
entropy

Article

Amazon Employees Resources Access Data Extraction
via Clonal Selection Algorithm and Logic
Mining Approach

Nur Ezlin Zamri 1, Mohd. Asyraf Mansor 1,* , Mohd Shareduwan Mohd Kasihmuddin 2 ,
Alyaa Alway 1, Siti Zulaikha Mohd Jamaludin 2 and Shehab Abdulhabib Alzaeemi 2

1 School of Distance Education, Universiti Sains Malaysia, Penang 11800, Malaysia;
ezlinzamri@student.usm.my (N.E.Z.); alyaalway@student.usm.my (A.A.)

2 School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
shareduwan@usm.my (M.S.M.K.); szulaikha.szmj@usm.my (S.Z.M.J.); shehab_alzaeemi@yahoo.com (S.A.A.)

* Correspondence: asyrafman@usm.my; Tel.: +604-6535906

Received: 23 March 2020; Accepted: 20 April 2020; Published: 27 May 2020
����������
�������

Abstract: Amazon.com Inc. seeks alternative ways to improve manual transactions system of granting
employees resources access in the field of data science. The work constructs a modified Artificial
Neural Network (ANN) by incorporating a Discrete Hopfield Neural Network (DHNN) and Clonal
Selection Algorithm (CSA) with 3-Satisfiability (3-SAT) logic to initiate an Artificial Intelligence (AI)
model that executes optimization tasks for industrial data. The selection of 3-SAT logic is vital in data
mining to represent entries of Amazon Employees Resources Access (AERA) via information theory.
The proposed model employs CSA to improve the learning phase of DHNN by capitalizing features
of CSA such as hypermutation and cloning process. This resulting the formation of the proposed
model, as an alternative machine learning model to identify factors that should be prioritized in
the approval of employees resources applications. Subsequently, reverse analysis method (SATRA)
is integrated into our proposed model to extract the relationship of AERA entries based on logical
representation. The study will be presented by implementing simulated, benchmark and AERA
data sets with multiple performance evaluation metrics. Based on the findings, the proposed model
outperformed the other existing methods in AERA data extraction.

Keywords: Boolean satisfiability; clonal selection algorithm; data extraction; human resources
management; logic mining

1. Introduction

Amazon.com Inc. operates internationally by offering consumers products and subscriptions through
more than 10 owned retail websites and physical stores in 600 locations across the United States of
America (US). As reported in 2019, the company has increasing numbers of employees, and more than
600,000 employees worldwide [1]. Thus, with a large number of employees, there is always a risk of
highly complicated employees and resources situations [2]. Within any company, new employees require
a variety access of systems, portals or appliances related on the role, designation or unit of the employee.
Technology companies like Amazon.com Inc. provide various types of resources; from computing
to storage resources, accessible by their employees to be utilized optimally [3]. However, most of
the time, employees encounter some complications prior to fulfilling their daily tasks. For example,
computing resources opt to have Wi-Fi connection or they are unable to log in into Amazon.com Inc.
human resources portal. Commonly, new resources applications are being processed and reviewed
by distinct human administrators. It is worth mentioning that the downside of this common practice
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involves a chain of human involvement that could lead to higher cost of resource maintenance and could
be time-consuming. Therefore, Amazon.com Inc. made public their historical data from 2010–2011 of
Amazon Employees Resources Access (AERA) data set, provisioned by Ken Montanez from Information
Security of Amazon.com Inc. in partnership with Kaggle. Their motive is to seek alternative models that
will prioritize the needs of employees and minimize manual resources access applications. A study by [4]
proposed a forecasting model by using random forest (RF), logistic regression (LR) and gradient boosting
(GB). However, the suggested approach was restricted to statistical linear classifiers and required a
preprocessing step due to the imbalanced entries of AERA. One may question what makes this experiment
significant from the work by [4]? In this paper, the main objective is to propose an alternative model in
the field of data science by incorporating Artificial Neural Networks (ANNs) with Metaheuristic and
Satisfiability representation (SAT). The proposed model act as a platform of knowledge extraction to handle
big data which could benefit other big companies like Walmart Inc., Apple Inc., Samsung Electronics etc.
in resources management.

