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Outstanding prognostic value 
of novel ferroptosis‑related genes 
in chemoresistance osteosarcoma 
patients
Jiazheng Zhao 1, Yi Zhao1, Xiaowei Ma1, Helin Feng1 & Litao Jia 2*

Osteosarcoma (OS) is the most common bone‑derived tumor, and chemoresistance is a pivotal 
factor in the poor prognosis of patients with OS. Ferroptosis, as an emerging modality of regulated 
cell death, has demonstrated potential value in tumor chemoresistance studies. Through the 
gene expression omnibus database in conjunction with the FerrDb database, we identified novel 
ferroptosis‑related differentially expressed genes (DEGs) involving chemoresistance in OS patients. 
Subsequently, enrichment analysis, protein–protein interaction network analysis and survival analysis 
were performed sequentially to recognize the hub genes and ultimately to construct a predictive 
model. The model constructed from the TARGET database was exhibited in a nomogram and assessed 
by calibration curves. The prognostic value of the model and hub genes was validated separately 
by an independent cohort. Twenty‑two ferroptosis‑related DEGs were identified, including 16 
up‑regulated and 6 down‑regulated. Among them, expressions of CBS, COCS1, EGFR, as hub genes, 
were significantly associated with the prognosis of OS patients and were evidenced as independent 
prognostic factors. An efficient prognostic model covering hub gene expressions and clinical variables 
was developed and validated. Combining the results of hub genes in differential analysis, the actions 
of hub genes in ferroptosis, and the prognostic relevance of hub genes in patients, we revealed 
that CBS, SOCS1 and EGFR might play essential roles in OS and its chemoresistance with potential 
research and clinical value.

Osteosarcoma (OS), as the most prevalent tumor of bone origin, originates from primitive mesenchymal cells 
and mainly occurs in children and  adolescents1,2. Chemotherapy, as the indispensable treatment option, has 
demonstrated a positive effect on the majority of patients with OS, but once chemoresistance strikes, it can lead to 
a dramatic reduction in patient  survival3,4. The high susceptibility to chemotherapy resistance is also responsible 
for the lack of significant improvement in survival rates among OS patients over the past 20  years5. The specific 
mechanisms involved in the development of OS chemoresistance are not fully clarified, and protocols to address 
OS chemoresistance are urgently  needed6,7.

Due to the fact that majority of tumor treatment regimens function by targeting apoptotic tumor cells, once 
tumor cells undergo apoptotic escape, treatment resistance will develop accordingly, leading to a disastrous 
 prognosis8,9. Consequently, non-apoptotic forms of regulated cell death (RCD) associated with tumor therapy 
have come into the limelight and are gaining increased  attention10. Distinct from apoptosis, ferroptosis, as a 
nontraditional RCD form featured by iron-dependent accumulation of lipid reactive oxygen  species11, has been 
revealed to function as a pivotal role in tumor  chemoresistance12. In particular, for OS, we identified through pre-
vious studies that ferroptosis may be tightly correlated with OS  chemoresistance13. Ferroptosis is considered to be 
of great potential in antagonizing chemoresistance for  OS14, however, further studies on the mechanisms associ-
ated with the action of ferroptosis on OS chemoresistance and the essential molecules involved are extremely rare.

In the present study, we obtained the list of ferroptosis-related genes and the characteristic of correspond-
ing genes from the FerrDb database. In combination with the Gene Expression Omnibus (GEO) database, 
ferroptosis-related differentially expressed genes (DEGs) were acquired and followed by enrichment analysis and 
protein–protein interaction (PPI) network construction. Furthermore, hub genes with prognostic significance 
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were identified through the TARGET database. The aim was to target critical ferroptosis-related DEGs by combin-
ing their own ferroptosis characteristics, expression characteristics and prognostic characteristics, and eventually 
construct an efficient prediction model whose prognostic value was individually validated by an independent 
cohort.

