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ABSTRACT Ammonia-oxidizing microorganisms perform the first step of nitrifica-
tion, the oxidation of ammonia to nitrite. The bacterium Nitrosomonas europaea is
the best-characterized ammonia oxidizer to date. Exposure to hypoxic conditions has
a profound effect on the physiology of N. europaea, e.g., by inducing nitrifier denitri-
fication, resulting in increased nitric and nitrous oxide production. This metabolic
shift is of major significance in agricultural soils, as it contributes to fertilizer loss
and global climate change. Previous studies investigating the effect of oxygen limi-
tation on N. europaea have focused on the transcriptional regulation of genes
involved in nitrification and nitrifier denitrification. Here, we combine steady-state
cultivation with whole-genome transcriptomics to investigate the overall effect of
oxygen limitation on N. europaea. Under oxygen-limited conditions, growth yield
was reduced and ammonia-to-nitrite conversion was not stoichiometric, suggesting
the production of nitrogenous gases. However, the transcription of the principal ni-
tric oxide reductase (cNOR) did not change significantly during oxygen-limited
growth, while the transcription of the nitrite reductase-encoding gene (nirK) was sig-
nificantly lower. In contrast, both heme-copper-containing cytochrome c oxidases
encoded by N. europaea were upregulated during oxygen-limited growth. Particu-
larly striking was the significant increase in transcription of the B-type heme-copper
oxidase, proposed to function as a nitric oxide reductase (sNOR) in ammonia-
oxidizing bacteria. In the context of previous physiological studies, as well as the
evolutionary placement of N. europaea’s sNOR with regard to other heme-copper
oxidases, these results suggest sNOR may function as a high-affinity terminal oxidase
in N. europaea and other ammonia-oxidizing bacteria.

IMPORTANCE Nitrification is a ubiquitous microbially mediated process in the envi-
ronment and an essential process in engineered systems such as wastewater and
drinking water treatment plants. However, nitrification also contributes to fertilizer
loss from agricultural environments, increasing the eutrophication of downstream
aquatic ecosystems, and produces the greenhouse gas nitrous oxide. As ammonia-
oxidizing bacteria are the most dominant ammonia-oxidizing microbes in fertilized
agricultural soils, understanding their responses to a variety of environmental condi-
tions is essential for curbing the negative environmental effects of nitrification. Nota-
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bly, oxygen limitation has been reported to significantly increase nitric oxide and ni-
trous oxide production during nitrification. Here, we investigate the physiology of
the best-characterized ammonia-oxidizing bacterium, Nitrosomonas europaea, grow-
ing under oxygen-limited conditions.

KEYWORDS ammonia and oxygen limitation, ammonia-oxidizing bacteria,
chemostat, nitrification, Nitrosomonas europaea, transcriptome

Nitrification is a microbially mediated aerobic process involving the successive
oxidation of ammonia (NH3) and nitrite (NO2

�) to nitrate (NO3
�) (1). In oxic

environments, complete nitrification is accomplished through the complementary
metabolisms of ammonia-oxidizing bacteria (AOB)/archaea (AOA) and nitrite-oxidizing
bacteria (NOB) or by comammox bacteria (2, 3). The existence of nitrite-oxidizing
archaea (NOA) has been proposed but not yet confirmed (4). Although an essential
process during wastewater and drinking water treatment, nitrification is also a major
cause of nitrogen (N) loss from N-amended soils. Nitrifiers increase N loss through the
production of NO3

�, which is more susceptible to leaching from soils than ammonium
(NH4

�), serves as terminal electron acceptor for denitrifiers, and contributes to the
eutrophication of downstream aquatic environments (5).

In addition, ammonia oxidizers produce and release nitrogenous gases such as nitric
(NO) and nitrous (N2O) oxide during NH3 oxidation at a wide range of substrate and
oxygen (O2) concentrations (6, 7). Nitrogenous gases are formed through enzymatic
processes (8–13) but also by a multitude of chemical reactions that use the key
metabolites of ammonia oxidizers, hydroxylamine (NH2OH) and NO2

� (or its acidic form
HNO2), as the main precursors (14, 15). AOB, in particular, release NO and N2O either
during NH2OH oxidation (16–21) or via nitrifier denitrification—the reduction of NO2

�

to N2O via NO (22–25). The first pathway is the dominant process at atmospheric O2

levels, while the latter is more important under O2-limited (hypoxic) conditions (26, 27),
where NO2

� and NO serve as alternative sinks for electrons generated by NH3 oxida-
tion.

Nitrosomonas europaea strain ATCC 19718 was the first AOB to have its genome
sequenced (28) and is widely used as a model organism in physiological studies of NH3

oxidation and NO/N2O production in AOB (27, 29–36). The enzymatic background of
NO and N2O production in N. europaea is complex and involves multiple intercon-
nected processes (Fig. 1). Most AOB harbor a copper-containing nitrite reductase, NirK,
which is necessary for efficient NH3 oxidation by N. europaea at atmospheric O2 levels.
NirK is also involved in but not essential for NO production during nitrifier denitrifica-
tion in N. europaea (26, 27, 29, 35) and is upregulated in response to high NO2

�

concentrations (37). Moreover, two forms of membrane-bound cytochrome (cyt) c
oxidases (cNOR and sNOR) and three cytochromes, referred to as cyt P460 (CytL), cyt c=
beta (CytS), and cyt c554 (CycA), have been implicated in N2O production in N. europaea
and other AOB (12, 24, 32, 38–40). However, the involvement of cyt c554 in N2O
production has recently been disputed (41). Finally, recent research has confirmed that
the oxidation of NH3 to NO2

� in AOB includes the formation of NO as an obligate
intermediate, produced by NH2OH oxidation via the hydroxylamine dehydrogenase
(HAO) (20). The enzyme responsible for the oxidation of NO to NO2

� (the proposed
nitric oxide oxidase) has not yet been identified (40).

