CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 31 August 2016
Accepted 5 September 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; cyclam; synchrotron radiation; chromium(III) complex; chloride ligand; oxalato ligand; cis-V conformation; hydrogen bonding.

CCDC reference: 1502530

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of cis-dichlorido(1,4,8,11-tetra-azacyclotetradecane- $\kappa^{4} N$)chromium(III) (oxalato$\left.\kappa^{2} O^{1}, O^{2}\right)\left(1,4,8,11\right.$-tetraazacyclotetradecane- $\left.\kappa^{4} N\right)$ chromium(III) bis(perchlorate) from synchrotron data

Dohyun Moon ${ }^{\text {a }}$ and Jong-Ha Choi ${ }^{\text {b* }}$

 National University, Andong 36729, Republic of Korea. *Correspondence e-mail: jhchoi@anu.ac.kr

In the asymmetric unit of the title compound, $\left[\mathrm{CrCl}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right.$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \quad\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}=1,4,8,11\right.$-tetraazacyclotetradecane, cyclam; $\mathrm{C}_{2} \mathrm{O}_{4}=$ oxalate, ox $)$, there are two independent halves of the $\left[\mathrm{CrCl}_{2}(\mathrm{cyclam})\right]^{+}$ and $[\mathrm{Cr}(\mathrm{ox})(\text { cyclam })]^{+}$cations, and one perchlorate anion. In the complex cations, which are completed by application of twofold rotation symmetry, the $\mathrm{Cr}^{\text {III }}$ ions are coordinated by the four N atoms of a cyclam ligand, and by two chloride ions or one oxalate bidentate ligand in a cis arrangement, displaying an overall distorted octahedral coordination environment. The $\mathrm{Cr}-\mathrm{N}$ (cyclam) bond lengths are in the range of 2.075 (5) to 2.096 (4) \AA while the $\mathrm{Cr}-\mathrm{Cl}$ and $\mathrm{Cr}-\mathrm{O}(\mathrm{ox})$ bond lengths are 2.3358 (14) and 1.956 (4) \AA, respectively. Both cyclam moieties adopt the cis-V conformation. The slightly distorted tetrahedral ClO_{4}^{-}anion remains outside the coordination sphere. The supramolecular architecture includes $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding between cyclam NH donor groups, O atoms of the oxalate ligand or $\mathrm{ClO}_{4}{ }^{-}$anions and one Cl ligand as acceptors, leading to a three-dimensional network structure.

1. Chemical context

Transition metal complexes with cyclam (1,4,8,11-tetraazacyclotetradecane, $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}$) ligands can adopt both planar (trans) and folded (cis) configurations (Poon \& Pun, 1980). The possible conformers of the trans isomer are trans-I (+++ +), trans-II (+-++), trans-III (+--+) and trans-V (+ + - -), which differ in the chirality of the sec-NH groups (Choi, 2009) and where + indicates if the H atom of the NH group is above the plane of the macrocycle and - indicates if it is below. The trans-I, trans-II and trans-V conformations can fold to form cis-I, cis-II and cis-V conformers, as shown in Fig. 1. The transIII conformation gives the most thermodynamically stable complex with two six-membered rings in chair and two five-

OPEN $\begin{array}{r}\text { ACCESS }\end{array}$

cis-I (syn-syn)

Figure 1
Possible conformers of cis-[CrL_{2} (cyclam) $]^{\mathrm{n}+}$ complexes.
membered rings in gauche conformations (Choi, 2009). However, the most stable conformation cannot fold to give the cis-III complex as this requires the diagonal NH groups to both lie above or below the plane of the macrocycle.

Recently, it has been shown that cyclam derivatives and their metal complexes exhibit anti-HIV activity (Ronconi \& Sadler, 2007; De Clercq, 2010; Ross et al., 2012). The conformation of the macrocyclic ligand and the orientations of the $\mathrm{N}-\mathrm{H}$ bonds are very important factors for co-receptor recognition. Therefore, knowledge of the conformation and crystal packing of transition metal complexes containing the cyclam ligand has become important in the development of new highly effective anti-HIV drugs that specially target alternative events in the HIV replicative cycle (De Clercq, 2010).

In this communication, we report on the synthesis and structural characterization of a new double complex, $\left[\mathrm{CrCl}_{2}(\right.$ cyclam $\left.)\right][\mathrm{Cr}($ ox $)($ cyclam $)]\left(\mathrm{ClO}_{4}\right)_{2}$, (I).

2. Structural commentary

The asymmetric unit contains two halves of the $\left[\mathrm{CrCl}_{2}(\mathrm{cy}-\right.$ clam $)]^{+}$and $[\mathrm{Cr}(\text { ox })(\text { cyclam })]^{+}$cations, and one perchlorate

Figure 2
A perspective view of the two chromium(III) complex cations and two perchlorate anions in compound (I), drawn at the 30% probability level. The primed atoms are related by symmetry code $\left(-x+\frac{1}{2},-y+\frac{3}{2},-z\right)$.

