _1, words belonging to the second
chunk are given a suffix of _2, and words belonging to the third
chunk are given a suffix of _3. This way the same words appearing
in different sections of the transcript are distinguished by the
bag-of-words model and we therefore obtain three features for
each word, since in this bag-of-words model the same word
with a different suffix is treated as a different word. Thus, we
build a classifier that, rather than simply focusing on semantic
differences (i.e., how many times a specific word appears in a
specific transcript belonging to a specific group) also focuses on
temporal differences (i.e., whether a specific word appears in a
specific temporal chunk of a transcript belonging to a specific
group). As we limited the word features in this model to the
nouns appearing in Figure 1, the classifier is learnt to predict AD
only on the basis of 60 features (i.e., 20 words from a list, each of

2The number of chunks was determined by finding the largest possible number of

chunks where each set of chunks containing words from distinct positions in the

text would contain at least one instance of each noun presented in Figure 1.
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them with three distinct suffixes according to the position in the
text) derived from 20 nouns, which appear in transcripts of both
AD and non-AD patients.

We used the same classification approach as in our
classification experiments described in detail in section 5.1, that
is, we trained and tested 50 random forest classifiers (Breiman,
2001) with 50 trees of maximum depth 5 by employing leave-
one-out cross validation (LOOCV) on the training set, each time
using a different random seed. The predictions of these models
on the training set were then used for majority voting in order to
derive final predictions3.

We measured the performance of the model by calculating
accuracy according to the following equation:

accuracy =
TP + TN

TP + FP + TN + FN
, (1)

where TP stands for true positive examples (i.e., examples that
the classifier correctly assigned to the AD class), TN stands for
true negative examples (i.e., examples that the classifier correctly
assigned to the non-AD class), FP stands for false positive
examples (i.e., examples that the classifier incorrectly assigned
to the AD class) and FN for false negative examples, which the
classifier incorrectly assigned to the non-AD class.

The final majority voting accuracy for LOOCV is 77.78%,
which indicates that the model is capable of successfully
leveraging temporal differences. The Scikit-learn library
(Pedregosa et al., 2011) implementation of the algorithm used
in this experiment allows to extract the importance of features
based on a measure of “impurity.” That is, when training a
single decision tree, we can compute how much each feature
contributes to decreasing the weighted impurity, in our case
measured with Gini impurity (Breiman, 2001). In the case of
random forests, we measured the averaged decrease in impurity
over trees to derive a feature importance score for each feature.
To increase reliability we averaged these scores for each feature
across the ensemble of 50 random forest classifiers in order to
obtain the final scores for each word.

The scores for the nouns analysed in section 4.1 are presented
in Table 1. The hypothesis is that nouns exhibiting the most
temporal dissimilarities between the AD and non-AD classes
identified in section 4.1 will also be used by the classifier
to distinguish between the classes, resulting in larger feature
importance scores. In this case, the sum of all three scores for
each noun would give indication that the specific word appears
in different sections of the transcript depending on the class to
which the transcript belongs.

By measuring the Pearson correlation between the sums of
scores (see column labelled “Sum” in Table 1) and differences
in average position (column labelled “Difference” in Figure 1),
we however obtain a weak non-significant negative correlation
of –0.15 with a p-value of 0.53, indicating a possibility that

3Note that in this experiment we did not use term frequency-inverse document

frequency (TF-IDF) weighting (Baeza-Yates and Ribeiro-Neto, 1999), as we did

in the experiments in section 5.1 since we simply wanted the classifier to focus

on binary differences between features (i.e., whether a specific temporal unigram

appears in a transcript of a specific class or not).

TABLE 1 | Feature importance of nouns in a random forest classifier according to

its position in 1st, 2nd, or 3rd chunk of each transcript.