Materials and methods
Data sources and differential analysis. Through the GEO database (https:// www. ncbi. nlm. nih. gov/ 
geo/), we obtained RNA-seq data of 21 OS samples from the GSE87437 dataset based on GPL570 platform for 
differential analysis, including 11 chemoresistance samples and 10 non-chemoresistance ones. GEO2R (http:// 
www. ncbi. nlm. nih. gov/ geo/ geo2r) was used to screen for DEGs meeting the criteria of p < 0.1, | log fold change 
(FC)|> 0.5. FerrDb (http:// www. zhoun an. org/ ferrdb) is the first manually managed ferroptosis database cover-
ing regulatory factors and molecular markers for ferroptosis and ferroptosis-related  diseases15. From the FerrDb 
database, 259 ferroptosis-related genes were downloaded, covering 108 drivers and 69 suppressors. In addition, 
99 OS sample with survival information from the TARGET database (https:// ocg. cancer. gov/ programs/target) 
were used for survival analysis and a prognostic model construction. For external validation of the prognostic 
value on the model and hub genes, through the GEO database, we obtained RNA-seq data and clinical informa-
tion from the GSE21257 dataset based on GPL10295 platform, including 53 OS samples. All the above material 
was available from public databases and was free of ethical issue or informed consent.

Enrichment analyses and PPI networks construction. Gene Set Enrichment Analysis (GSEA), Gene 
Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis 
were conducted by the clusterProfiler package of  R16. GO enrichment was applied to annotate and analyze genes 
involved in biological process (BP), cellular component (CC) and molecular function (MF)17. Moreover, we fore-
casted interactions between DEGs that achieved the combined score > 0.15 using Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING) database (https:// string- db. org/)18 and visualized PPI networks using 
Cytoscape software, an open-source software for network analysis and  visualization19. Top-ranked DEGs were 
calculated by  cytoHubba20, a plug-in for Cytoscape to further screen hub genes.

Survival analyses and model construction. The median of gene expression was used to divide the low 
and high expression groups, and overall survival was selected as the survival parameter. Survival analyses involv-
ing log-rank test, univariate Cox regression and multivariate Cox regression were performed using the survival 
package of R and visualized using the survminer package of R. Variables that were significant in the univariate 
analysis were included in the multivariate analysis and those that were significant in the multivariate analysis 
were further incorporated into the prognostic model. The rms package of R was used to develop a nomogram 
and calibration curves in order to construct and assess the prognostic model  separately21. In addition, time-
dependent receiver operating characteristic (ROC) curves were structured using the timeROC package of R to 
validate the prognostic value of the model and hub genes.

Statistical analysis. Statistical analysis was conducted by version 3.6.3 of the R software and version 3.8.2 
of the Cytoscape software. The analysis results were considered statistically significant at p < 0.05.

Results
Ferroptosis‑related DEGs identification in chemoresistance OS patients. Via the GEO database, 
we acquired RNA-seq data of 21 OS samples from the GSE87437 dataset for differential analysis, including 11 
chemoresistance samples and 10 non-chemoresistance ones. The volcano plot presented the results of differen-
tial analysis via the GEO2R (Fig. 1A). Compared to non-chemoresistance samples, there were 1292 up-regulated 
DEGs and 828 down-regulated DEGs in chemoresistance ones. Among them, 22 ferroptosis-related DEGs were 
identified, including 16 up-regulated and 6 down-regulated ones (Table 1) (Fig. 1B).

GSEA of DEGs in chemoresistance OS patients. The results of differential analysis in the GSE87437 
dataset were subjected to GSEA (Table  2). The top-three most significant-enriched gene sets based on nor-
malized enrichment score (NES) value, which negatively correlated with the DEGs, were integrin1 pathway, 
assembly of collagen fibrils and other multimeric structures, response to metal ions (Fig. 2A). Besides, the top-
three most significant-enriched gene sets based on NES value, which positively correlated with the DEGs, were 
TNFRSF members mediating non canonical NF-kappaB pathway, CTL pathway, tcytotoxic pathway (Fig. 2B).