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 1 C^{\mathrm{i}}$	0.99	2.20	$3.090(8)$	148
$\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 2 C^{\mathrm{i}}$	0.99	2.42	$3.266(8)$	143
$\mathrm{~N} 2 A-\mathrm{H} 2 A \cdots \mathrm{Cl} 1 B^{\mathrm{ii}}$	0.99	2.42	$3.314(5)$	150
$\mathrm{~N} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 2 A$	0.99	1.87	$2.762(7)$	149
$\mathrm{~N} 2 B-\mathrm{H} 2 B \cdots \mathrm{O} 4 C^{\mathrm{iii}}$	0.99	2.39	$3.160(7)$	135

Symmetry codes: (i) $-x+1,-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $x, y, z+1$; (iii) $-x+\frac{1}{2},-y+\frac{3}{2}, z-1$.
anion. Each cyclam moiety exhibits point group symmetry .. 2 and can be described as being in the cis-V (anti-anti) conformation (Fig. 1). In each complex cation, the $\mathrm{Cr}^{\mathrm{III}}$ ions are coordinated by the N atoms of the cyclam ligands; two oxygen atoms of the oxalato ligand for one and two chlorido ligands for the other cation complete distorted octahedral coordination spheres binding their N atoms in a cis configuration (Fig. 1). The $\mathrm{Cr}-\mathrm{N}$ bond lengths from the donor atoms of the cyclam ligands are in the range of 2.075 (5) to 2.096 (4) \AA, in good agreement with those determined in cis- $\left[\mathrm{Cr}\left(\mathrm{N}_{3}\right)_{2}\right.$ (cyclam) $] \mathrm{ClO}_{4}[2.069$ (3)-2.103 (3) $\AA]$ (Meyer et al., 1998), cis-[Cr(ONO) ${ }_{2}($ cyclam $\left.)\right] \mathrm{NO}_{2} \quad[2.0874$ (16)$2.0916(15) \AA]$ (Choi et al., 2004a), [Cr(acac)(cyclam)]$\left(\mathrm{ClO}_{4}\right)_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} \quad[2.070(5)-2.089(5) \AA] \quad$ (acac $=$ acetylacetonate; Subhan et al., 2011) and cis-[Cr(NCS) $)_{2}(c y-$ clam)]NCS [2.0851 (14)-2.0897 (14) Å] (Moon et al., 2013). However, the $\mathrm{Cr}-\mathrm{N}$ bond lengths of the cyclam ligand in the cis conformation are slightly longer than those found in trans$\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\right.$ cyclam $\left.)\right] \mathrm{ClO}_{4}[2.046$ (2)-2.060 (2) $\AA]$ (Friesen et al., 1997), trans-[Cr(ONO) 2_{2} (cyclam) $] \mathrm{BF}_{4} \quad[2.064$ (4)2.073 (4) A] (De Leo et al., 2000), trans-[Cr($\left.\mathrm{NH}_{3}\right)_{2}(\mathrm{cy}-$ clam) $]\left[\mathrm{ZnCl}_{4}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O} \quad[2.0501(15)-2.0615$ (15) \AA] (Moon \& Choi, 2016) and trans-[Cr(nic-O) $)_{2}($ cyclam $\left.)\right] \mathrm{ClO}_{4}[2.058$ (4)2.064 (4) \AA] (nic-O = O-coordinated nicotinate; Choi, 2009). The $\mathrm{Cr}-\mathrm{N}$ bond lengths of the secondary amine are also comparable to those involving the primary amine found in trans- $\left[\mathrm{CrCl}_{2}\left(\mathrm{Me}_{2} \mathrm{tn}\right)_{2}\right]_{2} \mathrm{ZnCl}_{4}\left(\mathrm{Me}_{2} \mathrm{tn}=\right.$ 2,2-dimethylpropane-1,3-diamine; Choi et al., 2011), trans- $\left[\mathrm{Cr}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{tn}\right)_{2}\right]$ $\mathrm{ClO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Moon \& Choi, 2015), trans $-\left[\mathrm{Cr}(\mathrm{NCS})_{2}\left(\mathrm{Me}_{2} \mathrm{tn}\right)_{2}\right]-$ $\mathrm{SCN} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (Choi \& Lee, 2009) and trans-[Cr(2,2,3-tet) $\left.\mathrm{F}_{2}\right]$ ClO_{4} (2,2,3-tet $=1,4,7,11$-tetraazaundecane; Choi \& Moon, 2014). The $\mathrm{Cr} 1 A-\mathrm{O} 1 A$ bond length of 1.956 (4) \AA for the oxalate ligand is close to the mean of 1.959 (4) \AA found in $[\mathrm{Cr}(\mathrm{ox})($ cyclam $)] \mathrm{ClO}_{4}$ (Choi et al., 2004b). The $\mathrm{Cr} 1 B-\mathrm{Cl} 1 B$ bond length of 2.3358 (14) \AA is comparable to those found in cis- $\left[\mathrm{CrCl}_{2}\right.$ (cyclam) $\mathrm{ClO}_{4} \quad[2.331$ (2) \AA A $]$ (House \& McKee, 1984), cis-[$\mathrm{CrCl}_{2}(2,2,3-$ tet $\left.)\right] \mathrm{ClO}_{4}[2.3157 \text { (7) } \AA]_{0}$ (Choi et al., 2008), trans $-\left[\mathrm{CrCl}_{2}\left(\mathrm{Me}_{2} \mathrm{tn}\right)_{2}\right]_{2} \mathrm{ZnCl}_{4}[2.3112$ (6) $\AA \mathrm{A}]$ (Choi et al., 2011) and trans- $\left[\mathrm{CrCl}_{2}\left(\mathrm{Me}_{2} \mathrm{tn}\right)_{2}\right] \mathrm{Cl}[2.3253$ (7) $\AA]$ (Choi et al., 2007), respectively. The five-membered and six-membered chelate rings of the cyclam ligands adopt gauche and stable chair conformations, respectively. The $\mathrm{O} 1 A-\mathrm{Cr} 1 A-\mathrm{O} 1 A^{\mathrm{i}}$ angle is $83.3(3)^{\circ}$, while the $\mathrm{Cl} 1 B-\mathrm{Cr} 1 B-\mathrm{Cl} B^{\mathrm{i}}$ angle is $89.11(9)^{\circ}$ [symmetry code: (i) $\left.-x+\frac{1}{2},-y+\frac{3}{2}, z\right]$. The folded angles of the cyclam in $\left[\mathrm{CrCl}_{2} \text { (cyclam) }\right]^{+}$and $[\mathrm{Cr}(\mathrm{ox})(\mathrm{cy}-$ clam) ${ }^{+}$cations are 93.7 (2) and $97.5(2)^{\circ}$, respectively. The
significant distortion of the octahedral coordination sphere and the larger folded angle in the $[\mathrm{Cr}(\mathrm{ox})(\mathrm{cyclam})]^{+}$cation seem to arise from the small bite angle of the oxalato ligand. The tetrahedral $\mathrm{ClO}_{4}{ }^{-}$anion remains outside the coordination sphere of two $\mathrm{Cr}^{\mathrm{III}}$ ions. It is distorted due to its involvement in hydrogen-bonding interactions. $\mathrm{Cl}-\mathrm{O}$ bond lengths range from 1.426 (5) to 1.443 (5) \AA and the $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ angles from 107.8 (4)-111.0 (3) ${ }^{\circ}$.