Noun 1st chunk 2nd chunk 3rd chunk Sum

Window 0.09904 0.02905 0.01041 0.13849

Sink 0.06526 0.03472 0.01101 0.11099

Stool 0.06090 0.02709 0.01988 0.10787

Action 0.07408 0.00796 0.00591 0.08795

Curtain 0.03686 0.02560 0.01131 0.07377

Mother 0.02548 0.01984 0.01852 0.06384

Dish 0.02689 0.01874 0.00951 0.05514

Cookie 0.03305 0.01190 0.00929 0.05424

Water 0.03082 0.01380 0.00704 0.05167

Hand 0.02241 0.01573 0.00780 0.04594

Girl 0.01303 0.01129 0.00828 0.03260

Boy 0.01023 0.00914 0.00903 0.02840

Jar 0.01080 0.00957 0.00724 0.02762

Plate 0.01398 0.00489 0.00475 0.02362

Floor 0.00970 0.00700 0.00651 0.02322

Kid 0.00787 0.00773 0.00566 0.02126

Thing 0.00657 0.00624 0.00424 0.01705

Sister 0.00870 0.00484 0.00112 0.01465

Lady 0.00482 0.00364 0.00264 0.01110

Kitchen 0.00578 0.00263 0.00217 0.01057

Sum is the sum of all three scores.

the classifier considers more fine-grained temporal information,
which is not visible by just averaging words’ positions in the
text. For example, the noun window, which was identified by
the classifier as the most important feature out of all nouns in
the list, does show a considerate difference in average position
between AD and non-AD classes, but nevertheless still appears
somewhere in the middle of the list in Figure 1. The same is
true of the noun sink, which was identified as the second most
important feature. Slightly more consistency between rankings
can be observed at the bottom of both lists, for example when
observing the ranking for nouns kitchen and sister.

5. AD DETECTION

The results of the temporal analysis in section 4 suggest that
temporal differences in the descriptions can be detected in the
transcripts and can also be successfully leveraged for detection
of dementia by ML. Although it is doubtful that a classifier
relying solely on temporal features would be able to achieve
good performance, these features might improve AD detection
when combined with other features. For this reason, in this
section we explore a less specialised approach toward AD
detection, which attempts to incorporate as many modalities
and aspects of these modalities as possible. First, instead of
focusing only on the textual information, we also incorporate
several features extracted from audio modality, which are
naturally time-based. As with audio, many aspects of the text
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modality are incorporated, including temporal, structural and
semantic aspects.

5.1. Methodology
The main methodological steps of the proposed approach are
described below, namely preprocessing, feature engineering and
classification.

5.1.1. Preprocessing
For audio preprocessing, speech segmentation was performed on
the audio files that met the above described selection criteria.
The study only focuses on the participants’ speech; therefore,
the investigators’ speech was excluded from further processing.
We extracted the participants’ speech utterances using the
timestamps obtained through DementiaBank.

Themanual transcripts in CHAT format (MacWhinney, 2019)
were first converted into word and token sequences which
represent what was actually produced in speech. For instance,
the annotations ‘w [x n]’, which indicate that the word ‘w’
was repeated n times were replaced by n repetitions of w,
punctuation marks and various comments annotated between‘[]’
were removed. Also removed were symbols such as (.), (..), (...),<,
<, / and xxx, as well as all punctuation.

Next, the processed transcripts were force-aligned with the
speech recordings using the Penn Phonetics Lab Forced Aligner
(Yuan and Liberman, 2008), which labels the pauses between
words with ‘sp’ and produces time stamps for each word and
for each pause. The word time stamps allowed us to split
audio recordings at the level of words/pauses and conduct
acoustic feature extraction for each word. The volume of each
word was normalised to the range [−1 :+1] dBFS. Volume
normalisation helps in smoothing over different recording
conditions, particularly variations in microphone placement in
relation to the participant.

5.1.2. Feature Engineering
The main steps of the feature engineering procedure are
presented in Figure 2 and described below. The entire
procedure can be divided into four main phases, generation
and concatenation of audio and textual feature vectors,
generation of six ADR features and selection of five distinct
feature configurations.