ANN comprises parallel and nonparallel computing networks that are inspired by the mechanism
of human biological brain [5]. ANN has several comprehensive architectures of feed-forward or
feedback networks. Artificial Intelligence (AI) practitioners utilized ANN as a platform in applications
such as entity classification problems [6], conducting analysis [7,8], pattern recognition [9,10],
clustering problems [11,12] and circuits [13,14]. Nonetheless, another popular network of feedback
ANN is the Hopfield Neural Network (HNN), which was formulated by [15] to solve optimization
tasks. The extensive structure of HNN comprises energy function and associative property of
content addressable memory (CAM). The work of [16] utilized HNN for transmitting binary amplitude
modulated signals based on the potential energy function yielding lower probability of error. In addition,
the work of [17] emphasized HNN as one of the most studied attractor-memory models due to the
feature of useful Content Addressable Memory (CAM) for an optimization model. Note that HNN
can be split into continuous HNN (CHNN) and discrete HNN (DHNN). The structure of DHNN
consists of input and output neurons that store bipolar {1,−1} or binary {1, 0} pattern [18]. In addition,
DHNN utilizes the Lyapunov energy function to determine degree of convergence of the solution [19].
This paper incorporates the Wan Abdullah (WA) method of finding the synaptic weights by comparing
the Lyapunov energy function with the cost function [20]. The core impetus of the presented works is
the relevancy of utilizing DHNN as a comprehensive model of AI as a platform to solve optimization
tasks. Although DHNN is a “black box” model, the best way to observe DHNN behaviour is by
implementing a systematic symbolic rule during the learning phase and a retrieved phase equation.
Hence, one of the alternative ways to represent information theory is by the concept of satisfiability.

Satisfiability representation (SAT) is a logical and mathematical knowledge representation that plays
a significant role in AI. SAT is utilized in various applications and areas such as quantum chemistry [21],
approximation model [22], classification [23], chaos computing [24] and fault detection [25]. The SAT
structure consists of clauses comprises of literals or variables. Why is SAT needed in DHNN? SAT is
essential to provide symbolic instruction in attempt to represent the output of DHNN. Pioneer work
by [26] showed the adaptability of Horn-SAT to represent information in executing the DHNN model
that was improved later by [27]. The work improvised the existing model in neuro-symbolic integration
model that gained more than 90% of global minimum energy. However, the restricted component in using
Horn formula is limited in representing real-life data sets, which indicate not all real-life problem can be
formulated in Horn-SAT [28]. Therefore, several researchers further extend the fundamental of Horn-SAT
by proposing of DHNN model with different k-Satisfiability (k-SAT) logical representation [29–31].
These works emphasized on utilizing k-SAT, Maximum k-SAT (MAXk-SAT) and Maximum 2-SAT
(MAX2-SAT) to investigate the ability of DHNN to process k-SAT patterns. In another development,
data mining is a process of recognizing sequences or patterns in real-life data sets that involve various
platforms. The difference between data mining and logic mining is that the logical rule mining utilizes
logic to convey the information to the end user. Contingent upon that, the earliest logic mining method,
the reverse analysis (RA) method, was introduced by [32] and it accommodates the combination of
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RA and logic programming in DHNN to deduce the pattern and relationship of the real-life data
sets. Subsequently, [33] utilized previous work of building a knowledge extraction tool by forming
k-Satisfiability-based Reverse Analysis (k-SATRA). k-SATRA carries an important role in logic mining
to display the true behaviour or pattern of a real-life data set by extracting the optimum logic that
represents the relationship of the attributes. The extracted logic will represent information aligned with
the specifics classification tasks. An interesting application of k-SATRA is reported by the work of [34],
which investigates students’ performance in identifying related factors of underachievement students.
The work entrenched several real-life data sets and obtained higher accuracy than two other existing
educational data mining methods. Another development of utilizing k-SATRA was by [35] and [36] which
exhibited the ability 2-SATRA to extract key findings of online games and football matches. The common
denominator of these works exhibits the practicability of k-SATRA in extracting knowledge from a real-life
data set. The extracted knowledge identifies relationships of attributes that affect the final outcome.
However, there are no current works creating a platform to bridge logic and data mining methods with
specific optimization tasks such as those encountered by Amazon.com Inc. of detecting which factor
should be prioritized in order to grant or revoke employees resources applications. The incorporation of
metaheuristics like the Clonal Selection Algorithm (CSA) in the training phase would capitalize better on
the learning environment for an optimal optimization model.