3. Supramolecular features

In the asymmetric unit, two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the perchlorate anion to the neighboring $[\mathrm{Cr}(\mathrm{ox})(\text { cyclam })]^{+}$ cation while $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ contacts interconnect two $[\mathrm{Cr}(\mathrm{ox})(\text { cyclam })]^{+}$and one cis- $\left[\mathrm{CrCl}_{2} \text { (cyclam) }\right]^{+}$cation (Table 1, Figs. 2 and 3). An extensive array of these contacts generate a three-dimensional network of molecules stacked along the a-axis direction.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016) gave 16 hits for a cis- $\left[\mathrm{Cr} L_{2}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]^{+}$unit. The crystal structure of cis$\left[\mathrm{CrCl}_{2}\right.$ (cyclam) $] \mathrm{ClO}_{4}$ (House \& McKee, 1984), cis$\left[\mathrm{Cr}\left(\mathrm{N}_{3}\right)_{2}\right.$ (cyclam) $] \mathrm{ClO}_{4} \quad$ (Meyer et al., 1998), cis$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2}(\right.$ cyclam $\left.)\right]\left(\mathrm{ClO}_{4}\right) \mathrm{Cl}_{2}$ (Derwahl et al., 1999), cis$\left[\mathrm{Cr}(\mathrm{ONO})_{2}\right)($ cyclam $\left.)\right] \mathrm{NO}_{2}$ (Choi et al., 2004a), $[\mathrm{Cr}(\mathrm{ox})(\mathrm{cy}-$ clam $)] \mathrm{ClO}_{4}$ (ox = oxalate; Choi et al., 2004b), $[\mathrm{Cr}(\mathrm{acac})(\mathrm{cy}-$ clam $)]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{acac}=$ acetylacetonate; Subhan et al., 2011) and $c i s-\left[\mathrm{Cr}(\mathrm{NCS})_{2}(\right.$ cyclam $\left.)\right] \mathrm{NCS}$ (Moon et al., 2013) have been reported previously. All of these complexes show the same folded cis-V conformation for cyclam with different hydrogen-bonding and crystal-packing networks. Until now, no structure of the double complex ion $\left[\mathrm{CrCl}_{2}\right.$ (cyclam)]$[\mathrm{Cr}(\mathrm{ox})(\text { cyclam })]^{2+}$ with any anion has been deposited.

Figure 3
The crystal packing in compound (I), viewed perpendicular to the $b c$ plane. Dashed lines represent $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ (pink) and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ (cyan) hydrogen-bonding interactions, respectively.

Table 2
Experimental details.
Crystal data

Chemical formula	$\begin{aligned} & {\left[\mathrm{CrCl}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)-\right.} \\ & \left.\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \end{aligned}$
$M_{\text {r }}$	862.48
Crystal system, space group	Orthorhombic, Fdd2
Temperature (K)	243
$a, b, c(\AA)$	18.599 (4), 26.986 (5), 14.042 (3)
$V\left(\AA^{3}\right)$	7048 (2)
Z	8
Radiation type	Synchrotron, $\lambda=0.670 \AA$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.84
Crystal size (mm)	$0.08 \times 0.01 \times 0.01$
Data collection	
Diffractometer	ADSC Q210 CCD area detector
Absorption correction	Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}, T_{\text {max }}$	0.939, 0.996
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	14619, 4764, 4011
$R_{\text {int }}$	0.118
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.689
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.057, 0.150, 1.04
No. of reflections	4764
No. of parameters	218
No. of restraints	1
H -atom treatment	H-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e}^{-3}\right)$	$1.54,-0.51$
Absolute structure	Flack x determined using 1586 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$ (Parsons et al., 2013).
Absolute structure parameter	0.10 (2)

Computer programs: PAL BL2D-SMDC (Shin et al., 2016), HKL3000sm (Otwinowski \& Minor, 1997), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Putz \& Brandenburg, 2014) and publCIF (Westrip, 2010).