The production of NO and N2O by N. europaea, grown under oxic as well as hypoxic
(oxygen-limited) conditions, was previously demonstrated and quantified in multiple
batch and chemostat culture studies (11, 12, 34, 35, 42, 43). Furthermore, recent studies
have investigated the instantaneous rate of NO and N2O production by N. europaea
during the transition from oxic to oxygen-limited or anoxic conditions (12, 35, 36).
Despite this large body of literature describing the effect of oxygen (O2) limitation on
NH3 oxidation and NO/N2O production in N. europaea, little attention has been paid to
the regulation of other processes under these conditions. Previous studies have utilized
reverse transcription-quantitative PCR (RT-qPCR) assays to examine transcriptional
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patterns of specific mainly N cycle-related genes in AOB grown under O2-limited
conditions (34, 36, 44). To date, no study has evaluated the global transcriptomic
response of N. europaea to O2-limited growth. However, research on the effect of
stressors other than reduced O2 tension have demonstrated the suitability of transcrip-
tomics for the analysis of physiological responses in AOB (43, 45–48).

N. europaea utilizes the Calvin-Benson-Bassham (CBB) cycle to fix inorganic carbon
(28, 49). Whereas all genome-sequenced AOB appear to use the CBB cycle, differences
exist in the number of copies of ribulose-1,5-bisphosphate carboxylase/oxygenase
(RuBisCO) genes encoded as well as the presence or absence of carbon dioxide
(CO2)-concentrating mechanisms (50–52). N. europaea harbors a single form IA green-
like (high-affinity) RuBisCO enzyme and two carbonic anhydrases but no carboxysome-
related genes (28). RuBisCO is considered to function optimally in hypoxic environ-
ments, as it also uses O2 as a substrate and produces the off-path intermediate
2-phosphoglycolate (53, 54). However, the effects of O2 limitation on the transcription
of RuBisCO-encoding genes and resulting growth yield in AOB are still poorly under-
stood.

In this study, we expand upon previous work investigating the effects of O2

limitation on N. europaea by profiling the transcriptomic response to substrate (NH3)
versus O2 limitation. N. europaea was grown under steady-state NH3- or O2-limited
conditions, which allowed for the investigation of differences in transcriptional patterns
between growth conditions. We observed a downregulation of genes associated with
CO2 fixation as well as increased expression of two distinct heme-copper-containing
cytochrome c oxidases (HCOs) during O2-limited growth. Our results provide new
insights into how N. europaea physiologically adapts to thrive in O2-limited environ-
ments and identified putative key enzymes for future biochemical characterization.

RESULTS AND DISCUSSION
Growth characteristics. N. europaea was grown as a continuous steady-state

culture under both NH3- and O2-limited growth conditions. During NH3-limited steady-
state growth, the culture was kept oxic with a constant supply of filtered atmospheric
air, was continuously stirred (400 rpm), and contained a standing NO2

� concentration
of �60 mmol liter�1. N. europaea grown under NH3-limited conditions consumed

FIG 1 A simplified schematic of electron transport and NO/N2O-producing pathways in N. europaea. Solid lines indicate confirmed and
dashed lines indicate postulated reactions or electron transfer processes. Abiotic N2O production is indicated in blue. NADH dh, NADH
dehydrogenase (complex I); AMO, ammonia monooxygenase; HAO, hydroxylamine dehydrogenase; NirK, nitrite reductase; bc1, cytro-
chrome bc-I complex (complex III); HCO A1, heme-copper-containing cytochrome c oxidase A1-type (complex IV); sNOR/HCO B,
heme-copper-containing NO reductase/heme-copper-containing cytochrome c oxidase B-type (complex IV); cNOR, heme-iron-containing
nitric oxide reductase.
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�98% of substrate provided; therefore, cultures were considered to have nonlimiting
amounts of O2 (Table 1). In contrast, during O2-limited steady-state growth, no addi-
tional air inflow was provided, but the stirring was increased (800 rpm) to facilitate O2

transfer between the headspace and growth medium. As a consequence of O2 limita-
tion, the medium contained standing concentrations (�30 mmol liter�1) of both NH4

�

and NO2
� (Fig. 2; Table 1).