GO and KEGG enrichment analyses of ferroptosis‑related DEGs. GO and KEGG enrichment 
analyses were performed on 22 ferroptosis-related DEGs. GO analysis suggested that these genes mainly func-
tioned in response to iron ion, extrinsic component of membrane, and oxidoreductase activity. The top-three 
most significant-enriched terms in each of the BP, CC, and MF entries were identified for GO visualization 
network construction (Fig. 3A). In addition, KEGG analysis indicated that corresponding genes were associated 
with ferroptosis, autophagy, mineral absorption, arachidonic acid metabolism, and biosynthesis of amino acids. 
The top-five most significant-enriched pathways were identified for KEGG visualization network construction 
(Fig. 3B).

PPI networks of ferroptosis‑related DEGs. Interactions between ferroptosis-related DEGs were pre-
dicted using STRING database with a combined score > 0.15 and visualized using Cytoscape software. The initial 
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PPI network with 20 nodes and 43 edges was developed (Fig. 4A). Furthermore, we applied cytoHubba to iden-
tify the top-ranked genes and recognized a 12-node, 24-edge PPI network based on the initial network (Fig. 4B).

Hub genes identification. Among these genes, we discovered that the expression of cystathionine beta-
synthase (CBS), suppressor of cytokine signaling 1 (SOCS1) and epidermal growth factor receptor (EGFR) influ-
enced the prognosis of OS patients in TARGET database. High expression of CBS (Fig. 5A), and low expression 
of SOCS1 (Fig. 5B), EGFR (Fig. 5C) were significantly associated with poor survival probability. Meanwhile, 

Figure 1.  Ferroptosis-related DEGs identification in chemoresistance OS patients. (A) The volcano plot of 
differential analysis in the GSE87437 dataset. (B) The Venn diagram obtained by intersecting the DEGs in the 
GSE87437 dataset and ferroptosis-related genes in the FerrDb database.

Table 1.  Ferroptosis-related DEGs in OS.

No Genes Expression log FC

1 NOX1 Up-regulation 1.11

2 TFR2 Up-regulation 0.92

3 ALOX15B Up-regulation 0.99

4 ACO1 Up-regulation 1.28

5 WIPI2 Up-regulation 0.75

6 EGFR Up-regulation 1.21

7 SOCS1 Up-regulation 0.67

8 MUC1 Up-regulation 0.85

9 FANCD2 Up-regulation 0.91

10 PML Up-regulation 1.21

11 TP63 Up-regulation 1.12

12 PROM2 Up-regulation 1.08

13 SLC2A6 Up-regulation 0.68

14 HNF4A Up-regulation 1.24

15 TF Up-regulation 1.23

16 ELAVL1 Up-regulation 0.82

17 ATG7 Down-regulation −0.74

18 ALOX12B Down-regulation −1.01

19 SLC1A4 Down-regulation −0.56

20 RGS4 Down-regulation −2.09

21 SLC40A1 Down-regulation −0.55

22 CBS Down-regulation −1.03
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CBS, a suppressor of ferroptosis, was up-regulated in chemoresistance samples according to previous differential 
analysis, while SOCS1 and EGFR, as drivers of ferroptosis, were correspondingly down-regulated in chemore-
sistance samples. We targeted these three genes as hub genes for further analyses.

Expressions of CBS, SOCS1 and EGFR might be independent prognostic factors for OS 
patients. Through the TARGET database, clinical characteristics of OS patients (containing age, gender, 
race, surgery, metastasis, tumor side, tumor region, primary site progression) together with hub gene expres-
sions were included in univariate Cox regression analysis. The results showed that metastasis, high expression of 
CBS, low expression of SOCS1 and EGFR were risk factors for poor prognosis in patients with OS. Furthermore, 
these variables with significant results were integrated into multivariate Cox regression analysis, which revealed 
that expressions of CBS, SOCS1 and EGFR might be independent prognostic factors for OS patients (Table 3).

Validation for the prognostic value of the hub genes. Internal validation was performed through the 
TARGET database to detect the prognostic value of the 3 hub genes with time-dependent ROC curves (Fig. 6A). 
Moreover, external validation for the prognostic value of CBS, SOCS1 and EGFR was implemented in an inde-
pendent cohort of 53 OS samples from the GSE21257 dataset, which demonstrated the results consistent with 
the internal validation (Fig. 6B).