The Metaheuristics Algorithm is a nonderivative method that searches near optimal solutions with
specific constraints. [37] presented various applications of metaheuristics to find high-quality solutions
to increasing number of ill-defined and complex real-world problems. Metaheuristics garnered
much attention, especially from ANN practitioners, because metaheuristics provides a better learning
mechanism of ANN networks by specifying the searching space of solutions and focusing on gradual
solution improvement [38]. Conventionally, DHNN deployed the primitive learning rule of exhaustive
search (ES), a trial and error mechanism to find solutions [39]. ES increases the probability of
overfitting [40] and generates less variation of solutions [41]. CSA is an evolutionary algorithm,
inspired by the natural phenomenon of the biological immune system, which defends the body
against external microorganisms. [42] reviewed recent works by researchers implementing CSA into
their proposed network to deal with constraint optimization tasks, such as pattern recognition [43],
scheduling [44], fault detection [45] and dynamic optimization [46]. Mechanisms of CSA gives
the inspiration of specific cells to recognize specific antigens which are later selected to proliferate.
This resulted in a learning algorithm of evolving candidate solutions by selection, cloning and somatic
hypermutation procedures, which established variation of solutions. Conjointly, the mechanism
of CSA sets a new paradigm of solving optimization tasks. Pioneer work by [47] introduced the
affinity-based interaction for modified CSA as a solver with the tabu search technique for the
Maximum 3-SAT (MAX3-SAT) problem. The suggested model yielded quality solutions. Therefore,
to predict the resources access applications for future sets of employees of AERA, this paper capitalizes
on fundamental DHNN by incorporating CSA in the learning phase to overcome conventional
metaheuristic drawbacks. The proposed model sets apart from previous literature due to different role
of CSA to facilitate the learning phase of DHNN for 3-SAT logic, resulting a single intelligent unit that
incorporates real-life data set to help Amazon.com Inc. resources access management.

To our best knowledge, no current work has proposed the incorporation of DHNN with CSA for
3-SATRA logic-mining methods. An optimal model may result in better management from Amazon.com
Inc. in providing the best care for their employees. Subsequently, the contributions of this work are stated
as follows: (1) To transform AERA into a 3-SAT logical representation to best represent the relationship of
AERA. (2) To construct a modified DHNN model with CSA to enhance the learning phase of DHNN. (3) To
utilize the 3-SATRA method into our proposed model as an alternative method to extract information
from AERA in the form of logical representation. (4) To demonstrate the capability of our proposed model
by conducting a simulated data set, benchmark data sets and the AERA data set in comparison with other
existing methods. The comparison will be also evaluated by using appropriate performance evaluation
metrics. The findings of this paper displayed the competency of our proposed model outperformed other
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existing methods for all type of data sets. Figure 1 illustrates the implementation of our contribution in
this paper.
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2. Boolean Satisfiability

Boolean satisfiability logic (SAT) represents a task in determining truth assignments that makes
the logical rule satisfiable. SAT is a nondeterministic polynomial time, NP-complete problem where
SAT can be solved in polynomial time by a nondeterministics Turing machine [48]. In this paper, SAT is
represented in a conjunctive normal form (CNF) and composed of three significant elements [49]:

A group of m variables: a1 ∨ a2 ∨ . . .∨ am where ai ∈ {1,−1}.
A group of literals: A literal is a variable (a1) or a negation of a variable (a1).
A group of n clauses: A1 ∧A2 ∧ . . .∧An.

The above elements can be explicitly represented in the following Equation (1):

ϕ3−SAT =
n
∧

i=1
Ai where Ai = (ai, bi, ci) (1)

This paper utilized 3-Satisfiability (3-SAT) logical rule, ϕ3−SAT, in each clause of which only exist
three variables. Equation (2) governed an example of ϕ3−SAT. Note that ϕ3−SAT represents the objective
or outcome of the logical rule.

ϕ3−SAT =
(
P∨Q∨R

)
∧

(
S∨ T ∨U

)
∧

(
V ∨W ∨X

)
(2)

Table 1 shows an example of cases for the ϕ3−SAT logical rule. The outcomes of each case are
known by substituting the values of {1,−1} (neuron states) into Equation (2). For instance, case 1 is
satisfiable since each clause gives a truth value. Besides that, case 3 is in full consistency since all
literals give a truth value. Additionally, the work by [49] states that the algorithm needs to learn more
inconsistent interpretations to obtain the satisfied ϕ3−SAT, which we described as the checking clause
satisfaction process. To undergo this process, a suitable metaheuristic algorithm is needed to attain
ϕ3−SAT = 1 [47]. In this paper, the ϕ3−SAT logical rule is employed in our proposed model to govern
our model and represent each entry of AERA.
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Table 1. Example of cases for the 3-Satisfiability (3-SAT) logical rule, ϕ3−SAT.