During NH3-limited steady-state growth (days 7 to 16) (Fig. 2), N. europaea stoichi-
ometrically oxidized all supplied NH4

� to NO2
� (N balance � 61.0 � 1.7 mmol liter�1)

and maintained an optical density at 600 nm (OD600) of 0.15 � 0.01 (Table 1). During
O2-limited steady-state growth (days 23 to 32) (Fig. 2), N. europaea was able to consume
on average 31.1 � 1.5 mmol liter�1 (51.8%) of the supplied NH4

� and maintained an
OD600 of 0.07 � 0.01 (Table 1). A decrease in OD600 was expected, as the O2-limited
culture oxidized less total substrate (NH4

�), resulting in less biomass produced. The
conversion of NH4

� to NO2
� was not stoichiometric during O2-limited growth, as only

77.5% (24.1 � 0.8 mmol liter�1) of the NH4
� oxidized was measured as NO2

� in the
effluent, resulting in an N balance of 52.8 � 1.8 mmol liter�1 (Table 1). The significant
difference (P � 0.01) in the N balance between NH4

� consumed and NO2
� formed

during O2-limited growth is in accordance with previous reports and likely due to
increased N loss in the form of NH2OH, NO, and N2O under O2-limited conditions
(12, 35, 42, 55).

The dilution rate (0.01 h�1) of the chemostat was kept constant during both NH3-
and O2-limited growth, and resulted in 14.4 mmol day�1 NH4

� delivered into the
chemostat. On days 9, 10, and 11, which were sampled for NH3-limited growth
transcriptomes, N. europaea consumed NH3 at a rate (qNH3) of 24.73 � 0.53 mmol g (dry
cell weight)�1 h�1 with an apparent growth yield (Y) of 0.40 � 0.01 g (dry cell weight)
mol�1 NH3. During days sampled for O2-limited growth transcriptomes (days 28, 29,
and 30), the qNH3 was significantly higher (28.51 � 1.13 mmol g [dry cell weight]�1 h�1;
P � 0.05), while Y was significantly lower (0.35 � 0.01 g [dry cell weight] mol�1 NH3;
P � 0.05). When the whole 10-day NH3- and O2-limited steady-state growth periods
were considered, the qNH3 and Y trends remained statistically significant (P � 0.05)
(Table 1). Overall, NH3 oxidation was less efficiently coupled to biomass production
under O2-limited growth conditions.

Global transcriptomic response of N. europaea to growth under NH3- versus
O2-limited conditions. Under both NH3- and O2-limited growth conditions, transcripts
mapping to 2,535 of 2,572 protein-coding genes (98.5%) and 3 RNA-coding genes (ffs,
rnpB, and transfer-messenger RNA [tmRNA]) were detected. Many of the 37 genes not
detected encode phage elements or transposases, some of which may have been
excised from the genome in the �15 years of culturing since genome sequencing (see
Data Set S1 in the supplemental material). In addition, no tRNA transcripts were
detected. The high proportion of transcribed genes is in line with recent N. europaea
transcriptomic studies, where similarly high fractions of transcribed genes were de-
tected (43, 48). A significant difference in transcript levels between growth conditions
was detected for 615 (�24%) of transcribed genes (see Fig. S1). Of these 615 genes, 435
(�71%) were present at higher levels, while 180 (�29%) were present at lower levels
during O2-limited growth. Genes encoding hypothetical proteins with no further
functional annotation accounted for �21% (130) of the differentially transcribed genes
(Data Set S1). Steady-state growth under O2-limited conditions mainly impacted the
transcription of genes in clusters of orthologous groups (COGs) related to transcription
and translation, ribosome structure and biogenesis, carbohydrate transport and me-
tabolism, and energy production and conversion (Fig. 3).

Universal and reactive oxygen stress. The transcript levels of various chaperone
proteins and sigma factors considered to be involved in the general stress response in
N. europaea (45) differed between NH3- and O2-limited growth, with no discernible
trend of regulation (see Table S2; Data Set S1). Overall, prolonged exposure to O2

limitation did not seem to induce a significantly increased general stress response in

Sedlacek et al.

January/February 2020 Volume 5 Issue 1 e00562-19 msystems.asm.org 4

https://msystems.asm.org


TA
B

LE
1

C
om

p
ar

is
on

of
N

.e
ur

op
ae

a
gr

ow
th

ch
ar

ac
te

ris
tic

s
an

d
N

H
4
�

to
N

O
2
�

co
nv

er
si

on
st

oi
ch

io
m

et
ry

du
rin

g
N

H
3
-

an
d

O
2
-li

m
ite

d
st

ea
dy

-s
ta

te
gr

ow
th

G
ro

w
th

co
n

d
it

io
n

Pe
ri

od
(d

ay
s)

O
D

6
0

0
a

In
p

ut
N

H
3

b

(m
m

ol
d

ay
�

1
)

N
H

3
co

n
su

m
ed

a

(m
m

ol
d

ay
�

1
)

St
ea

d
y-

st
at

ea
N

H
4

�

(m
m

ol
lit

er
�

1
)

St
ea

d
y-

st
at

ea
N

O
2

�

(m
m

ol
lit

er
�

1
)

N
b

al
an

ce
a

,c
,d

(m
m

ol
)

A
m

m
on

ia
ox

id
at

io
n

ra
te

a
,d

(q
N

H
3
)

(m
m

ol
g

[d
ry

ce
ll

w
ei

g
h

t]
�

1
h

�
1
)

A
p

p
ar

en
t

g
ro

w
th

yi
el

d
a

,d
(Y

)
(g

[d
ry

ce
ll

w
ei

g
h

t]
m

ol
�

1
N

H
3
)

N
H

3
lim

ite
d

7–
16

0.
15

�
0.

01
14

.4
14

.2
�

0.
1

0.
9

�
0.