The audio feature extraction was performed using the
openSMILE v2.1 toolkit, which is an open-source software suite
for automatic extraction of features from speech, widely used for
emotion and affect recognition in speech (Eyben et al., 2010).
In this research we opted to employ only the eGeMAPS (Eyben
et al., 2016) feature set, which exhibited good performance in
previous research (Haider et al., 2020). The eGeMAPS feature
set corresponds to a basic set of acoustic features based on their
potential to detect physiological changes in voice production, as
well as theoretical significance and proven usefulness in previous
studies (Eyben et al., 2016). It contains the F0 semitone, loudness,
spectral flux, MFCC, jitter, shimmer, F1, F2, F3, alpha ratio,
Hammarberg index and slope V0 features, as well as their most
common statistical functionals, for a total of 88 features per
speech segment. Pearson’s correlation test was performed to

remove acoustic features that were significantly correlated with
duration (|R| > 0.2) to remove any bias toward the duration of
words formachine learning. A total of 72 eGeMAPS features were
therefore selected.

Following voice feature extraction we generated text features
corresponding to the same words using GloVe embeddings
(Pennington et al., 2014) of size 50 (for pauses, we generate a
vector of 50 zeros). The audio and text features were normalised
separately to the [0, 1] interval and concatenated to derive
vectors of 122 features (72 audio features and 50 text features)
corresponding to an audio-textual embedding for each word or
pause. These vectors were then used in the ADR procedure for
aggregation of words/pauses on the speaker level (Haider et al.,
2020).

Note that in our implementation of ADR, we only loosely
followed the original ADR algorithm, introducing several
modifications. The procedure consists of the following steps:

1. Clustering of feature vectors: All word level feature vectors
were aggregated into clusters using k-means clustering4.
This is in contrast with the original implementation (Haider
et al., 2020), which employed self-organising maps (SOM)
clustering (Kohonen, 1990) but in line with the work done by
Martinc and Pollak (2020).

2. Generation of the ADR features: The ADR feature vector
is composed of several features, namely cluster counts,

duration, audio-textual word/pause embeddings, audio-

textual centroid embeddings, audio-textual embedding

velocity and audio-textual centroid velocity. Note that the
last four features were not employed in the original ADR
(Haider et al., 2020) and are meant to also model the semantic
aspects of the text input besides the temporal and structural
properties of text and audio. Since the original ADR only
modelled audio recordings, these features have not been used
before. The following is a brief description of each of these
features:

• Cluster counts: Number of feature vectors in each cluster
for each participant’s audio recording, that is, a histogram
of the number of words/pauses present in each cluster.

• Duration: A histogram representation of word/pause
utterance duration for each participant’s audio recording.
As the number and duration of segments varies for each
audio recording, we normalised the feature vector by
dividing it by the total duration of segments present in each
audio recording.

• Audio-textual word/pause embeddings: The audio-textual
embeddings obtained for each participant were aggregated
into a sequence. Principal component analysis (PCA)5 was
conducted on the embedding sequence in order to reduce
the dimensionality of each embedding to 1. Finally the
sequence is truncated to the length of 128 if the sequence is
too long, or padded with zeros if the sequence is too short.

4Weuse the Scikit library (Pedregosa et al., 2011) implementation of the algorithm:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
5Using the Scikit library implementation of the algorithm: https://scikit-learn.org/

stable/modules/generated/sklearn.decomposition.PCA.html
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FIGURE 2 | Main feature engineering steps presented on the example preprocessed input sentence “There are tie back curtains at the window”. Audio and word

feature vectors (i.e., embeddings) are combined (Symbol “⌢” symbol denotes concatenations) and fed into an ADR feature generation procedure. The six resulting

features are used in five distinct feature configurations.

At the end of this procedure, we obtained a vector of 128
features for each participant.

• Audio-textual centroid embeddings: Instead of
employing PCA dimensionality reduction on audio-
textual embeddings for each word, here we employed the
procedure on the centroids of the clusters to which two
consecutive word/pause utterances belong. At the end of
this procedure, we obtained a vector of k features for each
participant, where k is the number of clusters.