Case ϕ3−SAT Instances Outcome

1 (P, Q, R, S, T, U, V, W, X) = (1, 1, 1,−1,−1,−1, 1, 1,−1) Satisfiable (ϕ3−SAT = 1)
2 (P, Q, R, S, T, U, V, W, X) = (1,−1,−1, 1, 1,−1, 1, 1, 1) Unsatisfiable (ϕ3−SAT = −1)
3 (P, Q, R, S, T, U, V, W, X) = (−1, 1, 1, 1,−1,−1,−1, 1, 1) Full consistency (ϕ3−SAT = 1)
4 (P, Q, R, S, T, U, V, W, X) = (1,−1,−1,−1, 1, 1, 1,−1,−1) Full inconsistency (ϕ3−SAT = −1)

3. 3-Satisfiability in Discrete Hopfield Neural Network

The Discrete Hopfield Neural Network (DHNN) is another variant of the Hopfield Neural
Network that is commonly utilized to solve practical optimization problems [50]. DHNN consists of
interconnected neurons with no hidden layer. Each neuron in DHNN is bipolar Si ∈ {−1, 1}, i ∈ N,
which exemplifies the interpretation of the defined problem. Several properties of DHNN include
associative memory, fault tolerance and energy minimization as the neuron state changes. There are two
types of neuron updates in DHNN: asynchronous and synchronous update. We limit our discussion
to asynchronous update because we only consider one neuron state at the time. Each neuron spin
resembles an Ising spin variable model [51], which contributes to updating neurons in each cycle.
The general updating rule of the general DHNN is given as follows:

Si =

 1, if
N∑
j

Wi jS j ≥ ρi

−1 , otherwise
(3)

where Wi j and ρi are the synaptic weight and threshold of the contraints. It is worth mentioning that
we consider ρi = 0 to ensure the energy of DHNN decreases uniformly [52]. Wi j in each neurons

connection is formally defined in a matrix of W(2)
i j =

[
W(2)

i j

]
N×N

with the threshold of the neuron

updates given by [ρi]n × 1 = [ρ1,ρ2,ρ3, . . . ,ρn]
T. Note that DHNN has no self-looping W(2)

ii = W(2)
j j = 0

for all neurons and the connection is symmetrical W(2)
i j = W(2)

ji which results in a matrix with zeros
diagonal. The updating rule of general DHNN is important to ensure the neuron state will converge to
the optimal solution. In this section, we capitalize the logical rule of ϕ3−SAT into the structure of DHNN
by defining the cost function of the network. ϕ3−SAT can be implemented in DHNN by minimizing the
cost function Eϕ3−SAT :

Eϕ3−SAT =
NC∑
i=1

N∏
j=1

Di j (4)

where NC and N are the number of clauses and number of literals accordingly. Di j is defined as follows:

Di j =

{ 1
2 (1 + SX) , if X , X
1
2 (1− SX) , otherwise

(5)

where X is one possible variable in ϕ3−SAT. Note that the lowest value of the cost function is Eϕ3−SAT = 0
where all the inconsistencies of the ϕ3−SAT are minimized. Hence the updating rule or local field of the
ϕ3−SAT in DHNN is given as follows:

hi(t) =
N∑

k=1,k, j

N∑
j=1, j,k

W(3)
i jk SkS j +

N∑
j=1, j, i

W(2)
i j S j + W(1)

i (6)
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Si(t + 1) =


1 ,

N∑
k=1,k, j

N∑
j=1, j,k

W(3)
i jk SkS j +

N∑
j=1, j, i

W(2)
i j S j + W(1)

i ≥ 0

−1 ,
N∑

k=1,k, j

N∑
j=1, j,k

W(3)
i jk SkS j +

N∑
j=1, j, i

W (2)
i j S j + W(1)

i < 0
(7)

where W(3)
i jk , W(2)

i j and W(1)
i are synaptic weight for the third, second and first order connection

respectively. The threshold for the proposed DHNN is ρ = 0 and can be flexibly defined by the user.
According to [53], the final neuron state, Si(t + 1), can be optimized by the usage of a squashing
function such as a Hyperbolic Activation Function (HTAF). Interested readers on this aspect may
refer to [49,53,54]. Furthermore, Equations (6) and (7) are vital to ensure the final neuron state always
converges to Eϕ3−SAT → 0 . Theorem 1 explains the behaviour of the synaptic weight with respect to the
final state of the neuron.

Theorem 1. Let N = (W, ρ) where ρ is the threshold of the model of DHNN. Assuming N operates
in asynchronous mode and W is a symmetric matrix with the elements of the diagonal being nonnegative.
Then DHNN will always converge to a stable state.