5
60

.1
�

1.
4

61
.0

�
1.

7
A

24
.0

4
�

0.
93

C
0.

42
�

0.
02

C
9–

11
0.

15
�

0.
00

4
14

.4
14

.2
�

0.
1

0.
9

�
0.

4
59

.1
�

1.
4

60
.0

�
1.

8
c

24
.7

3
�

0.
53

c
0.

40
�

0.
01

c
O

2
lim

ite
d

gr
ow

th
23

–3
2

0.
07

�
0.

01
14

.4
7.

5
�

0.
4

28
.9

�
1.

5
24

.1
�

0.
8

52
.8

�
1.

8
B

26
.4

4
�

2.
28

D
0.

38
�

0.
03

D
28

–3
0

0.
07

�
0.

00
05

14
.4

7.
5

�
0.

3
28

.6
�

1.
1

24
.3

�
1.

4
52

.9
�

2.
4

d
28

.5
1

�
1.

13
d

0.
35

�
0.

01
d

a
A

ve
ra

ge
va

lu
es

fr
om

3
sa

m
p

lin
g

da
ys

or
10

-d
ay

st
ea

dy
-s

ta
te

p
er

io
d,

�
st

an
da

rd
de

vi
at

io
ns

(s
ee

Ta
b

le
S1

in
th

e
su

p
p

le
m

en
ta

l
m

at
er

ia
l).

b
Th

e
N

H
4
�

co
nc

en
tr

at
io

n
of

th
e

in
flu

x
m

ed
iu

m
(6

0
m

m
ol

lit
er

�
1
)

m
ul

tip
lie

d
b

y
th

e
in

flu
x

ra
te

(0
.2

4
lit

er
da

y�
1
).

c
Su

m
of

ef
flu

en
t

N
H

4
�

an
d

N
O

2
�

co
nc

en
tr

at
io

ns
.

d
Le

tt
er

s
A

an
d

B
re

p
re

se
nt

hi
gh

ly
si

gn
ifi

ca
nt

di
ff

er
en

ce
s

(P
�

0.
01

),
an

d
le

tt
er

s
C

an
d

D
re

p
re

se
nt

si
gn

ifi
ca

nt
di

ff
er

en
ce

s
(P

�
0.

05
)

w
ith

in
p

ar
am

et
er

s.
C

ap
ita

l
le

tt
er

s
re

p
re

se
nt

co
m

p
ar

is
on

s
b

et
w

ee
n

10
-d

ay
p

er
io

ds
,

w
he

re
as

lo
w

er
ca

se
le

tt
er

s
re

p
re

se
nt

co
m

p
ar

is
on

s
b

et
w

ee
n

3-
da

y
p

er
io

ds
.

Oxygen-Limited Growth of Nitrosomonas europaea

January/February 2020 Volume 5 Issue 1 e00562-19 msystems.asm.org 5

https://msystems.asm.org


N. europaea. Key genes involved in oxidative stress defense (superoxide dismutase,
catalase, peroxidases, and thioredoxins) were transcribed at lower levels during O2-
limited growth, as expected (Table S2; Data Set S1). Surprisingly, rubredoxin (NE1426)
and a glutaredoxin family protein-encoding gene (NE2328) did not follow this trend
and were transcribed at significantly higher levels (2.8- and 1.8-fold, respectively)
during O2-limited growth (Table S2). Although their role in N. europaea is currently
unresolved, both have been proposed to be involved in cellular oxidative stress
response (56, 57), iron homeostasis (58, 59), or both.

FIG 2 N. europaea culture dynamics and sampling scheme. N. europaea grown in a chemostat operated in batch
mode (I), under steady-state NH3-limited conditions as a continuous culture (II), transitioning from NH3-limited to
O2-limited steady-state growth as a continuous culture (III), and under steady-state O2-limited conditions as a
continuous culture (IV). Arrows indicate transcriptome sampling points during NH3-limited (days 9, 10, and 11) and
O2-limited (days 28, 29, and 30) steady-state growth.

FIG 3 The sum of transcripts per million (TPM) for protein-coding genes transcribed in given COG
categories (number of transcribed genes per category is given in parentheses) in the N. europaea
transcriptomes. (A) Contributions and numbers of all transcribed genes in a given COG category. (B)
Contributions and numbers of statistically significantly differentially transcribed genes in a given COG
category.
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Carbon fixation and carbohydrate and storage compound metabolism. There
was a particularly strong effect of O2-limited growth on the transcription of several
genes related to CO2 fixation (Fig. 3B). The four genes of the RuBisCO-encoding cbb
operon (cbbOQSL) were among the genes displaying the largest decrease in detected
transcript numbers (Fig. 4; Table S2). Correspondingly, the transcriptional repressor of
the cbb operon (cbbR) was transcribed at 4.5-fold higher levels (Fig. 4; Table S2). This
agrees with the previously reported decrease in transcription of the N. europaea
cbbOQSL operon in O2-limited batch culture experiments (60). The reduced transcrip-
tion of RuBisCO-encoding genes potentially reflects a decreased RuBisCO enzyme
concentration needed to maintain an equivalent CO2 fixation rate during O2-limited
growth. Since O2 acts as a competing substrate for the RuBisCO active site, the
CO2-fixing carboxylase reaction proceeds more efficiently at lower O2 concentrations
(53, 61, 62). When N. europaea is grown under CO2 limitation, the transcription of
RuBisCO-encoding genes increases significantly (43, 60, 63). Due to the absence of
carboxysomes, N. europaea appears to regulate CO2 fixation at the level of RuBisCO
enzyme concentration.