5. Synthesis and crystallization

The free ligand cyclam was purchased from Fluka and used as provided. All chemicals were reagent grade materials and were used without further purification. The starting materials, cis- $\left[\mathrm{CrCl}_{2}\right.$ (cyclam) $] \mathrm{ClO}_{4}$ and $[\mathrm{Cr}(\mathrm{ox})($ cyclam $)] \mathrm{ClO}_{4}$, were prepared according to literature methods (House \& McKee, 1984). The double complex, cis- $\left[\mathrm{CrCl}_{2}\right.$ (cyclam) $][\mathrm{Cr}(\mathrm{ox})$ (cyclam) $]\left(\mathrm{ClO}_{4}\right)_{2}$, was prepared by mixing concentrated equimolar aqueous solutions of the two starting compounds. A saturated solution of NaClO_{4} was added to the resulting solution for crystallization, and allowed to stand at room temperature for two days to give needle-like orange crystals of (I) suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Non-hydrogen atoms were refined anisotropically. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $\mathrm{N}-\mathrm{H}=0.99 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}$ of the parent atoms.

Acknowledgements

This work was supported by a grant from 2016 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.
Choi, J.-H., Choi, S. Y., Hong, Y. P., Ko, S.-O., Ryoo, K. S., Lee, S. H. \& Park, Y. C. (2008). Spectrochim. Acta Part A, 70, 619-625.
Choi, J.-H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. \& Habibi, M. H. (2007). Spectrochim. Acta Part A, 68, 796-801.

Choi, J.-H., Joshi, T. \& Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194-1198.
Choi, J.-H. \& Lee, S. H. (2009). J. Mol. Struct. 932, 84-89.
Choi, J.-H. \& Moon, D. (2014). J. Mol. Struct. 1059, 325-331.
Choi, J.-H., Oh, I.-G., Lim, W.-T. \& Park, K.-M. (2004a). Acta Cryst. C60, m238-m240.
Choi, J.-H., Oh, I.-G., Suzuki, T. \& Kaizaki, S. (2004b). J. Mol. Struct. 694, 39-44.
De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.
De Leo, M. A., Bu, X., Bentow, J. \& Ford, P. C. (2000). Inorg. Chim. Acta, 300-302, 944-950.
Derwahl, A., Wasgestian, F., House, D. A. \& Edwards, R. A. (1999). Inorg. Chim. Acta, 285, 313-317.
Friesen, D. A., Quail, J. W., Waltz, W. L. \& Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
House, D. A. \& McKee, V. (1984). Inorg. Chem. 23, 4237-4242.
Meyer, K., Bendix, J., Bill, E., Weyhermüller, T. \& Wieghardt, K. (1998). Inorg. Chem. 37, 5180-5188.

Moon, D. \& Choi, J.-H. (2015). Spectrochim. Acta Part A, 138, 774779.

Moon, D. \& Choi, J.-H. (2016). Acta Cryst. E72, 456-459.
Moon, D., Choi, J.-H., Ryoo, K. S. \& Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Poon, C. K. \& Pun, K. C. (1980). Inorg. Chem. 19, 568-569.
Putz, H. \& Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Ronconi, L. \& Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.
Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. \& Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Shin, J. W., Eom, K. \& Moon, D. (2016). J. Synchrotron Rad. 23, 369373.

Subhan, M. A., Choi, J.-H. \& Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2016). E72, 1417-1420 [doi:10.1107/S2056989016014134]

Crystal structure of cis-dichlorido(1,4,8,11-tetraazacyclotetradecane$\kappa^{4} N$) chromium (III) (oxalato- $\left.\kappa^{2} O^{1}, O^{2}\right)(1,4,8,11$-tetraazacyclotetradecane$\kappa^{4} N$) chromium(III) bis(perchlorate) from synchrotron data

Dohyun Moon and Jong-Ha Choi

Computing details

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski \& Minor, 1997); data reduction: HKL3000sm (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz \& Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).
cis-Dichlorido(1,4,8,11-tetraazacyclotetradecane- $\kappa^{4} N$)chromium (III) (oxalato- $\left.\kappa^{2} O^{1}, O^{2}\right)(1,4,8,11$ -tetraazacyclotetradecane- $\kappa^{4} N$)chromium(III) bis(perchlorate)

Crystal data

$\left[\mathrm{CrCl}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$
$M_{r}=862.48$
Orthorhombic, Fdd2
$a=18.599$ (4) \AA
$b=26.986$ (5) \AA
$c=14.042$ (3) \AA
$V=7048(2) \AA^{3}$
$Z=8$
$F(000)=3584$

Data collection

ADSC Q210 CCD area detector diffractometer
Radiation source: PLSII 2D bending magnet ω scan
Absorption correction: empirical (using intensity measurements)
(HKL3000sm Scalepack; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.939, T_{\text {max }}=0.996$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.150$
$S=1.04$
4764 reflections
$D_{\mathrm{x}}=1.626 \mathrm{Mg} \mathrm{m}^{-3}$
Synchrotron radiation, $\lambda=0.670 \AA$
Cell parameters from 25281 reflections
$\theta=0.4-33.3^{\circ}$
$\mu=0.84 \mathrm{~mm}^{-1}$
$T=243 \mathrm{~K}$
Needle, orange
$0.08 \times 0.01 \times 0.01 \mathrm{~mm}$

14619 measured reflections
4764 independent reflections
4011 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.118$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=1.9^{\circ}$
$h=-25 \rightarrow 25$
$k=-37 \rightarrow 37$
$l=-19 \rightarrow 19$

