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Aims Deep learning models (DLMs) have shown superiority in electrocardiogram (ECG) analysis and have been applied to diag-
nose dyskalaemias. However, no study has explored the performance of DLM-enabled ECG in continuous follow-up scen-
arios. Therefore, we proposed a dynamic revision of DLM-enabled ECG to use personal pre-annotated ECGs to enhance 
the accuracy in patients with multiple visits.

Methods 
and results

We retrospectively collected 168 450 ECGs with corresponding serum potassium (K+) levels from 103 091 patients as de-
velopment samples. In the internal/external validation sets, the numbers of ECGs with corresponding K+ were 37 246/47 
604 from 13 555/20 058 patients. Our dynamic revision method showed better performance than the traditional direct pre-
diction for diagnosing hypokalaemia [area under the receiver operating characteristic curve (AUC) = 0.730/0.720–0.788/ 
0.778] and hyperkalaemia (AUC = 0.884/0.888–0.915/0.908) in patients with multiple visits.

Conclusion Our method has shown a distinguishable improvement in DLMs for diagnosing dyskalaemias in patients with multiple visits, 
and we also proved its application in ejection fraction prediction, which could further improve daily clinical practice.
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Introduction
Electrocardiography (ECG) is commonly used to diagnose cardiovascu-
lar diseases (CVDs), which are the leading cause of death worldwide.1

Recently, deep learning model (DLM)-enabled ECG systems have 
shown good prospects for diagnosing cardiac-related diseases2–4 and 
even for predicting death.5 In these studies, the collection of ECG 
data for DLMs was retrospective, and patients underwent multiple 
measurements under various clinical situations. However, the standard 
training process of DLMs usually assumes independence in training sam-
ples.6 Previous DLM-enabled ECG studies did not develop DLMs util-
izing the information of follow-up ECGs and avoided the impact of 
patients who had more ECGs in evaluating the performance of the 
model.5,7 Repeated measurements are common in real-life scenarios 
but not taken into account by models that accept only single time points 
as inputs.

Short- and long-term ECG monitoring is often recommended for 
providing diagnostic and prognostic information on heart diseases,8

which involves multiple measurements and analyses for each patient. 
Serum potassium (K+) level is an important clinical biomarker that re-
quires monitoring in healthcare scenarios, such as haemodialysis man-
agement.9 The change in K+ level may be dynamic within 1–2 h after 
a given therapy.10 Deep learning models have shown promise for unco-
vering important dyskalaemias on ECGs, and the accuracy of DLMs has 
exceeded the average clinician’s accuracy for diagnosing dyskalaemias.11

However, a comprehensive approach of DLMs that can integrate 
patient-level information to monitor K+ levels via ECGs is still lacking. 
The need for K+ monitoring represents the potential applications of 
DLM-enabled ECG, and we should develop longitudinal DLMs for these 
scenarios.

Previous research has shown that the prediction by DLMs is signifi-
cantly different in patients with certain diseases such as old myocardial 
infarction (MI).12 We hypothesized that DLMs with the standard train-
ing process would underestimate or overestimate the clinical outcomes 
in patients with various specific characteristics such as old MI. This pre-
diction error may permanently exist at the personal level and could 

cause a prediction bias, which can be used to revise future predictions 
for each patient. A linear mixed model (LMM) is typically used to adjust 
the effect of data dependency from individuals.13 The random effects of 
the LMM can be used to analyse the prediction error at the patient level. 
Incorporating the personal information of previous examinations has 
been shown to improve the ability to predict future haemoglobin levels14

and haemoglobin A1c,15 and the random-effect structure of LMMs could 
provide better accuracy, especially with more frequent visits. Thus, we 
could revise the prediction of DLMs based on repeated measurements, 
which is similar to using new evidence to correct human answers.

To the best of our knowledge, this is the first study to revise the pre-
diction using DLMs based on repeatedly measured patient data. This 
study aimed to use the LMM, revise the prediction by the DLM, and im-
prove the predictive ability for K+ monitoring by DLMs via ECG. This 
method could develop a personalized baseline by the LMM based on 
a small amount of prior-labelled ECG and might not require longitudinal 
changes in previous measurements. We will use the combination of 
LMM and DLM to construct a personalized artificial intelligence (AI) 
and further validate whether it can improve the accuracy of predicting 
dyskalaemias in patients with multiple visits.

Methods
Data preprocessing
We conducted a multisite retrospective study at two hospitals in the 
Tri-Service General Hospital system. This study was approved by the institu-
tional review board of Tri-Service General Hospital, Taipei, Taiwan (IRB No. 
C202105049), and an informed consent waiver was granted because we used 
de-identified data collected retrospectively and encrypted from the hospital 
to the data controller. This article was written following the Transparent 
Reporting of a Multivariable Prediction Model for Individual Prognosis or 
Diagnosis guidelines16 which are elaborated in Supplementary material 
online, Appendix S4. Patients did not receive any treatments due to this study, 
and there is no risk group in this study.