Genes encoding the remaining enzymes of the CBB pathway and carbonic anhy-
drases were not significantly differentially regulated, with the exception of the
transketolase-encoding cbbT gene (Table S2). Likewise, almost no differences in tran-
scription were observed for the majority of genes in other central metabolic pathways
(glycolysis/gluconeogenesis, tricarboxylic acid [TCA] cycle) (Data Set S1). As the specific
growth rate of N. europaea was kept constant during both NH3- and O2-limited growth,
it is not surprising that genes associated with these core catabolic pathways were
transcribed at comparable levels.

Differential transcription of polyphosphate (PP) metabolism-related genes suggests
an increased accumulation of PP storage during O2-limited growth. Transcripts of the
polyphosphate kinase (ppk) involved in PP synthesis were detected in significantly
higher numbers (2.1-fold), while transcription of the gene encoding the PP-degrading
exopolyphosphatase (ppx) did not change (Table S2). Indeed, N. europaea was previ-
ously shown to accumulate PP when ATP generation (NH3 oxidation) and ATP con-
sumption become uncoupled and surplus ATP is available (64). As the specific growth
rate was kept constant throughout the experiment, PP accumulation could be a result
of increased efficiency in ATP-consuming pathways, such as CO2 fixation or oxidative
stress-induced repair. A decrease in the reaction flux through the energetically wasteful
oxygenase reaction catalyzed by RuBisCO could result in surplus ATP being diverted to
PP production.

FIG 4 Mean TPMs of all RuBisCO-encoding genes (cbbOQSL) and the corresponding transcriptional
regulator (cbbR) in N. europaea. The fold changes of gene transcription between NH3- versus O2-limited
growth are given in parentheses. Error bars represent the standard deviations between replicate samples
(n � 3) for each growth condition. A Welch’s t test was used to determine significantly differentially
transcribed genes. *, P � 0.05; **, P � 0.01. For gene annotations, refer to Table S2 in the supplemental
material.
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Energy conservation. Genes encoding the known core enzymes of the NH3 oxida-
tion pathway in N. europaea were all highly transcribed during both NH3- and O2-
limited growth (Table S2). These included ammonia monooxygenase (AMO; amoCAB
operons and the singleton amoC gene) and the genes encoding HAO (haoBA) and the
accessory cyt c554 (cycA) and cyt cm552 (cycX). Due to a high level of sequence
conservation among the multiple AMO and HAO operons (65), it is not possible to
decipher the transcriptional responses of paralogous genes in these clusters. Therefore,
we report the regulation of AMO and HAO operons as single units (Table S2). The
transcript numbers of genes in the AMO operons decreased up to 3.3-fold during
O2-limited growth, while transcripts of the singleton amoC were present at 1.9-fold
higher levels. However, these transcriptional differences were not statistically signifi-
cant. The HAO cluster genes were also not significantly differentially transcribed
(Table S2).

Previous research has shown that transcription of AMO, and to a lesser extent of
HAO, is induced by NH3 in a concentration-dependent manner (66). In contrast, other
studies have reported an increase in amoA transcription by N. europaea following
substrate limitation (44, 67). Furthermore, N. europaea has been reported to increase
amoA and haoA transcription during growth under low-O2 conditions (34). However,
exposure to repeated transient anoxia did not significantly change amoA or haoA
mRNA levels (36). As both NH3 and O2 limitation were previously shown to induce
transcription of AMO- and HAO-encoding genes, the high transcription levels observed
here under both NH3- and O2-limited steady-state growth conditions are not surprising.

The periplasmic red copper protein nitrosocyanin (NcyA) was among the most
highly transcribed genes under both NH3- and O2-limited growth conditions (Table S2).
Nitrosocyanin has been shown to be expressed at levels similar to those of other
nitrification and electron transport proteins (68) and is among the most abundant
proteins commonly found in AOB proteomes (47, 69). To date, the nitrosocyanin-
encoding gene ncyA has been identified only in AOB genomes (24) and has been
proposed as a candidate for the nitric oxide oxidase (40). However, as comammox
Nitrospira do not encode ncyA (2, 3, 13), nor do all genome-sequenced AOB (70),
nitrosocyanin cannot be the NO oxidase in all ammonia oxidizers. In this study, a slight
(1.7-fold) but not statistically significantly higher number of ncyA transcripts was
detected during O2-limited growth (Table S2). This agrees with a previous study
comparing ncyA mRNA levels in N. europaea continuous cultures grown under high-
and low-O2 conditions (44). However, N. europaea performing pyruvate-dependent
NO2

� reduction also significantly upregulated ncyA, while transcription of amoA and
haoA decreased (44). Overall, there is evidence for an important role of nitrosocyanin
in NH3 oxidation or electron transport in AOB, but further experiments are needed to
elucidate its exact function.