A prognostic model construction and evaluation. Variables with significant results in multivariate 
Cox regression analysis were incorporated into the construction of the prognostic model. Metastasis and expres-
sions of CBS, SOCS1, EGFR were aggregated in a nomogram to predict 1-, 3-, and 5-year survival probability in 
patients with OS (Fig. 7A). The C-index of this prognostic model reached 0.788 (0.756–0.820), and the predicted 
and actual outcomes in the 1-, 3-, and 5-year calibration curves were nearly identical (Fig. 7B).

Validation for the prognostic value of the model. An independent cohort of 53 OS samples from 
the GSE21257 dataset was conducted to externally validate the model. The time-dependent ROC curve demon-
strated the model’s outstanding predictive efficacy for prognosis of patients with OS, and was higher than that 
of individual hub genes (Fig. 8).

Discussion
We have previously reported that ferroptosis can impact chemotherapy resistance in patients with  OS13. Chemo-
therapy, a common management for cancer, provides varying degrees of therapeutic efficacy for most human 
 cancers22. However, since the majority of the treatment regimens involved target the apoptotic effect of tumor 
cells, once apoptotic escape of tumor cells occurs, it can lead to a reduction in the sensitivity of the original 
treatment and thereby resulting in a poor  prognosis23. Distinguished from apoptosis, ferroptosis, as an emerging 

Table 2.  Top-ten most significant-enriched gene sets according to NES value ranking of GSEA results 
positively and negatively correlated with DEGs, respectively.

No Significant-enriched genes sets Correlation NES

1 REACTOME_TNF_RECEPTOR_SUPERFAMILY_TNFSF_MEMBERS_MEDIATING_NON_CANONI-
CAL_NF_KB_PATHWAY Positive 1.90

2 BIOCARTA_CTL_PATHWAY Positive 1.90

3 BIOCARTA_TCYTOTOXIC_PATHWAY Positive 1.86

4 REACTOME_UNBLOCKING_OF_NMDA_RECEPTORS_GLUTAMATE_BINDING_AND_ACTIVA-
TION Positive 1.85

5 REACTOME_ROLE_OF_PHOSPHOLIPIDS_IN_PHAGOCYTOSIS Positive 1.84

6 BIOCARTA_NO2IL12_PATHWAY Positive 1.82

7 REACTOME_PIWI_INTERACTING_RNA_PIRNA_BIOGENESIS Positive 1.80

8 BIOCARTA_THELPER_PATHWAY Positive 1.79

9 REACTOME_SURFACTANT_METABOLISM Positive 1.78

10 REACTOME_OLFACTORY_SIGNALING_PATHWAY Positive 1.77

11 PID_INTEGRIN1_PATHWAY Negative −2.22

12 REACTOME_ASSEMBLY_OF_COLLAGEN_FIBRILS_AND_OTHER_MULTIMERIC_STRU CTU RES Negative −2.16

13 REACTOME_RESPONSE_TO_METAL_IONS Negative −2.07

14 REACTOME_COLLAGEN_FORMATION Negative −2.06

15 WP_CANONICAL_AND_NONCANONICAL_TGFB_SIGNALING Negative −2.02

16 REACTOME_SIGNALING_BY_NODAL Negative −2.02

17 WP_MIRNA_TARGETS_IN_ECM_AND_MEMBRANE_RECEPTORS Negative −2.00

18 REACTOME_COLLAGEN_BIOSYNTHESIS_AND_MODIFYING_ENZYMES Negative −1.98

19 REACTOME_CROSSLINKING_OF_COLLAGEN_FIBRILS Negative −1.97

20 REACTOME_LAMININ_INTERACTIONS Negative −1.94
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Figure 2.  GSEA of ferroptosis-related DEGs in chemoresistance OS patients. (A) The top-three most 
significant-enriched gene sets that negatively correlated with the ferroptosis-related DEGs based on NES value. 
(B) The top-three most significant-enriched gene sets that positively correlated with the ferroptosis-related 
DEGs based on NES value.