• Audio-textual embedding velocity: In order to model
temporal aspects of speech and transcripts, we measured
the change between consecutive audio-textual embeddings
in the sequence. This is measured with cosine similarity
between consecutive vectors t and e:

cos(t, e) =
te

‖t‖‖e‖
=

∑n
i=1 tiei

√

∑n
i=1 (ti)

2
√

∑n
i=1 (ei)

2
(2)

The output of this procedure is a sequence of cosine
distances between consecutive embeddings for each
participant. The sequence was truncated (or padded with
zeros) in order to obtain a vector of 128 features for each
participant.

• Audio-textual centroid velocity: Similarly, change is
measured with cosine similarity between cluster centroids
to which two consecutive word/pause utterances belong.
The resulting sequence of cosine similarities was again
truncated (or padded with zeros) to the length of 128.

To establish the contribution of specific features and to gain
a better sense of what type of information results in the best
performance, we tested several feature configurations:

• Temporal: Includes only four ADR features that model only
temporo-structural aspects of the audio and transcript data,
namely cluster counts, duration, audio-textual embedding
velocity and audio-textual centroid velocity.

• Embedding: Includes four ADR features that model structural
and semantic aspects of the data, namely cluster counts,
duration, audio-textual word/pause embeddings and audio-
textual centroid embeddings.

• Centroid: Includes four ADR features that model structural,
semantic and temporal aspects of the data, namely cluster
counts, duration, audio-textual centroid embeddings and
audio-textual centroid velocity.

• New: Includes only the four new ADR features which have not
been used in the previous studies where ADR was employed
(Haider et al., 2020; Martinc and Pollak, 2020), namely
audio-textual centroid embeddings, audio-textual centroid
velocity, audio-textual word/pause embeddings and audio-
textual centroid embeddings.

• All: Includes all 6 ADR features described in
section 5.1.2.

In addition, we investigated the impact of specific input
modalities on the overall performance, or to be more
specific, we employed three versions for each of the
configurations above:
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• Audio: Only audio input is used, consisting of a feature vector
for each word/pause containing only 72 eGeMAPS features.

• Text: Only text input is used, that is, a feature vector for each
word/pause containing only 50 GloVe embeddings features.
Here, there are also no Duration features, which require audio
recordings for its generation.

• Text+audio: Combination of text and audio features,
consisting of a feature vector for each word/pause containing
122 eGeMAPS and GloVe embeddings features.

Finally, we investigated if performance could be improved by
adding sub-word units consisting of four-character sequences
(char4grams) into the model. Even with the additional ADR
features for modelling semantic aspects of the text, the initial
experiments still suggested that semantic modelling might be
the biggest shortcoming of ADR. It is indeed possible that
the compressed semantic information obtained from word
embeddings by employing clustering, PCA or cosine similarity
is not comprehensive enough, since it models semantics (or
semantic change) only indirectly. To compensate for this and
model semantics more directly, in some experiments we employ
term frequency-inverse document frequency (TF-IDF) weighted
word bound character char4gram features, which proved very
successful at modelling semantics in the study by Martinc and
Pollak (2020). Character n-grams are created only from text
inside word boundaries and n-grams at the edges of words are
padded with space6.

5.1.3. Classification
To determine the best classifier for the task at hand and the
best number of clusters (k), we first conducted a preliminary
grid search across several classifiers and k ∈ 10, 20, ..., 80
values, in which we employed 5 classifiers from the Scikit library
(Pedregosa et al., 2011), namely Xgboost (Chen and Guestrin,
2016) (with 50 gradient boosted trees with max depth of 10),
random forest (with 50 trees of max depth of 5), SVM (with
linear kernel and a box constraint configurations of 10), logistic
regression (LogR, with a regularisation configuration of 10) and
a linear discriminant analysis classifier. Only the All feature
configuration was used during this preliminary experiment. Grid
search was conducted on the training set, using LOOCV. Each
classifier and k-value combination was run in the grid search
five times, with five different random seeds for each classifier,
in order to obtain more reliable results and to compensate for
the observed variance in accuracy across different runs. The
average accuracy across these five runs was used as a performance
score for each combination of the classifier and k-value. Based
on this score, the combination of k-means clustering with
k = 30 and a random forest classifier was chosen for use in
further experiments.