In addition, the Lyapunov energy function Lϕ3−SAT that corresponds to the ϕ3−SAT rule is given as
follows:

Lϕ3−SAT = −
1
3

N∑
i=1,i, j,k

N∑
j=1,i, j,k

N∑
k=1,i, j,k

W(3)
i jk SiS jSk −

1
2

N∑
i=1,i, j

N∑
j=1,i, j

W(2)
i j SiS j −

N∑
i=1

W(1)
i Si (8)

The value of Lϕ3−SAT indicates the quality of the final state obtained from Equation (8).
According to [20], the synaptic weight of the DHNN can be obtained by comparing Equations
(4) and (6). The energy value of the ϕ3−SAT, Lmin

ϕ3−SAT
, can be predetermined before the learning phase

because the energy value from each clause in ϕ3−SAT is always constant. It is worth mentioning that
the optimal DHNN always converges to Lϕ3−SAT → Lmin

ϕ3−SAT
or

∣∣∣Lϕ3−SAT − Lmin
ϕ3−SAT

∣∣∣ ≤ ∂, where ∂ is the
tolerance value of the Lyapunov energy function. In this paper, the information from the data set
will be represented in terms of ϕ3−SAT and embedded into DHNN. The implementation of ϕ3−SAT in
DHNN is abbreviated as DHNN-3SAT. One of the main obstacles in implementing DHNN-3SAT is to
find a set of Si that corresponds to Eϕ3−SAT = 0. By that standard, optimal learning method is required
to effectively minimize Eϕ3−SAT .

4. Clonal Selection Algorithm

The learning phase of an ANN can be further improved via metaheuristics to provide more global
solutions, a better learning mechanism and to ascertain the convergence of the ANN models [55]. A work
proposed by [56] indicated that these algorithms required less execution time to complete the training
process. Generally, metaheuristics have two types of searching algorithms, trajectory-based and
population-based. The work is focusing on the population-based nature-inspired algorithm of
evolutionary algorithms (EA). CSA is a class of Artificial Immune System (AIS) algorithms that is
motivated by the natural immune system process that build particular antibodies against antigens.
B-cells (β) will produce specific antibodies once a new antigen is identified. Through the cloning
process, the chosen β will proliferate to form a clone of β and fight against antigens [57]. The cloned
β developed into two types of cell, memory cells and plasma cells. Memory cells are recognized as
long-lived cells that can react instantly to any illness. As for the plasma cells, they are active and able
to secrete specific antibodies for the antigens, but they do not last long.

The findings by Layeb [47] presented modified CSA with the tabu search method to resolve
the satisfiability problem. The affinity computation in [47] utilized the adaptive affinity function,
which considers the summation of weight with the clauses and complies with the binary vector form
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of MAX-SAT logical representation. On the other hand, our proposed CSA model complies to bipolar
representation of ϕ3−SAT as the affinity function being formulated in terms of clause representation
that corresponds to Eϕ3−SAT = 0. The operations involved in the CSA mechanism are where β produces
a specific antibody to destroy a specific antigen, which signifies the adaptive system of CSA principle.
Proliferation, normalization and somatic hypermutation processes ensure a better variation of the
β population. This paper implements the CSA mechanism to provide an optimal learning model,
where CSA helps to achieve maximum number of satisfied clauses from the affinity or fitness of β.
The implementation of CSA in the proposed model (DHNN3-SATCSA) is presented as follows [58]:

Stage 1: Initialization of β

β = 100 (interpretations) were initialized.

βi j =

 1 ,rand[0, 1] ≥ 0.5

−1 ,otherwise
(9)

Stage 2: Affinity Evaluation

Compute affinity of all β in the entire population, fβi . The fβi examines the number of clauses
satisfied in ϕ3−SAT. Ai is the number of clauses learned by CSA and NC is the number of clauses
in ϕ3−SAT.

fβi =
NC∑
i=1

Ai (10)

where

Ai =

{
1 , True
0 , False

(11)

given that fβi ∈ Z.

Stage 3: Proliferation via Cloning

The top five β with higher affinity were chosen to proliferate in cloning process. In this process,
β will be duplicated by applying the roulette wheel mechanism [59]. The number of cloned β, Nε will
be computed by using Equation (12).

Nε =
λ fi

NC∑
i=1

fβi

(12)

where λ, known as initial affinity, is the population clone size which the software seeks to implement
into the searching space. [58] suggested selecting λ = 200.

Stage 4: Normalization

Equation (13) shows the list of cloned β; 1 ≤ βC
i ≤ Nε.

βC
i =

{
βC

1 , βC
2 , βC

3 , . . . , βC
Nε

}
(13)

Normalization of βC
i

(
β̃C

i

)
is often called immune response maturation throughout the system. It is

important to normalize the βC
i before proceeding to the next step. Next, we calculate the affinity for

each β̃C
i , which is abbreviated as f

β̃C
i

.

f
β̃C

i
=

fβC
i
−min

∣∣∣∣ fβC
i

∣∣∣∣
max

∣∣∣∣ fβC
i

∣∣∣∣−min
∣∣∣∣ fβC

i

∣∣∣∣ (14)
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where
max

∣∣∣∣ fβC
i

∣∣∣∣−min
∣∣∣∣ fβC

i

∣∣∣∣ > 0 (15)

Note that max
∣∣∣∣ fβC

i

∣∣∣∣ , min
∣∣∣∣ fβC

i

∣∣∣∣ because the probability of getting fβC
i
= 0 is almost zero.