Three additional cytochromes are considered to be involved in the ammonia-
oxidizing pathway of N. europaea: (i) cyt c552 (cycB), essential for electron transfer; (ii) cyt
P460 (cytL), responsible for N2O production from NO and hydroxylamine (39); and (iii)
cyt c=-beta (cytS), hypothesized to be involved in N oxide detoxification and metabolism
(24, 71). All three were among the most highly transcribed genes (top 20%) under both
growth conditions (Table S2). In this study, cytS was transcribed at significantly lower
levels (2.3-fold) during O2-limited growth. However, transcription levels of cycB and cytL
were not significantly different (Table S2). While the in vivo function of cytS remains
elusive, it is important to note that in contrast to ncyA, the cytS gene is present in all
sequenced AOB and comammox Nitrospira genomes (12, 13, 52). The ubiquitous
detection of cytS in genomes of all AOB, comammox Nitrospira, and in methane-
oxidizing bacteria capable of NH3 oxidation (72) indicates that cyt c=-beta might play an
important yet unresolved role in bacterial aerobic NH3 oxidation.

Nitrifier denitrification. During O2-limited growth, N. europaea either performs
nitrifier denitrification or experiences a greater loss of N intermediates such as NH2OH
(73) or NO (20), which leads to the observed N imbalance between total NH4

�
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consumed and NO2
� produced (Fig. 2; Table 1). The Cu-containing NO2

� reductase
NirK and the iron-containing membrane-bound cyt c-dependent NO reductase (cNOR;
NorBC) are considered to be the main nitrifier denitrification enzymes (24, 35). N.
europaea NirK plays an important role in both nitrifier denitrification and NH3 oxidation
(27) and is known to be expressed during both O2-replete and -limited growth (29, 30,
35). However, under O2-limited conditions, nirK was among the genes with the largest
decrease in transcript numbers (4.2-fold) observed in this study (Fig. 5; Table S2). In N.
europaea, nirK transcription is regulated via the nitrite-sensitive transcriptional repres-
sor nsrA (30). Thus, in contrast to the nirK of many denitrifiers (74), nirK transcription in
N. europaea is regulated in response to NO2

� concentration and not NO or O2

availability (31, 34, 48). The reduced O2 supply during O2-limited growth resulted in an
�50% decrease in total NH3 oxidized and an �60% reduction in steady-state NO2

�

concentration (Fig. 2; Table 1). The decrease in NO2
� concentration during O2-limited

growth likely induced the transcription of nsrA, which was significantly (2.1-fold)
upregulated (Fig. 5; Table S2). Therefore, the large decrease in nirK transcription
observed here was likely due to the lower NO2

� concentrations and not a direct
reflection of overall nitrifier denitrification activity. In more natural nitrifying systems
(e.g., agricultural soils or wastewater treatment plants [WWTPs]) changes in NO2

�

concentration could have a greater effect on AOB nirK expression than O2 availability.
However, it should be noted that environmental NO2

� concentrations are unlikely to
reach those observed in this study (30 to 60 mmol liter�1 NO2

�).
Regulation of nirK transcription in response to primarily NO2

� and not O2 concen-
tration is consistent with the observation that NirK is not essential for NO2

� reduction
to NO in N. europaea. This supports the hypothesis that a not-yet-identified nitrite
reductase is present in this organism. Previously, it was shown that N. europaea nirK
knockout mutants are still able to enzymatically produce NO and N2O (29, 35), even if
hydrazine is oxidized by HAO instead of hydroxylamine as an electron donor (35). In
addition, NO and N2O formation have also been observed in the AOB Nitrosomonas
communis that does not encode nirK (12). The other three genes in the NirK cluster
(ncgCBA) were differentially transcribed, with ncgC and ncgB being transcribed at lower
levels (2- and 1.3-fold, respectively), while ncgA was transcribed at a significantly higher
level (2.6-fold) during O2-limited growth. The role of ncgCBA in N. europaea has not
been fully elucidated, but all three genes were previously implicated in the metabolism
or tolerance of N oxides and NO2

� (31).
In contrast, transcripts of the norCBQD gene cluster, encoding the iron-containing

cyt c-dependent cNOR-type NO reductase, were present at slightly higher (1.2- to
1.5-fold) but not significantly different levels during O2-limited growth (Fig. 5; Table S2).
Previous research has demonstrated that in N. europaea, cNOR functions as the main
NO reductase under anoxic and hypoxic conditions (35). Interestingly, all components
of the proposed alternative heme-copper-containing NO reductase (sNOR), including

FIG 5 Mean TPMs of genes encoding the NirK and cNOR gene clusters in N. europaea. The fold changes
of gene transcription between NH3- versus O2-limited growth are given in parentheses. Error bars
represent the standard deviations between replicate samples (n � 3) for each growth condition. A
Welch’s t test was used to determine significantly differentially transcribed genes. *, P � 0.05; **, P � 0.01.
For gene annotations refer to Table S2.
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the NO/low-oxygen sensor senC (24), were transcribed at significantly higher levels (2.7-
to 10.8-fold) during O2-limited growth (Fig. 6; Table S2). Therefore, it is possible that the
phenotype describing cNOR as the main NO reductase in N. europaea (35) was a
product of short incubation times and that during longer term O2-limited conditions,
sNOR contributes to NO reduction during nitrifier denitrification. Another possibility is
that the increased transcription of sNOR observed here during O2-limited growth is
primarily related to respiration and not NO reductase activity.