The large variance in accuracy (Equation 1) observed in these
preliminary experiments is consistent with the observations of
Yuan et al. (2020), where large variance in performance in the
cross-validation setting was observed when employing BERT

6For example, for the sentence It is sunny today, the following set of char4grams

would be generated: {“It,” “is,” “sun,” “sunn,” “unny,” “nny,” “tod,” “toda,” “oday,”

and “day.”}.

and ERNIE (Zhang et al., 2019) models. To solve this problem,
they proposed a majority voting setting, in which the label
assigned to an instance of the test set is the label assigned by the
majority of the 50 models trained during cross-validation. We
followed the same procedure and trained 50 models employing
the same classifier and feature configuration on the training
set, each time using a different random seed. These models
were then used for majority voting on the test set to derive
final predictions. The same procedure was employed to obtain
comparable performance scores on the training set in LOOCV.

5.1.4. Baseline BERT Implementation
In order to conduct the temporal experiments reported in section
6.1 and obtain a strong baseline, we also leverage the BERT
model (Devlin et al., 2019). The preprocessing employed here
was as described above, treating pauses as a form of punctuation,
following Yuan et al. (2020). The transcripts were then force-
aligned with the speech signal, labelling pauses between words
with “sp’, excluding pauses under 50 ms, and encoding short
pauses (0.05–0.5 s) as ’,’, medium pauses (0.5–2 s) as ‘.’, and long
pauses (over 2 s) as ’...’.

In contrast to Yuan et al. (2020), we fed the processed
transcripts to the pretrained ’bert-base-uncased’ language model
with an additional linear sequence classification layer rather than
the ’bert-large-uncased’ model. This was done so as to reduce the
amount of computational resources required. We did not employ
the ERNIE (Zhang et al., 2019) languagemodel, since the publicly
available implementation of the model7 does not return the
attention matrices required for the temporal analysis (see section
6.1). For fine-tuning, we employ the same hyperparameters as in
the study by Yuan et al. (2020): learning rate = 2e-5, batch size
= 4, epochs = 8, and maximum input length of 256. We set the
standard BERT tokeniser not to split ’...’.

Finally, we once again employed majority voting both in the
LOOCV setting and on the test set. Due to limited computational
resources, we only conducted the LOOCV procedure five times,
with five different seeds, therefore obtaining five predictions for
each example in the training set. The majority vote of these five
predictions is used as a final prediction. On the other hand, for
the test set setting, we randomly choose 50 models out of 540
models generated during LOOCV and conduct majority voting
on the predictions of these models to obtain the final predictions.

6. RESULTS

The results for the best feature combinations and input
modalities are presented inTable 2. See Supplementary Material

for a full table of results for all feature combinations
(Supplementary Table 2), and for confusion matrices of the top
3 results and their late fusion (Supplementary Figure 2). For all
results, we use k-means clustering with k = 30 and the random
forest classifier, which yielded the best results in the preliminary
grid search (see section 5.1.3).

Without late/decision fusion of the best three methods,
the best result on the test set was achieved when Temporal

7https://github.com/PaddlePaddle/ERNIE
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TABLE 2 | Results of the three best feature configurations in the LOOCV setting

and on the test set in terms of accuracy.