The generation process is shown in Supplementary material online, 
Figure S1A. The data collected from the first hospital, which is an academic 
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medical centre, were used for developing model and internal validation. The 
data collected from the second hospital, which is a community hospital, 
were used for external validation. Once patient data were collected, the 
first visit site for each patient was used to determine which hospital they 
belonged to and to ensure that the same patient does not appear in both 
hospitals. We used the de-identified data to develop and validate models 
after patients were assigned to the first or second hospital. Two hospitals 
were considered in this study. Hospital A was the first site, which is an aca-
demic medical centre (NeiHu General Hospital at NeiHu District), and hos-
pital B was the second site, which is a community hospital (Tingzhou Branch 
Hospital at Zhongzheng District). We collected the ECG data set with the 
corresponding serum potassium (K+) test based on echocardiogram data 
from 1 January 2011 to 31 December 2020 for the following experiments. 
They were separately opened and operated in 1999 and 1946, although 
they were in the same system.

To collect the ECG data set with K+ in hospital A, 116 646 patients who 
had at least one ECG record and corresponding serum K+ test during the 
study period were considered. To ensure that the number of patients 
needed to establish personalized AI was sufficient, we used ∼90% of the pa-
tients to construct DLMs and LMMs and used ∼10% for internal validation. 
A total of 103 091 patients were included in the model construction, which 
were further divided into the development set (87.5% of the sample) and 
the tuning set (12.5%). Among them, there were 147 474 ECG records 
with corresponding K+ in the development set and 20 976 ECG records 
with corresponding K+ in the tuning set. For internal validation, 37 246 
ECGs with corresponding K+ levels from 13 555 patients were included 
in the internal validation set, which were used to evaluate the accuracy of 
K+ monitoring and further analyses. There was no overlap among the 
data sets. In hospital B, there were 47 604 ECGs with corresponding K+ 

tests from 22 058 patients in the external validation set.
Standard 12-lead ECGs that were collected using a Philips machine 

(PH080A, Philips Medical Systems, Andover, MA, USA) at 500 Hz for 
10 s (5000 sequence signals for each lead) were used. Serum K+ test was 
performed using indirect ion-selective electrode methods in the laboratory. 
Sample with evidence of haemolysis and plasma K+ interference indices 
were excluded to prevent pseudohypokalaemia/pseudohyperkalaemia. 
The information about department that patient ever visited and had an 
ECG measurement was recorded in the data controller. There are four cat-
egories of visited department, which are outpatient department (OPD), 
physical examination centre (PEC), inpatient department (IPD), emergency 
room, and unknown. An ECG measurement only has one category, and pa-
tient may have ECGs measured from a mix of visited department. There 
may be more than one ECG record within a short period, corresponding 
to a single clinical examination. To avoid repeated use of one K+ test, we 
selected the first ECG within the period of time for analysis. An illustration 
of the selection of the corresponding ECG signal is shown in Supplementary 
material online, Figure S1B. The first ECG within 2 h of a K+ test was col-
lected as samples in the corresponding data set. The corresponding time 
interval was chosen to maximize the sample size based on a previous 
study,11 and the ECG may be able to reflect the K+ within these time inter-
vals. We included the patients had <2 ECGs in our study because these 
samples benefit for DLM by increasing the sample size of training data, 
and the follow-up ECGs is need for constructing LMMs.

Deep learning model implementation
We designed a convolution neurone network with dense connections be-
tween layers to predict K+. We used the standard 12-lead ECGs as model 
input. The DLM had an architecture of 61 convolutional layers and an atten-
tion mechanism11 for extracting features.

We designed our models with 12 ECG lead blocks and shared weights as 
ECG12Net.11 The model architecture is shown in Supplementary material 
online, Figure S2. We randomly resized a range of heart rates in a uniform 
distribution from 0.9 to 1.1 heart rates as in previous research11 and ran-
domly cropped a length of 4500 sequences of ECG signals as the input of 
the model in the training process. We extended the module with additional 
specific nonshared neurone layers after each ECG lead block. This provides 
a model with the ability to extract features from each ECG lead. The num-
ber of temporal features for each ECG block was 19 because the downsam-
pling size was 256. These features of each ECG lead would be integrated 
with the routing-by-agreement algorithm instead of general pooling 