Respiratory chain and terminal oxidases. N. europaea harbors a low-affinity cyt c
aa3 (A1 type) HCO but not a high-affinity cbb3-type (C type) cyt c HCO harbored by
other AOB such as N. eutropha or Nitrosomonas sp. GH22 (28, 50, 52). Significantly
higher numbers of transcripts (1.7- to 3.0-fold) of all three subunits of the cyt c aa3 HCO
and the cyt c oxidase assembly gene ctaG were detected during O2-limited growth
(Fig. 6; Table S2). Increased transcription of the terminal oxidase was expected, as it is
a common bacterial response to O2 limitation (75). In addition, transcripts of all three
subunits of the proton translocating cyt bc-I complex (complex III) were present in
higher numbers (Table S2). The genes encoding NADPH dehydrogenase (complex I)
and ATP synthase (complex V) were transcribed at similar levels during both growth
conditions (Table S2).

As mentioned above, transcripts of both subunits of sNOR (norSY, previously called
coxB2A2), and the NO/low-oxygen sensor senC were present at significantly higher
numbers (2.7- to 10.8-fold) during O2-limited growth (Fig. 6; Table S2). The NO reduc-
tase function of the sNOR enzyme complex was proposed based on domain similarities
between NorY and NorB (24, 32). Yet, norY phylogenetically affiliates with and struc-
turally resembles B-type HCOs (76). In addition, NorY does not contain the five
well-conserved and functionally important NorB glutamate residues (77), which are
present in the canonical NorB of N. europaea. All HCOs studied thus far can reduce O2

to H2O and couple this reaction to proton translocation, albeit B- and C-type HCOs
translocate fewer protons per mole O2 reduced than A-type HCOs (78). Notably, NO
reduction to N2O is a known side reaction of the A2-, B-, and C-type but not A1-type
HCOs (79–81). The transcriptional induction of sNOR during O2-limited growth reported
here, as well as the high O2 affinity of previously studied B-type HCOs (82), indicates
that sNOR might function as a high-affinity terminal oxidase in N. europaea and possibly
other sNOR-harboring AOB. Furthermore, functionally characterized B-type HCOs dis-
play a lower NO turnover rate than the more widespread high-affinity C-type HCOs (79,
80). Taken together, these observations indicate that B-type HCOs, such as sNOR, are
ideal for scavenging O2 during O2-limited growth conditions that coincide with ele-
vated NO concentrations, which would impart a fitness advantage for AOB growing
under these conditions. Lastly, the NOR of Roseobacter denitrificans structurally resem-
bles cNOR but contains an HCO-like heme-copper center in place of the heme-iron

FIG 6 Mean TPMs of all genes encoding the A1-type and B-type HCO in N. europaea. The fold changes
of gene transcription between NH3- versus O2-limited growth are given in parentheses. Error bars
represent the standard deviations between replicate samples (n � 3) for each growth condition. A
Welch’s t test was used to determine significantly differentially transcribed genes. *, P � 0.05; **, P � 0.01.
For gene annotations, refer to Table S2.
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center of canonical cNORs. Interestingly, this cNOR readily reduces O2 to H2O but
displays very low NO reductase activity (83, 84). Therefore, in line with previous
hypotheses (79, 83), the presence of a heme-copper center in NOR/HCO superfamily
enzymes, such as the sNOR of N. europaea, may indicate O2 reduction as the primary
enzymatic function. Notably, a recent study provided the first indirect evidence of NO
reductase activity of sNOR in the marine NOB, Nitrococcus mobilis (85). However, further
research is needed to resolve the primary function of sNOR in nitrifying microorgan-
isms.

Conclusions. In this study, we examined the transcriptional response of N. europaea
to continuous growth under steady-state NH3- and O2-limited conditions. Overall,
O2-limited growth resulted in a decreased growth yield but did not invoke a significant
stress response in N. europaea. On the contrary, a reduced need for oxidative stress
defense was evident. Interestingly, no clear differential regulation was observed for
genes classically considered to be involved in aerobic NH3 oxidation. In contrast, a
strong decrease in transcription of RuBisCO-encoding genes during O2-limited growth
was observed, suggesting that control of CO2 fixation in N. europaea is exerted at the
level of RuBisCO enzyme concentration. Furthermore, the remarkably strong increase in
transcription of the genes encoding sNOR (B-type HCO) indicates this enzyme complex
might function as a high-affinity terminal oxidase in N. europaea and other AOB.
Overall, despite lower growth yield, N. europaea successfully adapts to growth under
hypoxic conditions by regulating core components of its carbon fixation and respira-
tion machinery.

MATERIALS AND METHODS
Cultivation. N. europaea ATCC 19718 was cultivated at 30°C as a batch and continuous chemostat

culture as previously described (43, 48). Briefly, N. europaea was grown in mineral medium containing
30 mmol liter�1 (NH4)2SO4, 0.75 mmol liter�1 MgSO4, 0.1 mmol liter�1 CaCl2, and trace minerals (10 �mol
liter�1 FeCl3, 1.0 �mol liter�1 CuSO4, 0.6 �mol liter�1 Na2Mo4O4, 1.59 �mol liter�1 MnCl2, 0.6 �mol liter�1

CoCl2, 0.096 �mol liter�1 ZnCl2). After sterilization by autoclaving, the medium was buffered by the
addition of 6 ml liter�1 autoclaved phosphate-carbonate buffer solution (0.52 mmol liter�1 NaH2PO4·H2O,
3.5 mmol liter�1 KH2PO4, 0.28 mmol liter�1 Na2CO3, pH adjusted to 7.0 with HCl).