Feature configurations Input

modality

LOOCV

accuracy

Test set

accuracy

Temporal + char4grams audio + text 0.8611 0.9167

New + char4grams audio + text 0.8889 0.8750

char4grams text 0.8611 0.8958

top three late fusion / 0.8796 0.9375

BERT—reimplementation

of Yuan et al. (2020)

/ 0.8426 0.8333

ERNIE best related

work (Yuan et al., 2020)

/ / 0.8958

The feature configurations column indicates which feature configuration has been used

and whether char4grams have been added, and column Input modality shows the

modality on which ADR features have been generated. The best individual methods’

results in LOOCV and on the test set, as well as the late fusion of all three methods, are

shown in bold. The row labelled top three late fusion presents the results of employing

late/decision fusion (i.e., the use of majority voting) over the three best approaches.

features generated on audio and text input were combined with
char4grams (accuracy of 91.67%), and the best result in the cross-
validation was achieved when New features generated on text
and audio input were combined with char4grams (accuracy of
88.89%). Char4grams features by themselves also work very well,
achieving an accuracy of 89.58% on the test set and accuracy
of 86.11% in LOOCV. This indicates that semantic features and
pause information contribute the most in terms of performance.
Nevertheless, the results also indicate that we can improve the
overall performance by including the temporal and structural
aspects of audio and text.

Our reimplementation of BERT is noncompetitive in relation
to the best approaches, reaching accuracy of 83.33% on the test
set, which is in line with the results obtained by Yuan et al. (2020)
who report accuracy of 85.4%. They however employ a larger
BERT model with 24 layers and 16 attention heads for each layer.

The observations from the error analysis (see
Supplementary Material) suggest that employing late fusion can
be beneficial. In our experiments it improved the best achieved
test set accuracy of 91.67% by about 2.3% (to 93.75%) despite a
slight decrease in accuracy in the LOOCV setting (from 88.89%
to 87.96%). Another beneficial improvement is due to the use
of majority voting, which reduces the variability of the test set
predictions of single classifiers, shown in Figure 3. Figure 3

shows results of the accuracy distribution of 50 classifiers
(employing temporal features and char4grams) used in the
majority voting, when employed on the test set. It should be
noted that the accuracy of 91.67% obtained by majority voting
was obtained by <15% of classifiers in the ensemble, for the
temporal text+audio+char4grams configuration. The other 85%
of classifiers in the ensemble reach accuracy between 75 and
89%. Figure 3 also shows that the spread is largest when only the
audio modality is used, ranging from about 48% to almost 70%.

The approach presented in this paper outperformed all
previous approaches to AD detection performed on this and
similar spontaneous speech datasets, as shown in Table 3. All
accuracy figures for text correspond to accuracy on manual

transcripts. Of the studies shown in Table 3, only Mirheidari
et al. (2018) report results for embeddings derived from ASR
transcription (62.5% accuracy), in contrast to the 75.6% they
obtained from manual transcription. As noted, comparisons of
studies done on different subsets and training/test splits of the
Pitt corpus are problematic. The best previous result on the same
dataset (ADReSS) used in our study was achieved by Yuan et al.
(2020), who reported 89.58% test-set accuracy obtained with an
ensemble of ERNIE models. Our late fusion method yielded an
improvement of about 4.7% over the best reported result on the
ADReSS dataset, and an improvement of 25% over the ADReSS
challenge baseline (Luz et al., 2020).

6.1. Dissecting the BERT Attention Space
Another way to gain insight into how temporal information
can be leveraged for AD detection, is through the use of neural
networks, which model temporal and structural dependencies by
default. The baseline BERT implementation described in section
5.1.4 is based on the transformer architecture, which employs the
attention mechanism. The attention mechanism can be analysed
and visualised, offering insights into the inner workings of the
system. BERT’s attention mechanism consists of 12 attention
heads (Vaswani et al., 2017)—square matrices linking pairs of
tokens within a given text. We explored how this (activated)
weight space can be further inspected to establish to what extend
BERT models temporal information.

While square attention matrices show the importance
of the correlations between all tokens in the transcript,
we focused only on the diagonals of the matrices, which
indicate how much attention the model pays to a specific
word in relation to itself, giving a measure of how
important a specific word is for the classification of a
specific description as belonging to either the AD or the
non-AD class.