methods, such as global average pooling. The output dimension of each 
lead was 1 × 1 × 128 after integration of the routing-by-agreement. After 
the integration of temporal features, the feature maps of the 12 ECG leads 
are weighted and summed with the attention blocks as ECG12Net. To pre-
vent the model from predicting with a few parts of the ECG lead, a dropout 
layer was added to each lead before the weighted sum. The dropout rate 
was set to 0.5. Finally, the weighted sum is followed by a linear module, 
which is a fully connected layer with sigmoid functions. The number of 
blocks in the fully connected layer in the linear module is the level of the 
converted ordinal variable. We designed neural network to predict K+ as 
ordinal variables. Category-wise encoding technology was used to encode 
labels,17,18 which convert the continuous variables into ordinal variables. 
The details of category-wise encoding technology and training procedures 
of DLM are shown in Supplementary material online, Appendix S1. The 
DLMs were implemented using the MXNet package (R package version 
1.3.0).

Linear mixed model
Linear mixed models are typically used to analyse the same effect across all 
data and the specific effect within individuals in medical research.19 We de-
veloped LMM to predict the ground truth of K+ and used the prediction 
from the corresponding DLM as a predictor variable for both fixed and ran-
dom effects. In this study, we used each patient with multiple ECG tests as 
the independent hierarchical level. For patient k with n pairs of ECGs and 
the corresponding annotations of K+, the equation of LMM is defined as fol-
lows:

Yk = XkB + ZkUk + e, 

where n is the total number of pairs in patient k. Yk is an n × 1 vector of 
known annotations, which is the ground truth of each subsequently ob-
tained K+. Xk is an n × 2 vector of independent variables for fixed effects. 
Zk is an n × 2 vector of independent variables for random effects. In our 
study, the variables of the Xk and Zk matrices were the same, which is 
the predictive value of K+ from DLM. e is an n × 1 vector of residuals. 
The matrices of the observed data are defined as follows:

Yk =

y1,k
y2,k
. . .

yn,k

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦, Xk =
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1 x2,k
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⎡
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⎥
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For the estimated coefficients, B is a 2 × 1 vector of fixed-effect coefficients, 
which is the same for all patients. Uk is a vector of random effect coefficients 
for patient k, which are the revised items of the personal slope and inter-
cept. These vectors are defined as follows:

B = b0
b1

􏼔 􏼕

, Uk = u0,k
u1,k

􏼔 􏼕

.

Each patient had their own personal slope and intercept. A major assump-
tion of the LMM is that u of each patient and e are normally distributed with 
zero mean and variance covariance matrices G and R, respectively, and both 

vectors are independent (Var u
e

􏼔 􏼕

= G 0
0 R

􏼔 􏼕

). If this assumption holds, the 

distributions of all personal slopes and intercepts follow a multinormal dis-
tribution. G is the variance covariance matrix of the random coefficient, 
which represents the personal slope and intercept in our model. σ2 is the 
variance of the residuals e. The variance matrices are expressed as follows:

G = τ20 τ01

τ10 τ21

􏼔 􏼕

, R = σ2In×n =

σ2 0 . . . 0
0 σ2 . . . 0

. . . . . . . . . . . .

0 0 . . . σ2

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦.

Yk follows a multivariate normal distribution with variance covariance matrix Σk. 
The variance covariance matrix can be calculated using the following equation: 
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Σk = ZkGZT
k + R.

We can estimate the random effect coefficients of each patient with the best 
linear unbiased prediction (BLUP).20 The revised personal coefficients for pa-
tient k are estimated as follows:

BLUPk = GZT
k Σ

−1
k (Yk − XkB).

We can combine the fixed effect coefficients and revised personal coefficients 
into the regression coefficients Pn,k for patient k based on n known pairs of 
ECGs and the corresponding annotation. Pk is a vector of the personal coeffi-
cients and can be used to revise the model predictions. The equation is ex-
pressed as follows:

Pk = B + BLUPk = b0
b1

􏼔 􏼕

+ BLUP0,k
BLUP1,k

􏼔 􏼕

.

Dynamic revision from deep learning model
We use dynamic prediction with BLUP to mimic real-world applications. 
The workflow of dynamic prediction using BLUP is illustrated in 
Figure 1A. To revise the next prediction xi + 1,k for patient k from the 
DLM, we defined the use of the existing i = 1,2,3,… pairs of ECGs and cor-
responding K+ to calculate Pi,k according to the above method. The revised 
results x̂i+1,k can then be simply calculated as follows:

x̂i+1,k = xi+1,kPi,k.

We did not revise the first prediction because there was no P0,k. The pre-
dictions after the first prediction are revised sequentially based on Pi,k 
(i = 1,2,3,…). For example, the second prediction is revised with the per-
sonal coefficients P1,k, which are calculated in the first prediction, and the 
third prediction is revised with the personal coefficients P2,k, which are cal-
culated in the first to second prediction. When patients have multiple mea-
surements of K+, each subsequent prediction of DLMs is revised with 
personal BLUP, which is calculated based on previous data. The details of 
dynamic revision are provided in Supplementary material online, Appendix 
S1. Example codes and more information are available at https://github. 
com/Imshepherd/dynamic-revision-of-deep-learning-model.