218 parameters

1 restraint
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0928 P)^{2}\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\text {max }}=1.54 \mathrm{e}^{-3}\)
\(\Delta \rho_{\text {min }}=-0.51 \mathrm{e} \AA^{-3}\)
```

Absolute structure: Flack x determined using 1586 quotients $\left[\left(I^{+}\right)-\left(I^{\prime}\right)\right] /\left[\left(I^{+}\right)+\left(I^{\prime}\right)\right]$ (Parsons et al., 2013).
Absolute structure parameter: 0.10 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cr1A	0.2500	0.7500	0.83915 (6)	0.0342 (3)
O1A	0.2305 (3)	0.70375 (18)	0.7351 (3)	0.0554 (10)
O2A	0.2332 (4)	0.6997 (3)	0.5761 (4)	0.092 (2)
N1A	0.3572 (3)	0.72957 (18)	0.8508 (3)	0.0457 (10)
H1A	0.3813	0.7427	0.7932	0.055*
N2A	0.2211 (3)	0.69512 (15)	0.9376 (3)	0.0426 (10)
H2A	0.2340	0.7073	1.0018	0.051*
C1A	0.3891 (4)	0.7568 (2)	0.9331 (5)	0.0557 (14)
H1A1	0.4415	0.7581	0.9271	0.067*
H1A2	0.3771	0.7400	0.9929	0.067*
C2A	0.3745 (4)	0.6746 (2)	0.8539 (4)	0.0624 (17)
H2A1	0.4263	0.6704	0.8636	0.075*
H2A2	0.3622	0.6597	0.7923	0.075*
C3A	0.3344 (4)	0.6470 (2)	0.9325 (5)	0.0603 (15)
H3A1	0.3520	0.6128	0.9338	0.072*
H3A2	0.3471	0.6622	0.9936	0.072*
C4A	0.2546 (4)	0.6455 (2)	0.9255 (5)	0.0603 (17)
H4A1	0.2410	0.6321	0.8631	0.072*
H4A2	0.2357	0.6231	0.9744	0.072*
C5A	0.1417 (4)	0.6917 (2)	0.9327 (5)	0.0587 (15)
H5A1	0.1234	0.6730	0.9874	0.070*
H5A2	0.1273	0.6744	0.8744	0.070*
C6A	0.2399 (3)	0.7232 (3)	0.6505 (4)	0.0637 (18)
Cr1B	0.2500	0.7500	0.28338 (5)	0.0319 (3)
Cl1B	0.26881 (11)	0.69068 (6)	0.16485 (9)	0.0602 (4)
N1B	0.2679 (3)	0.69487 (15)	0.3851 (3)	0.0430 (10)
H1B	0.2563	0.7094	0.4480	0.052*
N2B	0.1403 (3)	0.73775 (18)	0.2995 (3)	0.0446 (9)
H2B	0.1173	0.7524	0.2425	0.054*
C1B	0.3458 (4)	0.6843 (2)	0.3845 (5)	0.0554 (14)
H1B1	0.3582	0.6643	0.3287	0.066*
H1B2	0.3591	0.6657	0.4418	0.066*
C2B	0.2277 (4)	0.64797 (19)	0.3775 (4)	0.0558 (15)
H2B1	0.2429	0.6256	0.4287	0.067*

H2B2	0.2392	0.6321	0.3166	0.067^{*}
C3B	$0.1470(4)$	$0.6558(2)$	$0.3838(5)$	$0.0629(17)$
H3B1	0.1235	0.6233	0.3855	0.076^{*}
H3B2	0.1362	0.6726	0.4439	0.076^{*}
C4B	$0.1151(4)$	$0.6856(3)$	$0.3030(4)$	$0.0633(17)$
H4B1	0.1271	0.6694	0.2426	0.076^{*}
H4B2	0.0626	0.6854	0.3093	0.076^{*}
C5B	$0.1140(4)$	$0.7675(2)$	$0.3819(5)$	$0.0567(13)$
H5B1	0.1218	0.7493	0.4413	0.068^{*}
H5B2	0.0623	0.7738	0.3752	0.068^{*}
C11C	$0.52532(8)$	$0.74678(4)$	$1.13543(9)$	$0.0464(3)$
O1C	$0.5216(4)$	$0.7246(2)$	$1.2288(3)$	$0.0738(15)$
O2C	$0.5875(3)$	$0.7782(2)$	$1.1306(5)$	$0.0812(15)$
O3C	$0.5278(3)$	$0.70980(16)$	$1.0630(3)$	$0.0666(13)$
O4C	$0.4626(3)$	$0.7775(2)$	$1.1228(4)$	$0.0696(13)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1A	$0.0410(6)$	$0.0458(5)$	$0.0159(4)$	$-0.0046(4)$	0.000	0.000
O1A	$0.064(3)$	$0.072(3)$	$0.0296(17)$	$-0.009(2)$	$-0.0016(18)$	$-0.0161(18)$
O2A	$0.091(4)$	$0.153(5)$	$0.031(2)$	$-0.018(4)$	$0.004(2)$	$-0.032(3)$
N1A	$0.043(2)$	$0.067(3)$	$0.0267(16)$	$0.000(2)$	$0.0034(16)$	$-0.0047(17)$
N2A	$0.057(3)$	$0.0408(18)$	$0.0300(18)$	$-0.0026(18)$	$0.0062(18)$	$0.0020(14)$
C1A	$0.052(4)$	$0.076(4)$	$0.039(3)$	$-0.002(3)$	$-0.007(2)$	$-0.004(2)$
C2A	$0.071(5)$	$0.075(4)$	$0.042(3)$	$0.023(3)$	$0.004(3)$	$-0.007(3)$
C3A	$0.077(4)$	$0.050(2)$	$0.054(3)$	$0.014(3)$	$-0.001(3)$	$-0.004(2)$
C4A	$0.087(5)$	$0.039(2)$	$0.055(3)$	$0.005(2)$	$0.005(3)$	$0.001(2)$
C5A	$0.065(4)$	$0.064(3)$	$0.047(3)$	$-0.020(3)$	$0.010(3)$	$0.004(2)$
C6A	$0.047(3)$	$0.119(6)$	$0.025(2)$	$-0.006(3)$	$0.0010(19)$	$-0.004(3)$
Cr1B	$0.0459(6)$	$0.0333(4)$	$0.0164(4)$	$0.0007(4)$	0.000	0.000
C11B	$0.0926(11)$	$0.0583(7)$	$0.0297(6)$	$0.0046(7)$	$0.0025(6)$	$-0.0161(5)$
N1B	$0.069(3)$	$0.0350(17)$	$0.0251(17)$	$0.0053(19)$	$0.0005(19)$	$0.0000(14)$
N2B	$0.047(2)$	$0.062(2)$	$0.0255(18)$	$0.000(2)$	$-0.0011(15)$	$0.0011(17)$