type of RCD with unique morphological and biological characteristics, is recognized as promising in modifying 
cancer chemoresistance and has demonstrated corresponding value in OS  chemotherapy24. Fu et al. observed 
that OS cells that underwent ferroptosis behaved more sensitively to adriamycin  treatment25. Liu et al. revealed 
a significant decrease of ferroptosis activity in cisplatin-resistant OS cells, while non-resistant ones gradually 
developed a hyposensitivity to cisplatin along with the addition of ferroptosis inhibitors, and this hyposensi-
tivity could be ameliorated by ferroptosis  agonists12. In the present study, we identified 22 ferroptosis-related 
DEGs between chemoresistance and non-chemoresistance samples of OS, from which CBS, COCS1, EGFR 
were detected to be associated with overall survival in OS patients, and thus they were classified as hub genes 
for further study to explore the potential molecular mechanism and prognostic value. The aim was to target 
critical ferroptosis-related DEGs by combining their own ferroptosis characteristics, expression characteristics 
and prognostic characteristics, and eventually construct an efficient prediction model whose prognostic value 
was individually validated by an independent cohort.

Through the TARGET database, high expression of CBS and low expression of SOCS1, EGFR suggested poor 
survival probability for patients with OS. CBS, shown to be up-regulated in chemoresistant samples by differ-
ential analysis, is regarded as a suppressor of  ferroptosis26,27. CBS is the rate-limiting enzyme as well as the first 
enzyme in the transsulfuration pathway, which serves a critical role for humans in the maintenance of health 
and the development of  disease28. The typical biochemical function of CBS under physiological conditions is to 
catalyze the transition of serine and homocysteine to cystathionine and water. Additionally, CBS can also catalyze 
substitution reactions which generate hydrogen  sulfide29,30. Suppression of CBS has been reported to initiate 
ferroptosis in hepatocellular  carcinoma27. A similar response was measured by Liu et al. in ovarian cancer cells, 
whereby knockdown of CBS enhanced ferroptosis susceptibility of cancer cells, while overexpression of CBS 
correspondingly promoted ferroptosis  resistance26. In addition, SOCS1 and EGFR, shown to be down-regulated 
in chemoresistant samples by differential analysis, are considered as drivers of  ferroptosis31,32. SOCS1 belongs to 
a family of 8 intracellular proteins that under physiological conditions limit type I Interferon and Interferon-γ 
receptor activation, serving as a classical negative feedback loop regulator of the Janus kinase and – signal trans-
ducer and activator of transcription  pathway33,34. SOCS1 has exhibited significant potential in multiple diseases, 
and its related gene therapy and biologic application are active fields of study  worldwide35. For a wide range of 
cancers, SOCS1 is recognized as a tumor suppressor and may act in a cell context-dependent  manner36. As for OS, 
it has been confirmed that expression of SOCS1 can sensitize U-2 OS cells to ferroptosis inducer, which may be 
linked to the reduced glutathione  level32. EGFR is a transmembrane glycoprotein belonging to the tyrosine kinase 
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receptor family, whose binding to cognate ligands result in its autophosphorylation and subsequent activation of 
signal transduction pathways involved in regulating cell proliferation, differentiation and  survival37,38. In terms 
of EGFR in ferroptosis, Poursaitidis et al. discovered that cell death in activated EGFR mutant cells occurred 
by ferroptosis and repression of EGFR signaling pathway corresponded to the rescue of cell  viability31. Apart 
from its broad role in the genesis and progression of tumors, EGFR also influences therapeutic efficacy and is 
engaged in chemoresistance, which has recently been described as involving ferroptosis  effect39. Combining the 
results of hub genes in differential analysis, the actions of hub genes in ferroptosis, and the prognostic relevance 
of hub genes in patients, we considered that CBS, SOCS1 and EGFR might play essential roles in OS and its 
chemoresistance with potential research and clinical value.