Statistical analysis
Patient characteristics and corresponding annotation were compared be-
tween the development, tuning, internal validation, and external validation 
sets. Patient characteristics were also compared between patient with 
equal or more than two ECGs and only one ECG. These P values refer 
to analysis of variance or chi-square tests, appropriately. We did not impute 
any missing value because we collected ECGs which had a corresponding 
annotation of K+ and the mainly analysis is for K+.

The area under the receiver operating characteristic curve (AUC) analysis 
was the primary outcome used to assess the performance for diagnosing dis-
eases with direct prediction from DLMs and dynamic revision using BLUP. K+ 

levels is important to be discretized into hypo/hyperkalaemia for clinical pur-
pose, such as clinical treatment.21 Our DLMs were optimized to estimate the 
values of serum K+, and the estimated K+ (as continuous variable) was used to 
identify patients with hypo/hyperkalaemia. According to guideline,21 we de-
fined hypokalaemia as a K+ level <3.5 mEq/L (as categorical variable) and 
defined hyperkalaemia as a K+ level >5.5 mEq/L (as categorical variable). 
The confidence intervals for the AUCs and significant differences between 
the AUCs of the model were determined using the DeLong method. The se-
cond analysis used Pearson’s correlation and mean absolute error (MAE) to 
evaluate the ability of estimating K+ which is also needed in clinical practice.22,23

Because there was no established baseline for estimating potassium, we 
used the mean value; previous value, which is the most recent measurement 
for each patient; and the previous mean value as the baseline comparisons. 
The mean value was used as the overall average for each validation set. An 
illustration of the calculation of the previous mean value is shown in 
Figure 1B. The previous mean value was calculated using the previous 

annotations from each patient in each validation set. Each follow-up ECG 
had a corresponding previous mean value for each patient. We used n = 
1,2,3,… pairs of ECGs and the corresponding annotations yn,k to calculate 
the previous mean value ̅yn+1,k at each follow-up for patient k. The previous 
mean value was calculated as follows:

y̅n+1,k =
1
n

􏽘n

i=1

yi,k.

We also reported the area under the precision recall curves (AUPRCs) and 
F1 scores to evaluate the performance because the AUCs are overly opti-
mistic under conditions of imbalanced classification, and the details are de-
scribed in Supplementary material online, Appendix S1. We analysed the 
impact of the number of follow-up ECGs on the performance of dynamic 
revision, and direct prediction is used as comparison. The AUCs were eval-
uated on the sample less than or equal to a given number of follow-up ECGs 
to simulate the increasing number of repeat visits. The given number is from 
two to the maximum number of follow-up ECGs in each validation set, and 
the performances were presented with the increasing number of examina-
tions. We selected the personal examples of revising the DLM predictions 
using BLUP in validation sets. The cases with overestimation and underesti-
mation by the DLM prediction and with high variance of actual value were 
presented. The department where patient visited and had an ECG examin-
ation was used for analysis, which is accessible in the data controller for each 
patient.

We further analysed whether other comorbidities contain information 
that can improve both direct prediction and predictions with dynamic revi-
sion. The AUC, MAE, and Pearson’s correlation were used to compare the 
performance of the direction prediction, the direction prediction with add-
itional lab tests, dynamic revision, and dynamic revision with additional label 
tests. The abnormality of serum Na and Bicarb that might associated with 
K+ in chronic kidney disease (CKD) patients,24 and serum Na and Bicarb 
therefore were used as the additional label tests. The multivariable regres-
sion model for the direction prediction with additional lab tests included the 
estimated K+ from DLM, serum Na, and Bicarb, and this model was con-
structed on the tuning set. For dynamic revision with additional label tests, 
the corresponding serum Na and Bicarb tests were used as the additional 
independent variables for fixed effects and random effects in LMM and 
BLUP.

In analysis of AUC, MAE, Pearson’s correlation, AUPRCs, and F1 scores, 
the significant difference was compared among the mean value, previous va-
lue, previous mean value, direct prediction, and dynamic revision in follow- 
up ECGs because our dynamic revision method revised the prediction 
of DLM in follow-up ECGs. The significance levels were set at 0.005 
(0.05/10) based on Bonferroni correction. We did not adjust other covari-
ates, such as age and gender, because we focused on the improvement of 
DLM in this study.