Stage 5: Somatic Hypermutation

The somatic hypermutation process is significant since it will ensure the β to achieve highest
affinity which results in a feasible solution. Equation (16) shows the calculation of the number of
mutations (Nζ) for each β̃C

i .

Nζ =

 f
β̃C

i

η

+ θ
(
1− f

β̃C
i

)
(16)

where η is the number of variables in ϕ3−SAT, θ = 0.01 and η , 0 [58]. For every mutation that occurs
in Nζ, one or more β will be flipped from 1 to −1 or vice versa.

Finally, the fβi of mature population will be computed and we will choose the best β as the
candidate cell to be kept in the memory cell. The solution will be selected if fβC

i
= NC. On the other

hand, the process will repeat from stages 2 to 5 if fβC
i
, NC. Figure 2 shows the summary of all steps

involved in CSA.
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Figure 2. Summary of Clonal Selection Algorithm (CSA).

5. 3-Satisfiability Based Reverse Analysis Method

Logic mining is a process that utilizes logic programming to extract information from a data set.
In this regard, this section will explain how the logic mining tool named 3-Satisfiability-based Reverse
Analysis Method (3-SATRA) is implemented in our DHNN3-SATCSA model to extract the relationship
of AERA entries. Consider n attributes of the data sets (S1, S2, S3, . . . , Sn), where Si ∈ {1,−1}. Note that
all binary representations must be represented in terms of bipolar states. Since this paper investigates
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ϕ3−SAT, the arrangement of each Am consists of Si, S j, Sk where i , j , k. Note that NC is the number
of clauses in ϕ3−SAT. For Am that leads ϕlearn

3−SAT
= 1, we assign

Am =
(
Smax[n (Si)]

i ∨ S
max[n (S j)]

j ∨ Smax[n (Si)]

k

)
(17)

Note that max[n(Si)] signifies the highest frequency of Si. In this case, each Si is given as follows:

Si =

{
Si , Si = 1

Si , Si = −1
(18)

By using the obtained Am, we can formulate ϕbest
3−SAT

:

ϕbest
3−SAT = ∨NC

m=1Am (19)

For example, we will choose A1 =
(
S1 ∨ S2 ∨ S3

)
if Smax[n (S1)]

1 = S1, Smax[n (S2)]
2 = S2 and

Smax[n (S3)]
3 = S3. Next, ϕbest

3−SAT
will be embedded into DHNN. Henceforth, we will obtain the states

of Si that correspond to Eϕbest
3−SAT

= 0. By comparing Equation (4) with Equation (8), the corresponding Wi j

will be obtained. During the testing phase, the induced states, SB
i , will be obtained by using Equation (6).

Subsequently, the induced logic, ϕB
i will be constructed based on the rule given in Equation (2). Finally,

the chosen induced logic is obtained based on ϕB
i = ϕtest

i (testing data). Figure 3 demonstrates how
3-SATRA was implemented in the DHNN model. In this paper, we will represent each neuron with
entries of AERA.
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6. Experimental Setup

A standard procedure among ANN practitioners is to investigate the proposed model with
other comparative studies. Therefore, the simulation process is divided into three sections. Firstly,
the performance of DHNN3-SATCSA is analyzed by using simulated data sets. In this case, the ability of
CSA in the learning phase of the proposed model will be compared with other existing methods [58,60].
Secondly, several benchmark data sets will be implemented into DHNN3-SATCSA. The comparison
of the retrieval properties of DHNN3-SATCSA will be also evaluated based on ϕB

i = ϕtest
i . The third

section presents the implementation of AERA into the proposed model. All real-life data sets that were
converted to bipolar representation and information extraction will be conducted via 3-SATRA and
incorporated with DHNN3-SAT models.