C1B	$0.064(4)$	$0.053(3)$	$0.049(3)$	$0.014(3)$	$-0.003(3)$	$0.003(2)$
C2B	$0.098(5)$	$0.0337(19)$	$0.036(2)$	$-0.006(3)$	$-0.002(3)$	$0.0030(17)$
C3B	$0.090(5)$	$0.055(3)$	$0.044(3)$	$-0.020(3)$	$-0.002(3)$	$0.004(2)$
C4B	$0.077(5)$	$0.072(3)$	$0.041(3)$	$-0.026(3)$	$-0.009(3)$	$0.000(3)$
C5B	$0.052(3)$	$0.076(3)$	$0.041(3)$	$0.001(3)$	$0.011(3)$	$-0.006(3)$
C11C	$0.0524(8)$	$0.0494(6)$	$0.0372(6)$	$0.0003(5)$	$-0.0027(5)$	$-0.0003(5)$
O1C	$0.109(5)$	$0.073(3)$	$0.040(2)$	$0.002(3)$	$-0.001(3)$	$0.004(2)$
O2C	$0.081(4)$	$0.084(3)$	$0.079(3)$	$-0.023(3)$	$0.003(3)$	$-0.003(3)$
O3C	$0.100(4)$	$0.053(2)$	$0.046(2)$	$0.005(2)$	$0.009(2)$	$-0.0049(18)$
O4C	$0.070(3)$	$0.077(3)$	$0.062(3)$	$0.020(3)$	$-0.011(2)$	$-0.012(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

Cr1A-O1A ${ }^{\text {i }}$	1.956 (4)	Cr1B-N2B	2.080 (5)
Cr1A-O1A	1.956 (4)	$\mathrm{Cr1B-N1B}{ }^{\text {i }}$	2.089 (4)
Cr1A-N1A ${ }^{\text {i }}$	2.075 (5)	Cr1B-N1B	2.089 (4)
Cr1A-N1A	2.075 (5)	Cr1B-Cl1B	2.3358 (14)
Cr1A-N2A	2.096 (4)	$\mathrm{Cr1B}-\mathrm{Cl1B}^{\text {i }}$	2.3358 (14)
$\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}^{\text {i }}$	2.096 (4)	N1B-C2B	1.474 (7)
O1A-C6A	1.310 (8)	N1B-C1B	1.478 (9)
O2A-C6A	1.228 (8)	N1B-H1B	0.9900
N1A-C1A	1.493 (8)	N2B-C4B	1.484 (8)
N1A-C2A	1.519 (8)	N2B-C5B	1.490 (7)
N1A-H1A	0.9900	N2B-H2B	0.9900
N2A-C5A	1.482 (9)	C1B-C5B ${ }^{\text {i }}$	1.500 (9)
N2A - C4A	1.485 (7)	C1B-H1B1	0.9800
N2A-H2A	0.9900	C1B-H1B2	0.9800
C1A-C5A ${ }^{\text {i }}$	1.502 (10)	C2B-C3B	1.518 (11)
C1A-H1A1	0.9800	$\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 1$	0.9800
C1A-H1A2	0.9800	$\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 2$	0.9800
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	1.526 (10)	C3B-C4B	1.512 (9)
C2A-H2A1	0.9800	C3B-H3B1	0.9800
C2A-H2A2	0.9800	C3B-H3B2	0.9800
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	1.488 (11)	C4B-H4B1	0.9800
C3A-H3A1	0.9800	C4B-H4B2	0.9800
C3A-H3A2	0.9800	C5B-C1B ${ }^{\text {i }}$	1.500 (9)
C4A-H4A1	0.9800	C5B-H5B1	0.9800
C4A-H4A2	0.9800	C5B-H5B2	0.9800
C5A- $\mathrm{Cl}^{\text {A }}$	1.503 (10)	$\mathrm{Cl1C-O} 3 \mathrm{C}$	1.426 (5)
C5A-H5A1	0.9800	$\mathrm{Cl1C-O} 2 \mathrm{C}$	1.435 (6)
C5A-H5A2	0.9800	$\mathrm{Cl1C-O} 4 \mathrm{C}$	1.442 (5)
C6A-C6A ${ }^{\text {i }}$	1.496 (18)	$\mathrm{Cl1C}-\mathrm{O} 1 \mathrm{C}$	1.443 (5)
$\mathrm{Cr} 1 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}^{\mathrm{i}}$	2.080 (5)		
O1A ${ }^{\text {i }}$ Cr1A-O1A	83.3 (3)	$\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}^{\mathrm{i}}$	88.2 (2)
O1A ${ }^{\text {i }}$ - $\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}^{\mathrm{i}}$	93.85 (19)	$\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}^{\mathrm{i}}$	83.26 (19)
O1A-Cr1A-N1A ${ }^{\text {i }}$	92.9 (2)	N2B ${ }^{\text {i }}$ - $\mathrm{Cr} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	83.26 (19)
O1A ${ }^{\text {- }} \mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	92.9 (2)	N2B-Cr1B-N1B	88.2 (2)
O1A-Cr1A-N1A	93.85 (19)	N1B ${ }^{\text {i }}$ - $\mathrm{Cr} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	93.7 (2)
N1A ${ }^{\text {i }}$ Cr1A-N1A	171.0 (2)	$\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr} 1 \mathrm{~B}-\mathrm{Cl1B}$	92.27 (13)
O1A ${ }^{\text {- }} \mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	172.4 (2)	N2B-Cr1B-Cl1B	96.65 (14)
O1A-Cr1A-N2A	89.67 (18)	N1B-Cr1B-Cl1B	177.69 (13)
N1A ${ }^{\text {i }}$ - $\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	83.68 (19)	N1B-Cr1B-Cl1B	88.58 (12)
N1A-Cr1A-N2A	90.38 (19)	$\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr} 1 \mathrm{~B}-\mathrm{Cl}^{\mathrm{i}} \mathrm{B}^{\mathrm{i}}$	96.65 (14)