Results
Table 1 summarize the demographics of the patients for the ECG data 
set with K+. Patients had a mean (standard deviation) age of 56.5 (18.8), 
59.2 (19.0), 59.0 (17.3), and 59.7 (20.7) years at baseline, and the me-
dian (interquartile range) number of ECGs per patient was 2 (2–3), 2 
(2–2), 3 (2–5), and 3 (2–4) for patients with multiple visits in the devel-
opment, tuning, internal validation, and external validation sets, respect-
ively. A total of 14.9, 15.3, 14.0, and 13.7% of ECGs had a corresponding 
hypokalaemia, and a total of 1.5, 1.7, 2.0, and 1.7% of ECGs had a cor-
responding hyperkalaemia in the development, tuning, internal valid-
ation, and external validation sets, respectively.

We first assessed the performance for diagnosing dyskalaemia with 
direct prediction from DLM and dynamic revision using BLUP. 
Figure 2 shows that dynamic revision using BLUP significantly improved 
the DLM predictions, which provided the highest overall AUCs of 
0.756/0.737 and 0.915/0.919 for detecting hypokalaemia and hyperka-
laemia in the internal/external validation sets, respectively. Because the 
results of follow-up examinations may be correlated with previous 

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac072#supplementary-data
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records at the individual-patient level, we used the previous value and 
previous mean value as a comparison for diagnosing these diseases in 
the follow-up ECGs. Dynamic revision using personal BLUP provided 

significantly better AUCs than the previous mean value as a prediction 
for diagnosing hypokalaemia and hyperkalaemia on follow-up ECG. We 
also analysed the capability of dynamic revision for estimating the 

A

B

Figure 1 Procedure of patient-level prediction with the deep learning model and the calculation of baseline for prediction. (A) The workflow of dy-
namic revision with the best linear unbiased prediction. The deep learning model predictions via electrocardiogram are revised with the personal best 
linear unbiased prediction that involved using previous predictions and corresponding ground truth. The black box indicates the dynamic revision of 
deep learning model prediction. (B) The calculation of the previous mean value for baseline. The previous mean value is the average value of the previous 
ground truth values from each patient, which is only on the follow-up electrocardiograms.
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values of K+, and the MAE and Pearson correlations were calculated 
and compared with the baseline (Figure 2). We used the mean value 
as the baseline for continuous predictions of K+ and used the previous 
mean value as a baseline comparison in the follow-up ECG. Using dy-
namic revision with BLUP, the overall MAEs for predicting K+ were 
0.356/0.355 vs. the mean value (0.433/0.419) in the internal and exter-
nal validation sets, respectively. The results also demonstrated that our 
dynamic revision had an MAE improvement (0.363/0.366) compared 
with the direct use of DLM (0.410/0.407) for follow-up ECGs in the 
internal/external validation set. Moreover, we found that the overall 
correlations for using dynamic revision (0.598/0.564) were better 
than direct prediction (0.500/0.478) in the internal/external validation 
set. Identical trends were observed in the follow-up ECGs, which 

showed that the performance of the dynamic revision was superior 
to the mean value, previous mean value, and direct DLM predictions. 
In summary, these analyses demonstrated the superiority of integrat-
ing personal information using BLUP compared with using direct DLM 
prediction, and integrating this information is crucial for monitoring K+.

We also reported the performance using the AUPRCs and F1 scores 
in Figure 3. The AUPRCs of dynamic revision for diagnosing hypokal-
aemia and hyperkalaemia (0.399/0.387 and 0.355/0.297) is superior 
than the direct use of DLM (0.341/0.343 and 0.247/0.255) in the intern-
al/external validation sets, respectively. The trend of better perfor-
mances of F1 scores was maintained. The superiority of dynamic 
revision remains unchanged under the condition of imbalanced 
classification.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Patient characteristics in the development, tuning, internal validation, and external validation sets for an 
electrocardiogram data set with K+

Development 
set

n Tuning set n Internal 
validation 

set

N External 
validation 

set

N P-value

Patients (n) 93 706 — 18 825 — 13 555 — 22 058 — —
ECGs (n) 147 474 — 20 976 — 37 246 — 47 604 — —

Visited department  

(based on ECG)

<0.001

OPD/PEC 136 898 (92.8%) — 19 512 (93.0%) — 31 836 

(85.5%)

— 42 742 

(89.8%)

— —

IPD/ER 10 576 (7.2%) — 1464 (7.0%) — 5410 (14.5%) — 4862 (10.2%) — —
Unknown 0 (0%) — 0 (0%) — 0 (0%) — 0 (0%) — —

Demography (baseline)

Age (years) 56.5 ± 18.8 93 706 59.2 ± 19.0 18 825 59.0 ± 17.3 13 555 59.7 ± 20.7 22 058 <0.001
Gender (male) 47 121 (50.3%) 93 706 9608 (51.0%) 18 825 6846 (50.5%) 13 555 10 995 