As explained in section 5.1.4, the BERT model was fine-
tuned through LOOCV on the training set, and the fine-
tuning procedure resulted in 50 BERT models, which were
used for prediction on the test set. We extracted diagonal
attention scores for 12 attention heads for each of the 20
nouns presented in Figure 1 appearing in different positions
in different transcripts in the test set and averaged the scores
across all 50 models. If a specific noun appeared in the
same position in two or more different transcripts, scores
belonging to the same position in each head were averaged.
Finally, we also averaged the 12 attention heads scores for
each position for each word so as to derive a sequence of
attention scores for each noun. Figure 4 presents these sequences
of attention scores for each of the 20 nouns appearing in
different positions in the transcript. The height of each column
indicates the attention given to a specific noun at position in
the transcript, and the colour of the column labels the class of
the transcript, blue denoting the non-AD class and red denoting
the AD class.

Figure 4 shows that BERT generally tends to focus more
attention to nouns appearing at the beginning of the transcript
and less attention to nouns appearing at the end of the transcript.
For example, for the noun curtain, attention scores are skewed
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FIGURE 3 | Boxplot summarizing the accuracy distributions for 50 classifiers on the test set for the Temporal feature configuration (text, audio, and text+audio),

char4grams and char4grams combined with text and audio (text+audio+char4grams).

TABLE 3 | Comparison with state-of-the-art studies conducted on subsets of the

Pitt dataset.

Study Accuracy Modality

Haider et al. (2020) 78.7% Acoustic

Luz (2017) 68.0% Acoustic

Fraser et al. (2016) 81.9% Text/acoustic

Yancheva and Rudzicz (2016) 80.0% Text/acoustic

Hernández-Domínguez et al. (2018) 68.0% Text

Mirheidari et al. (2018) 75.6% Text

Studies based on the ADReSS dataset

ADReSS challenge baseline 62.5% Acoustic

ADReSS challenge baseline 75.00% Text

Yuan et al. (2020) ERNIE 89.58% Text

Yuan et al. (2020) BERT 85.40% Text

Syed et al. (2020) 85.42% Text

Balagopalan et al. (2020) 83.33% Text

Sarawgi et al. (2020) 83.33% Text/acoustic

Pompili et al. (2020) 81.25% Text/acoustic

Koo et al. (2020) 81.25% Text/acoustic

Cummins et al. (2020) 81.25% Text/acoustic

Searle et al. (2020) 81.25% Text/acoustic

Edwards et al. (2020) 79.17% Text/acoustic

Rohanian et al. (2020) 79.17% Text/acoustic

Martinc and Pollak (2020) 77.08% Text

Pappagari et al. (2020) 75.00% Text/acoustic

This study (best single model) 91.67% Acoustic/text/temporal

This study (late fusion) 93.75% Acoustic/text/temporal

The top three results are shown in bold. Results of this study are presented in Italics.

toward the first few appearances of the word, dropping drastically
afterwards. This suggests that the appearance of the word curtain
in the last part of the transcript is not important for classification.

A similar pattern can be discerned for the nouns sister and
window. It can also be observed that some words (e.g., hand,
floor, kitchen and plate) are not given as much attention as others,
regardless of the position at which they appear.

While the attention scores derived from BERT suggest that the
position of the word in the AD classification task does matter,
there is no clear correlation between the attention scores given
by BERT and the difference in average position for specific words
identified in section 4.1. This might indicate that identification of
temporal aspects is somewhat more involved than hypothesised,
depending not only on the words’ position but also on the context
in which it appears.

7. CONCLUSIONS

We presented a study of automatic detection of AD in
spontaneous speech using state-of-the-art ML methods. We
conducted a temporal analysis of the descriptions of the Cookie
Theft scene of the Boston Diagnostic Aphasia Exam (Goodglass
et al., 2001) in order to investigate putative temporal differences
between descriptions produced by AD and non-AD patients,
and to explore the modelling of these differences by ML. We
then proposed a new AD detection approach, in which ADR is
employed as a framework for multimodal feature extraction and
fusion. Through this approach our model was able to surpass
the best state-of-the-art results reported in the literature for the
task of distinguishing between transcripts and audio recordings
belonging to AD and non-AD participants in the ADReSS subset
of the Pitt Corpus.