O1A ${ }^{\text {i }}$ - $\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}^{\mathrm{i}}$	89.67 (18)	$\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr} 1 \mathrm{~B}-\mathrm{Cl}^{\text {B }}{ }^{\text {i }}$	92.27 (13)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}^{\mathrm{i}}$	172.4 (2)	N1B ${ }^{\text {i }}$ - $\mathrm{Cr} 1 \mathrm{~B}-\mathrm{Cl}^{\text {d }}{ }^{\text {i }}$	88.58 (12)
$\mathrm{N} 1 \mathrm{~A}^{\mathrm{i}}-\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}^{\mathrm{i}}$	90.37 (19)	N1B-Cr1B-Cl1B ${ }^{\text {i }}$	177.69 (13)
$\mathrm{N} 1 \mathrm{~A}-\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}^{\mathrm{i}}$	83.68 (19)	Cl1B-Cr1B-Cl1B ${ }^{\text {i }}$	89.11 (9)
$\mathrm{N} 2 \mathrm{~A}-\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}^{\mathrm{i}}$	97.5 (2)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	109.4 (5)

C6A-O1A-Cr1A	113.4 (5)
C1A-N1A-C2A	112.0 (5)
C1A-N1A-Cr1A	108.2 (4)
C2A-N1A-Cr1A	117.7 (4)
C1A-N1A-H1A	106.1
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A}$	106.1
Cr1A-N1A-H1A	106.1
C5A-N2A-C4A	110.9 (5)
C5A-N2A-Cr1A	105.6 (4)
C4A-N2A-Cr1A	117.0 (4)
$\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	107.7
$\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	107.7
Cr1A-N2A-H2A	107.7
N1A-C1A-C5A ${ }^{\text {i }}$	107.5 (5)
N1A-C1A-H1A1	110.2
C5A ${ }^{\text {i }}$ C1A- H 1 A 1	110.2
N1A-C1A-H1A2	110.2
C5A - $\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A} 2$	110.2
H1A1-C1A-H1A2	108.5
N1A-C2A-C3A	113.2 (5)
N1A-C2A-H2A1	108.9
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 1$	108.9
N1A-C2A-H2A2	108.9
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A} 2$	108.9
H2A1-C2A-H2A2	107.7
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	116.9 (6)
C4A-C3A-H3A1	108.1
C2A-C3A-H3A1	108.1
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 2$	108.1
C2A-C3A-H3A2	108.1
H3A1-C3A-H3A2	107.3
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	112.7 (5)
N2A-C4A-H4A1	109.0
C3A-C4A-H4A1	109.0
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A} 2$	109.0
C3A-C4A-H4A2	109.0
H4A1-C4A-H4A2	107.8
$\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}^{\mathrm{i}}$	108.8 (5)
N2A-C5A-H5A1	109.9
C1A ${ }^{\text {i }}$ - 5 A- H 5 A 1	109.9
N2A-C5A-H5A2	109.9
C1A ${ }^{\text {i }}$ - 5 A- H 5 A 2	109.9
H5A1-C5A-H5A2	108.3
O2A-C6A-O1A	123.4 (8)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}^{\text {i }}$	121.7 (5)
O1A-C6A-C6A ${ }^{\text {i }}$	114.9 (4)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr} 1 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	167.5 (2)

C2B-N1B-Cr1B	118.8 (4)
C1B-N1B-Cr1B	106.8 (3)
C2B-N1B-H1B	107.1
C1B-N1B-H1B	107.1
Cr1B-N1B-H1B	107.1
C4B-N2B-C5B	112.5 (5)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr1B}$	117.6 (4)
$\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{Cr1B}$	108.7 (4)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	105.7
$\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	105.7
$\mathrm{Cr} 1 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B}$	105.7
N1B-C1B-C5B ${ }^{\text {i }}$	108.8 (5)
N1B-C1B-H1B1	109.9
C5B- ${ }^{\text {i }}$ 1B- H 1 B 1	109.9
N1B-C1B-H1B2	109.9
C5B- ${ }^{\text {i }}$ 1B- H 1 B 2	109.9
H1B1-C1B-H1B2	108.3
N1B-C2B-C3B	112.2 (5)
N1B-C2B-H2B1	109.2
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 1$	109.2
$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 2$	109.2
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 2$	109.2
$\mathrm{H} 2 \mathrm{~B} 1-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{~B} 2$	107.9
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	114.8 (6)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 1$	108.6
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 1$	108.6