(49.8%)

22 058 0.108

Height (cm) 163.1 ± 9.3 57 536 162.6 ± 9.2 12 472 162.7 ± 8.9 9665 163.4 ± 9.1 11 347 <0.001
Weight (kg) 64.5 ± 14.0 57 536 64.0 ± 13.9 12 472 64.6 ± 13.7 9665 64.8 ± 13.9 11 347 <0.001

SBP (mmHg) 136.3 ± 27.2 33 843 136.7 ± 27.3 7448 137.5 ± 26.9 5177 140.2 ± 27.6 6224 <0.001

DBP (mmHg) 80.0 ± 16.9 33 843 79.4 ± 17.1 7448 80.8 ± 16.4 5177 75.7 ± 17.0 6224 <0.001
Comorbidity (baseline)

DM 12 758 (13.6%) 93 706 3584 (19.0%) 18 825 2881 (21.3%) 13 555 4860 (22.0%) 22 058 <0.001

HTN 20 527 (21.9%) 93 706 5705 (30.3%) 18 825 5075 (37.4%) 13 555 8690 (39.4%) 22 058 <0.001
HLP 16 510 (17.6%) 93 706 4494 (23.9%) 18 825 4288 (31.6%) 13 555 6786 (30.8%) 22 058 <0.001

CKD 10 286 (11.0%) 93 706 3768 (20.0%) 18 825 2226 (16.4%) 13 555 3562 (16.1%) 22 058 <0.001

AMI 1416 (1.5%) 93 706 511 (2.7%) 18 825 270 (2.0%) 13 555 284 (1.3%) 22 058 <0.001
STK 8659 (9.2%) 93 706 2395 (12.7%) 18 825 1671 (12.3%) 13 555 3003 (13.6%) 22 058 <0.001

CAD 10 770 (11.5%) 93 706 3121 (16.6%) 18 825 2786 (20.6%) 13 555 4221 (19.1%) 22 058 <0.001

HF 3497 (3.7%) 93 706 1316 (7.0%) 18 825 1007 (7.4%) 13 555 1570 (7.1%) 22 058 <0.001
Afib 1918 (2.0%) 93 706 742 (3.9%) 18 825 526 (3.9%) 13 555 816 (3.7%) 22 058 <0.001

COP 7744 (8.3%) 93 706 2252 (12.0%) 18 825 1873 (13.8%) 13 555 3835 (17.4%) 22 058 <0.001

K+ (mmol/L)
On first ECGs 3.9 ± 0.5 93 706 3.9 ± 0.6 18 825 3.9 ± 0.5 13 555 3.9 ± 0.5 22 058 <0.001

On second ECGs 4.0 ± 0.6 25 895 4.0 ± 0.7 1675 4.0 ± 0.6 6608 4.0 ± 0.6 8521 <0.001

On third ECGs 4.0 ± 0.7 11 373 4.1 ± 0.8 333 4.0 ± 0.6 4055 4.0 ± 0.6 4774 0.015
On greater than or equal 

to fourth ECGs

4.1 ± 0.7 16 500 4.0 ± 0.7 143 4.1 ± 0.7 13 028 4.1 ± 0.7 12 251 0.313

OPD, outpatient department; PEC, physical examination centre; IPD, inpatient department; ER, emergency room; SBP, systolic blood pressure; DBP, diastolic blood pressure; DM, 
diabetes mellitus; HTN, hypertension; HLP, hyperlipidaemia; CKD, chronic kidney disease; AMI, acute myocardial infarction; STK, stroke; CAD, coronary artery disease; HF, heart 
failure; Afib, atrial fibrillation; COPD, chronic obstructive pulmonary disease; K+, serum potassium.
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We analysed the impact of the number of follow-up ECGs on the 
performance of dynamic revision. Figure 4 shows that the performance 
of the DLM with dynamic revision usually increases as the number of 
repeat visits increases. We further analysed the improvement of 
DLM using BLUP in personal level. Supplementary material online, 
Figure S3 shows personal examples of estimating K+ in different 

scenarios, such as overestimation and underestimation by the DLM 
predictions. The advantage of dynamic revision is that it addresses dif-
ferent types of prediction bias in follow-up data. Using personal BLUP 
could effectively integrate the information of previous predictions and 
ground truths to reduce the prediction error, especially with more 
visits. However, it is very difficult to dynamically revise every 

Figure 2 Performance of diagnosing hypokalaemia and hyperkalaemia and estimating serum potassium. Hypokalaemia was defined as a serum po-
tassium level <3.5 mEq/L. Hyperkalaemia was defined as a serum potassium level >5.5 mEq/L. The baseline value predicted the mean value for all pa-
tients. The previous value was calculated using the most recent examination result for each patient. The previous mean value was calculated using the 
mean value of the previous examination result for each patient. The deep learning model (directly) is the original prediction from deep learning models, 
and the deep learning model (dynamic) is the dynamic revision of deep learning model prediction with the personal best linear unbiased prediction.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac072#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac072#supplementary-data
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prediction using the DLM when the variance of the previous ground 
truths is too large. To analysis the clinical scenario that our method 
could benefit for, we provided the information of department that pa-
tient ever visited and had an ECG measurement in these personal ex-
amples. Results showed that our method may not only benefit to 
patient in IPD but also benefit for patient visited in OPD. In summary, 
dynamic revision of DLM could provide better performance in most 
cases of follow-up ECGs.