Furthermore, we included hub gene expressions along with clinical variables for patients with OS in Cox 
regression analyses and identified variables with statistically significant results, containing expressions of CBS, 
SOCS1, EGFR and metastasis, for incorporation into the construction of a prognostic model. OS tends to indi-
cate a high malignancy degree and a poor survival period, and given its complexity and heterogeneity, accurate 
prediction of patient prognosis is in high  demand40. More clinical models of OS have been reported in successive 

Figure 3.  GO and KEGG enrichment analyses of ferroptosis-related DEGs. (A) GO enrichment analysis 
visualization network based on the top-three most significant-enriched terms in each of the BP, CC, and MF 
entries. (B) KEGG enrichment analysis visualization network based on the top-five most significant-enriched 
pathways.
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Figure 4.  PPI networks of ferroptosis-related DEGs. (A) The initial PPI network covering 20 nodes and 43 
edges using Cytoscape. (B) The PPI network covering 12 nodes and 24 edges after filtering by cytoHubba.

Figure 5.  K-M curves of hub genes for OS patients in the TARGET database. (A) High expression of CBS was 
significantly associated with poor survival. (B) Low expression of SOCS1 was significantly associated with poor 
survival. (C) Low expression of EGFR was significantly associated with poor survival.

Table 3.  Cox regression analyses of overall survival for OS patients.

Variables Total (N)

Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Age (< 18 vs. >  = 18) 99 1.365 (0.605–3.081) 0.454

Gender (female vs. male) 99 1.024 (0.546–1.922) 0.940

Race (white vs. others) 75 0.754 (0.315–1.803) 0.525

Surgery (limb sparing vs. amputation) 58 1.376 (0.410–4.613) 0.606

Tumor side (right vs. left) 27 1.321 (0.494–3.529) 0.579

Primary site progression (yes vs. no) 50 1.769 (0.864–3.626) 0.119

Tumor region (distal vs. proximal) 60 2.321 (0.925–5.823) 0.073

Metastasis (yes vs. no) 99 3.679 (1.964–6.892)  < 0.001 3.564 (1.883–6.743)  < 0.001

EGFR (low vs. high) 99 1.942 (1.028–3.669) 0.041 2.203 (1.122–4.327) 0.022

SOCS1 (low vs. high) 99 2.274 (1.207–4.283) 0.011 2.323 (1.202–4.488) 0.012

CBS (high vs. low) 99 2.217 (1.176–4.180) 0.014 2.601 (1.321–5.118) 0.006
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studies. Cao et al. developed the prognostic model for OS on the basis of immune-related  genes41. Zhang et al. 
used genes identified by co-expression network analysis as the predictive tool for OS lung  metastasis42. Xiao et al. 
assessed the prognosis of OS patients in terms of key macrophage-associated  genes43. In the present study, the 
value of both the model and the adopted genes were validated in an independent cohort, and the near overlap 
between predicted and actual outcomes in the 1-, 3-, 5-year calibration curves suggested high efficiency. This is 
one of the few studies on OS chemoresistance involving ferroptosis and the first to construct the prognostic model 
for OS patients with ferroptosis-related genes. However, there remain certain limitations to our study. On the 
one hand, the low incidence of OS and the restrictive condition of chemoresistance have led to a relatively small 
number of samples for differential analysis, which may result in the omission of some valuable genes. On the 
other, numerous clinical studies as well as cellular and animal experiments are required to support our findings.

In conclusion, we revealed CBS, COCS1, and EGFR as ferroptosis-related genes that might be critically 
involved in OS chemoresistance and applied them to construct an efficient predictive model for the prognosis 
of OS patients.

Figure 6.  Time-dependent ROC curves of hub genes for OS patients. (A) Internal validation via a cohort of 
99 samples from the TARGET database. (B) External validation via a cohort of 53 samples from the GSE21257 
dataset.
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Figure 7.  Visualization of the prognostic model for OS patients. (A) Construction of a nomogram to predict 
1-, 3-, and 5-year survival probability. (B) Construction of 1-, 3-, and 5-year calibration curves to evaluate 
predictive efficacy of the nomogram.
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Data availability
All data used, including gene expression, sequences and patient clinical information, are available from the 
GEO database (https:// www. ncbi. nlm. nih. gov/ geo/) (GSE87437, GSE21257) and the TARGET database (https:// 
ocg. cancer. gov/ progr ams /target). All data were obtained from public databases and was free of ethical issue or 
informed consent.
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