While our models were able to distinguish between AD
and healthy controls with relatively high accuracy using
spontaneous speech data, further validation on larger and
more diverse datasets is warranted. As pointed out by de la
Fuente Garcia et al. (2020), datasets suitable for AI studies of
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FIGURE 4 | Test set attention scores prescribed by the BERT model for 16 nouns presented in Figure 1. The height of each column indicates the attention given to a

specific noun in a specific position in the transcript. A blue coloured column indicates that a specific noun appeared in the transcript belonging to the non-AD class,

while a red coloured column indicates that a noun at this position appeared in a transcript belonging to the AD class. The positions (x-axis) range from 1 (i.e., first word

in the transcript) to 256 (i.e., last word in the corpus).

the effects of neurodegeneration on spontaneously produced
speech are relatively scarce at present. While this situation
is changing, we hope our study will provide further impetus
for research focused on elicitation and gathering of speech
data from Alzheimer’s cohort studies. An example of such
studies is the PREVENT-ED spontaneous speech task, which
has collected spontaneous dialogical speech from a group of
healthy participants which includes participants genetically at-
risk of AD, due to family history and apolipoprotein E (APOE)
gene status (de la Fuente et al., 2019). Once the PREVENT-ED
dataset has been fully collected, we aim to apply the methods
presented in this article to investigate possible associations
between speech features and the biomarkers available for the
PREVENT cohort, including plasma and CSF Aβ42 amyloid,
Tau and pTau, proinflammatory cytokines, acute-phase proteins,
medial temporal-lobe atrophy and white matter lesion volume,
as well as risk level (high, medium or low) and cognitive
performance scores.

The results of the temporal bag-of-words model proved
inconclusive in relation to the results of the analysis conducted
in section 4.1. On the other hand, BERT results, while exhibiting
sensitivity to temporal order, as words in different positions
have different attention scores, are somewhat hard to interpret.
These scores not only depend on temporal information but also
indicate other differences between AD and non-AD patients
related to semantic and grammatical contexts.We plan to address
deficiencies of the temporal analysis and modelling in future
work by investigating new temporal models and improving on
our existing techniques for distillation of temporal information
from the text.

Classification results indicate that accuracy gains can be
achieved by adding temporal and structural information to
semantic features. For example, the results show that the accuracy
using only char4grams features (89.58%) can be improved to
91.67% when a combination of temporal audio textual features
and char4grams features is employed, and up to 93.75% when
late fusion of three best models is applied. These results compare
favourably to the state-of-the-art. While these figures must be
approached with caution given the relatively small size of the
dataset, they provide motivation for further research into more
challenging problems, such as earlier detection and prediction
of AD progression, when suitable data become available in
future.

Although the use of acoustic features on their own proved
less successful than when combined with text, extraction
of acoustic features can be fully automated, unlike textual
features which if extracted through ASR would likely degrade
classification accuracy. Therefore, while the multimodal
approaches commonly employed in the recent ADReSS
challenge (see Table 3) and extensively investigated in our study
tend to benefit only marginally from the addition of acoustic
information, processing and use of acoustic features is likely to
remain an important topic of research in AD modelling, as will
temporal aspects of spontaneous speech production.

As regards the use of transformer based embeddings,
we believe they remain promising, despite their somewhat
underwhelming contribution to classification performance in
this study. Among other things, along with acoustic features,
transformer based embeddings may play a role in the creation
of language independent models for AD detection. Currently,
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multilingual BERT is being used in a variety of tasks
allowing for classification to be performed on a language other
than the language on which the model was trained (“zero-
shot” transfer), and leveraging this possibility for cognitive
decline detection would represent a valuable contribution to
this field given that existing datasets are limited to only a
few languages.
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