Discussion
We propose a novel DLM-enabled ECG system to dynamically predict 
K+ levels. The overall AUCs for detecting hypokalaemia (0.716–0.756) 
and hyperkalaemia (0.889–0.915) were significantly improved in the in-
ternal validation set and were also improved in the external validation 
set. Our methodology provides better accuracy in estimating the K+ va-
lues. Previous studies have attempted to estimate K+ level based on 

Figure 3 Area under the precision recall curves and F1 scores of the models for diagnosing hypokalaemia and hyperkalaemia. Hypokalaemia was 
defined as a serum potassium level <3.5 mEq/L. Hyperkalaemia was defined as a serum potassium level >5.5 mEq/L. The baseline value predicted 
the mean value for all patients. The previous value was calculated using the most recent examination result for each patient. The previous mean value 
was calculated using the mean value of the previous examination result for each patient. The deep learning model (directly) is the original prediction 
from deep learning models, and the deep learning model (dynamic) is the dynamic revision of deep learning model prediction with the personal best 
linear unbiased prediction.
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T-wave features using machine learning method, which had MAEs of 
0.50 ± 0.4225 and 0.46 ± 0.3926 and reported that these accuracies of 
estimating K+ could be a clinically acceptable resolution. Other study 
that combined T wave and QRS morphology markers using machine 
learning method to predict K+ values has an MAE improvement 
(0.539) compared with only using T wave (0.631).27 Our method had 
an MAE improvement (0.363/0.366) compared with the direct use of 
DLM (0.410/0.407) for follow-up ECGs in the internal/external valid-
ation set. Although an improvement in MAE of ∼0.1 for K+ values 
may have limited clinical impact, dynamic revision method empowers 
DLM-enabled ECGs as a more accurate non-invasively tool for K+ mon-
itoring. Importantly, our method had better AUPRCs of 0.399/0.387 
and 0.355/0.297 for detecting hypokalaemia and hyperkalaemia in the 
internal/external validation sets, respectively, compared with the direct 
use of DLM (0.341/0.343 and 0.247/0.255). The AUPRC has more in-
formative than the AUC under the condition of imbalanced classifica-
tion. These results demonstrated that our method could improve the 
ability of DLM-enable ECG for diagnosing dyskalaemias in patients 
with multiple visits.

The advantage of LMM is that it estimates the variance in the hier-
archical data, which can be used to address the dependency of data 
that are not considered in most DLMs for diagnosing disease.28,29 In 

repeated data format analyses with DLM, the recurrent neural network 
(RNN) may be a popular method for integrating information from mul-
tiple time points. However, it is difficult to directly use it in medical DLM 
development because of the limited amount of clinical data. In our data, 
90.4% of patients had ≤3 annotated ECGs in the dyskalaemia data sets. 
Our dynamic revision could improve the accuracy in patients who only 
had ≤3 annotated ECGs, and not all patients had drastic changes in their 
K+. Importantly, LMM, which is a lightweight model, is easy to apply to 
each patient in real-world practice. Therefore, the success of our meth-
od may be attributed to the development of a personalized baseline for 
each patient, which might not benefit from looking for longitudinal 
changes such as diagnosing MI based on the ECG changes.30

Moreover, the other DLM-based method to deal with follow-up 
data, the RNN, is limited by missing values31 and the small sample 
size,32 which is also not suitable for standard 12-lead ECG follow-up. 
Considering the above limitations, a previous study also used LMM to 
improve the accuracy of DLM in the medical records scoring system.33

The key to improving the accuracy of the LMM is to integrate previ-
ous information. Even without using DLM as a classifier, using a previous 
mean could achieve AUCs >0.70 and 0.78 for detecting hypokalaemia 
and hyperthermia, respectively. Patients with a history of CVD or heart 
failure (HF) are more likely to develop hypokalaemia,34 and CKD may 