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 2$	108.6
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 2$	108.6
$\mathrm{H} 3 \mathrm{~B} 1-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 2$	107.6
N2B-C4B-C3B	113.9 (5)
N2B-C4B-H4B1	108.8
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B} 1$	108.8
N2B-C4B-H4B2	108.8
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B} 2$	108.8
$\mathrm{H} 4 \mathrm{~B} 1-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~B} 2$	107.7
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}^{\mathrm{i}}$	108.8 (5)
$\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{H} 5 \mathrm{~B} 1$	109.9
C1B ${ }^{\text {i }}$ - $\mathrm{C} 5 \mathrm{~B}-\mathrm{H} 5 \mathrm{~B} 1$	109.9
N2B-C5B-H5B2	109.9
C1B- $\mathrm{C} 5 \mathrm{~B}-\mathrm{H} 5 \mathrm{~B} 2$	109.9
H5B1-C5B-H5B2	108.3
$\mathrm{O} 3 \mathrm{C}-\mathrm{Cl1C}-\mathrm{O} 2 \mathrm{C}$	110.7 (4)
$\mathrm{O} 3 \mathrm{C}-\mathrm{Cl1C}-\mathrm{O} 4 \mathrm{C}$	110.0 (3)
$\mathrm{O} 2 \mathrm{C}-\mathrm{Cl1C}-\mathrm{O} 4 \mathrm{C}$	107.8 (4)
$\mathrm{O} 3 \mathrm{C}-\mathrm{Cl1C}-\mathrm{O} 1 \mathrm{C}$	111.0 (3)
$\mathrm{O} 2 \mathrm{C}-\mathrm{Cl1C}-\mathrm{O} 1 \mathrm{C}$	109.1 (4)
$\mathrm{O} 4 \mathrm{C}-\mathrm{Cl1C}-\mathrm{O} 1 \mathrm{C}$	108.1 (3)

supporting information

$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}^{\mathrm{i}}$	$-170.2(5)$	$\mathrm{Cr} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C}^{2} \mathrm{~A}^{\mathrm{i}}$	$-2.7(9)$
$\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}^{\mathrm{i}}$	$-38.9(6)$	$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}^{\mathrm{i}}$	$174.1(5)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$71.3(7)$	$\mathrm{Cr} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}^{\mathrm{i}}$	$44.3(5)$
$\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$-55.0(6)$	$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$176.5(5)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$63.5(7)$	$\mathrm{Cr} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$-60.6(6)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$-178.5(5)$	$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$64.6(6)$
$\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$60.4(7)$	$\mathrm{C} 5 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$-67.7(8)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}$	$-66.6(7)$	$\mathrm{Cr} 1 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$59.8(7)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}^{\mathrm{i}}$	$-173.1(5)$	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}$	$-64.9(8)$
$\mathrm{Cr} 1 \mathrm{~A}-\mathrm{N} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}^{\mathrm{i}}$	$-45.5(5)$	$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}^{\mathrm{i}}$	$167.8(6)$
$\mathrm{Cr} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	$177.1(6)$	$\mathrm{Cr} 1 \mathrm{~B}-\mathrm{N} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}^{\mathrm{i}}$	$35.7(6)$

Symmetry code: (i) $-x+1 / 2,-y+3 / 2, z$.

Hydrogen-bond geometry ($\hat{A},{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A — \mathrm{H} 1 A \cdots \mathrm{O} 1 C^{\mathrm{ii}}$	0.99	2.20	$3.090(8)$	148
$\mathrm{~N} 1 A — \mathrm{H} 1 A \cdots \mathrm{O} 2 C^{\mathrm{ii}}$	0.99	2.42	$3.266(8)$	143
$\mathrm{~N} 2 A — \mathrm{H} 2 A \cdots \mathrm{Cl1} B^{\mathrm{iii}}$	0.99	2.42	$3.314(5)$	150
$\mathrm{~N} 1 B — \mathrm{H} 1 B \cdots \mathrm{O} 2 A$	0.99	1.87	$2.762(7)$	149
$\mathrm{~N} 2 B — \mathrm{H} 2 B \cdots \mathrm{O} 4 C^{\mathrm{iv}}$	0.99	2.39	$3.160(7)$	135

Symmetry codes: (ii) $-x+1,-y+3 / 2, z-1 / 2$; (iii) $x, y, z+1$; (iv) $-x+1 / 2,-y+3 / 2, z-1$.