For steady-state growth, a flowthrough bioreactor (Applikon Biotechnology) with a 1-liter working
volume was inoculated with 2% (vol/vol) of an exponential-phase N. europaea batch culture. The
bioreactor was set to “batch” mode until the NH4

� concentration reached �5 mmol liter�1 (6 days) (see
Table S1 in the supplemental material). Subsequently, the bioreactor was switched to continuous flow
“chemostat” mode, at a dilution rate/specific growth rate (�) of 0.01 h�1 (doubling time � �70 h), which
was controlled by a peristaltic pump (Thermo Scientific). The culture was continuously stirred at 400 rpm,
and the pH was automatically maintained at 7.0 � 0.1 by addition of sterile 0.94 mol liter�1 (10% [wt/vol])
Na2CO3 solution. Sterile-filtered (0.2 �m) air, at a rate of 40 ml min�1, was supplied during batch and
NH3-limited steady-state growth. Once NH3-limited steady-state was reached (day 7), the chemostat was
continuously operated under NH3-limited conditions for 10 days. To transition to O2-limited steady-state
growth, after day 16, the air input was stopped, and the stirring speed was increased to 800 rpm to
facilitate gas exchange between the medium and the headspace. The headspace was continuously
replenished with O2 by the passive diffusion of atmospheric air into the chemostat through open air
inlets containing a sterile filter (0.2 �m). O2-limited steady-state growth was achieved on day 23 as
defined by the persistence of 26.4 to 31 mmol liter�1 NH4

� and the accumulation of 22.8 to 25.5 mmol
liter�1 NO2

� in the growth medium. The culture was continuously grown under these conditions for
10 days.

Sterile samples (�5 ml) were taken on a daily basis. Culture purity was assessed by periodically
inoculating �100 �l of culture onto lysogeny broth (Sigma-Aldrich) agar plates, which were incubated
at 30°C for at least 4 days. Any observed growth on agar plates was considered contamination, and those
cultures were discarded. NH4

� and NO2
� concentrations were determined colorimetrically (86), and cell

density was determined spectrophotometrically (Beckman) by making optical density measurements at
600 nm (OD600) (Table S1). Total biomass in grams (dry cell weight) per liter, substrate consumption rate
(qNH3), and apparent growth yield (Y) were calculated as described in Mellbye et al. (43). To test for
statistically significant differences in NH4

� to NO2
� conversion stoichiometry, qNH3, and Y between NH3-

and O2-limited steady-state growth, a Welch’s t test was performed.
RNA extraction and transcriptome sequencing. For RNA extraction and transcriptome sequencing,

three replicate samples (40 ml) were collected on three separate days during NH3-limited (days 9, 10, 11)
and O2-limited (days 28, 29, 30) steady-state growth (Fig. 2). The samples were harvested by centrifu-
gation (12,400 	 g, 30 min, 4°C), resuspended in RNeasy RLT buffer with 2-mercaptoethanol, and lysed
with an ultrasonication probe (3.5 output, pulse of 30 s on/30 s off for 1 min; Heatsystems Ultrasonic
Processor XL). RNA was extracted using the RNeasy minikit (Qiagen) followed by the MICROBExpress-
bacteria RNA Enrichment kit (Ambion/Life Technologies) according to the manufacturer’s instructions.
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Depleted RNA quality was assessed using the Bioanalyzer 6000 Nano Lab-Chip kit (Agilent Technologies).
Sequencing libraries were constructed from at least 200 ng rRNA-depleted RNA with the TruSeq targeted
RNA expression kit (Illumina), and 100-bp paired-end libraries were sequenced on a HiSeq 2000 (Illumina)
at the Center for Genome Research and Biocomputing Core Laboratories (CGRB) at Oregon State
University.

Transcriptome analysis. Paired-end transcriptome sequence reads were processed and mapped to
open reading frames (ORFs) deposited at NCBI for the N. europaea ATCC 19718 (NC_004757.1) reference
genome using the CLC Genomics Workbench (CLC bio) under default parameters as previously described
(43). Residual reads mapping to the rRNA operon were excluded prior to further analysis. An additive
consensus read count was manually generated for all paralogous genes. Thereafter, mapped read counts
for each gene were normalized to the gene length in kilobases, and the resulting read per kilobase (RPK)
values were converted to transcripts per million (TPM) (87). To test for statistically significant differences
between transcriptomes obtained from NH3- and O2-limited steady-state growth, TPMs of biological
triplicate samples were used to calculate P values based on a Welch’s t test. The more stringent Welch’s
rather than the Student’s t test was selected due to the limited number of biological replicates (88).
Additionally, linear fold changes between average TPMs under both growth conditions for each
expressed ORF were calculated. Transcripts with a P value of �0.05 and a transcription fold change of
�1.5	 between conditions were considered present at significantly different levels.

Data availability. All retrieved transcriptome sequence data have been deposited in the European
Nucleotide Archive (ENA) under the project accession number PRJEB31097.
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TABLE S1, PDF file, 0.1 MB.
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