Figure 4 Impact of the number of follow-up electrocardiograms for diagnosing hypokalaemia and hyperkalaemia using best linear unbiased predic-
tion. The performances of the deep learning model on the sample less than or equal to the indicated numbers were analysed. The green colour indicates 
the prediction directly from the deep learning model, and the blue colours indicate the prediction that is dynamically revised with the personal best 
linear unbiased prediction.
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be a predictor of hyperkalaemia.35 These studies revealed specific risk 
of dyskalaemias in particular patient populations. Other comorbidities 
may also contain information that could improve predictions, such as 
the abnormality of serum Na and Bicarb that might associated with 
K+ in CKD patitents and were co-measured with K+.24 Therefore, we 
used these additional relevant laboratory tests with and without dy-
namic revision (see Supplementary material online, Appendix S2), and 
the results showed that serum Na and Bicarb could improve perform-
ance for diagnosing hypo/hyperkalaemia. The trend of better perform-
ance in the dynamic revision of the DLM was still maintained. This 
information may not always be assessable in clinical practice,36 limiting 
the number of previous records. However, using the additional lab 
measurements would still increase the applicability of our proposed 
method with a better performance for diagnosing dyskalaemia in clinical 
practice. Moreover, patients who have undergone more than two 
ECGs may have a higher chance of having abnormalities (see 
Supplementary material online, Table S4). Our LMM strategy of inte-
grating previous personal information provided more accurate predic-
tions and can further improve the accuracy of DLM-enabled ECG by 
increasing the number of previously annotated ECGs signals, especially 
in patients with >5 previous data points.

In clinical practice, a previous study has suggested that patients with 
HF should be carefully monitored with K+ when receiving aldosterone 
antagonists because there might be a risk of hyperkalaemia.37 Not only 
accurately diagnosing dyskalaemia but also appropriately monitoring 
the value of K+ is important.38 Not only concerning about the risk of 
hypokalaemia with a K+ <3.5 mEq/L, the risk of sudden cardiac death 
might increase in HF patients when they have a K+ <4.5 mEq/L.22

Moreover, in patients with end-stage renal disease undergoing haemo-
dialysis therapy, K+ also needs to be controlled within a normal range to 
prevent potentially fatal arrhythmias.23 However, a previous study has 
shown that some patients might not receive the recommended follow- 
up of K+, although the need for monitoring is essential.39 Therefore, our 
method that improves the accuracy of estimating K+ via DLM-enabled 
ECG may enable ECG as a noninvasively K+ monitoring tool to benefit 
these clinical scenarios. Moreover, our method will benefit not only pa-
tients who request for labs in IPD, but also those who visit OPD. For 
example, it is important to routinely monitor K+ to identify the risk 
of hyperkalaemia in patients with angiotensin-converting enzyme inhi-
bitors.40 Hyperkalaemia may occur up to 6.98–11% of patients in 
OPD.41 In our analysis of personal examples, the results revealed 
that our method improved the prediction for patients who routinely 
visit OPD/PEC. However, despite our method improving the perform-
ance of AI-ECG for diagnosing hypokalaemia, the AUC of <0.8 might 
not be good enough for clinical usage and thus requires improvement. 
Furthermore, we preliminarily explored whether the personal BLUP 
could be used to enhance the performance on different types of out-
come, such as ejection fraction (EF) monitoring, which is another po-
tential application of DLM-enabled ECG in clinical practice (see 
Supplementary material online, Appendix S3). The trend of better per-
formance in the dynamic revision of DLM for monitoring EF was still 
maintained.

The limitations of this study should be acknowledged. First, the num-
ber of patients in our data set was unbalanced, and the time intervals 
between the follow-up examinations fluctuated. Moreover, we lacked 
treatment data and therapy data to exclude ECGs that had an interven-
tion before the corresponding annotations. A well-designed long-term 
follow-up prospective study should be conducted to validate the effects 
of this dynamic revision method. Second, despite the statistical differ-
ences in patient characteristics and clinical outcomes among the devel-
opment, tuning, and validation sets, our method still demonstrated its 
robustness in improvement in the DLM. However, further studies 
should be conducted to verify the performance of our method in exter-
nal validation in other countries. Third, this study only validated the 

improvement in dynamic revision of follow-up K+ and EF predictions. 
More extensive validation and evaluation of other biomarkers should 
be conducted.

Conclusions
We proposed a novel strategy for dynamically revising the prediction of 
the DLM, and this method showed impressive performance enhance-
ment on follow-up ECGs. The DLM and LMM can be integrated as 
powerful DLM-enabled ECG systems for short- and long-term moni-
toring. Moreover, our strategy provides opportunities for enhancing 
performance in hospitals with automatic annotations, which could in-
crease the accuracy in patients with more revisits. This personal dynam-
ic prediction method may have the potential to be precisely applied to 
monitoring other important biomarkers.

Supplementary material
Supplementary material is available at European Heart Journal – Digital 
Health.
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