In the first section, DHNN with linearized initial neuron states might result in the biasedness of
the retrieval state because the network simply memorizes the final state without producing a new
state [61]. Therefore, possible positive and negative biases can be reduced by generating all the neuron
states randomly as in Equation (20):

Si(t) =

 1 ,rand[0, 1] < 0.5

−1 ,otherwise
(20)

where Si is defined as in Equation (3). The simulated data set will be initiated by generating randomized
clauses and literals for each ϕ3−SAT. A similar approach has been implemented in several studies
such as [19,60] in generating the initial neuron states. It is worth mentioning that all simulations will
be measured against existing methods by evaluating appropriate performance evaluation metrics.
By quoting several relevant studies that implemented such experimentations [35,49,62], the proposed
performance metrics in this experiment are mean absolute error (MAE), sum of square error (SSE),
global minima ratio (ω), accuracy in percentage (α) and computational time in SI unit of second (CT).
According to [63], MAE computes the average absolute error of the fitness during the learning phase in
our proposed model. The formulation of MAE is as follows:

MAE =
n∑

i=1

1
n
|τ− υ| (21)

where τ and υ are the total number of clauses and the number of satisfied clauses in ϕ3−SAT respectively.
In relation to Equation (21), the accumulation of errors in each model can be also effectively evaluated
by using SSE. The formulation of SSE is described by the following equation:

SSE =
n∑

i=1

(υ− τ)2 (22)

On the other hand, we examine the final neuron states of the proposed model via ω.

ω =
1
ab

n∑
i

NLϕ3−SAT
(23)

According to [52], if the final neuron states of the proposed model is Eϕ3−SAT → 0 , the model will
prone to ω→ 1 . Hence, the best model will attain the lowest value of MAE and SSE with ω→ 1 .
Notably, ω→ 1 indicates n

(∣∣∣Lmin
ϕ3−SAT

− Lϕ3−SAT

∣∣∣ ≤ λ)→ ab where a and b are number of trials and neuron
combinations, respectively. In another development, we utilize the value of α and CT to investigate the
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effectiveness and efficiency of 3-SATRA in the testing phase of DHNN3-SATCSA. We describe two
formulations:

α =
ϕB

i
Nϕtest

i

× 100% (24)

CT = LearningTime (s) + RetrievalTime (s) (25)

Note that α→ 100 if n
(
ϕtest

i = ϕB
i

)
→ G , where G in our case is depicted by 40% of instances in a

data set. In practice, the best model requires α→ 100 and the minimum value of CT. Learning time
and retrieval time are denoted as total time executed by DHNN3-SAT models in the learning phase
and retrieval phase respectively. Tables 2 and 3 discuss the parameters involved in hybrid Hopfield
Neural Network with Exhaustive Search (DHNN3-SATES) and hybrid model with Clonal Selection
Algorithm (DHNN3-SATCSA) respectively.

Table 2. List of parameters in DHNN3-SATES [52].

Parameter Parameter Value/Remarks

a 100
b 100
λ 0.001

CT 24 h
NN 9 ≤ NN ≤ 72

Selection Rate 0.1
Number of Strings 100
Type of Selection Random

Table 3. List of parameters in DHNN3-SATCSA.

Parameter Parameter Value/Remarks

n(β) 100
γ 200
θ 0.01
λ 0.001

CT 24 h
NN 9 ≤ NN ≤ 72

Type of Selection Roulette Wheel Selection [59]
Learning Method WA Method [20]

The choice of β is important as a large population size requires a large searching space of the
solutions, which may increase the computational cost. On the other hand, a small β can lead to
local minima solutions. According to [64], we should choose β = 100 as it is repeated to achieve
a good result. The general implementation of the proposed model in a simulated data set can be
summarized in Figure 4. 3-SATRA is implemented to show the level of connectedness between Wi j
and neurons. Overall, simulated and real-life data sets will be implemented into DHNN3-SATCSA.
The computational simulation for both data sets was conducted on Dev C++ Version 5.11 for Windows
7 in 2GB RAM with Intel Core I3. As for the simulated data set, the Dev C++ program will generate
the initial bipolar data randomly. Throughout the simulations, the same device is being used to avoid
any biases. On the whole, all simulations are utilized with different number of neurons (NN), which is
within the bound of not exceeding the threshold time of 24 h [35]. Note that the proposed model
will randomly select nine attributes for the real-life data set as well as their arrangements in ϕ3−SAT

logical rule.
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7. Results and Discussion

7.1. Simulated Data Set

The first section of the experiment was carried out by using simulated data. This section evaluates
the performance of CSA as the learning rule in the DHNN model in comparison with ES. The findings
of simulated data set for both models are presented as follows:

According to Figures 5 and 6, DHNN3-SATCSA accumulated fewer errors compared to
DHNN3-SATES due to CSA’s ability to learn and train the network effectively. However, ES incorporates
random search which makes the complexity of the learning phase increase. As illustrated in Figure 7,
DHNN3-SATCSA achieved a consistent value of ω = 1, from NN = 9 to NN = 72 whereas
DHNN3-SATES only gained a better value of ω after processing 62.5% of the total NN. ES projected
unnecessary projection due to the “trial-and-error” feature that does not aid the proposed model to
improve the solutions. CSA can manage a large number of constraints compared to ES. CSA made
this possible because CSA showcased the ability of β in fighting the pathogens and improving the
affinity values in the entire bit strings to help DHNN3-SATCSA search for ideal solutions. In this
experiment, we did not consider α because the value of ω corresponds to the number of global
minimum energy achieved by DHNN3-SAT models. Hence, the value of ω is adequate to represent the
effectiveness of the retrieval phase of both models. The main distinction between these models with [47]
is the formulation of fitness function. The cost function in [47] is Eϕ3−SAT , 0 because the structure
of ϕ3−SAT is not satisfiable. CSA reduces the number of iterations because the CSA optimization
operator, particularly somatic hypermutation, will allow the solution to attain Eϕ3−SAT = 0 faster
than ES. In general, CSA will reduce learning time, which will elongate relaxation time within the
ideal rate and, we believe, result in less neuron oscillation. It is worth noting that the probability for
somatic hypermutation to flip the neurons entirely is approaching to 0. Thus, the chances for the
solution to achieve nonimproving fitness will reduce drastically compared to conventional ES. The Wan
Abdullah method is chosen because this method is reported to contribute less neuron oscillation as
compared to other methods such as Hebbian learning [65]. Uncontrollable neuron oscillation via other
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methods such as Hebbian learning will lead to more local minimum energy or
∣∣∣Lmin
ϕ3−SAT

− Lϕ3−SAT

∣∣∣ > λ.
This comparison is vital to validate the learning capabilities of CSA. The limitation of DHNN3-SATCSA
is the use of bipolar neuron states instead of another neuron representation (ternary), Si ∈ {1,−1, 0}.
Ternary representation can provide more analysis since it has another vector of 0 which indicates no
response or meaningless result. In another perspective, the proposed model only considers satisfiable
SAT logic. Other SAT representations such as MAXk-SAT [18] require major restructuring, especially in
terms logical redundancy. Furthermore, this experiment only employs a nonrestricted learning
environment where the CSA and ES will iterate until Eϕ3−SAT = 0. Finally, this work only embeds
ϕ3−SAT in terms of CNF form. According to [66], CNF representation is more compatible to the WA
method compared to Disjunctive Normal Form (DNF) representation.
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7.2. Benchmark Data Sets

For the second part of the experiment, the simulation is carried out over a set of four widely used
benchmark real-life data sets [67] listed in Table 4. Note that this section evaluates the performance
of DHNN-3SAT models in doing real life data sets. A benchmark data set is reported in this paper
because these structured data sets are validation performances of the DHNN-3SAT models.

All attributes (consisting of nine literals for each data set) listed in Table 4 will be embedded into
3-SATRA using implementation in Figure 3. We choose data set from the different disciplines because
each data set has different clustering behaviour. The objective of each DHNN3-SAT model in this
section is to induce the best ϕB

i that classifies the outcome of the data sets. In general, the choice of
outcome for each data set is given as follows:

1. BDMC: Client will subscribe a term deposit where 1 and −1 signify nonsubscription and
subscription respectively.

2. CCDP: Response to default payment of credit card customers where 1 and−1 signifies nonpaymaster
and paymaster respectively.

3. DRDD: Signs of diabetic retinopathy where 1 and−1 signifies the sign exist and nonexist respectively.
4. FLST: Customers interest where 1 and −1 signifies the show of noninterest and interest towards

the product respectively.

In this section, we only evaluate the performance of the induced ϕB
i and disregard the result

from learning error. The instances of the data sets will be divided into ϕlearn
i (60%) and ϕtest

i (40%)
which follows the procedure of the logic-mining model proposed by Kho [35]. We found that more
capacity for learned data (than the proposed proportion) will result in data overfitting. Thus, the best
DHNN-3SAT model is measured based on the highest value of α.

The value of α for all models is shown in Figures 8–11. A higher value of α indicates the optimality
of the model in retrieving ϕB

i . The results of the analyses discussed in Figures 8–11 are all based on
the assumption that ϕB

i for all data sets had achieved ω = 1. According to Figure 8, both models
demonstrate the similar maximum value of α = 74% for NN = 72 in the BDMC data set. Despite the
similar value of α for both models at NN = 72, DHNN-3SATES reported high learning error compared
to DHNN-3SATCSA. The small value of α for DHNN-3SATCSA at 10 ≤ NN ≤ 60 is due to overfitting
the solution during the retrieval phase of DHNN-3SAT. As seen in Figure 9, the overall trend of α is
distinct where the proposed model achieved consistent value of 77% and 36% for all NN respectively.
In Figures 10 and 11, the proposed DHNN-3SATCSA is reported to not be effective when the NN
is small, although the α reached the maximum value at NN ≥ 15. Despite a similar value of α for
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both models in Figure 11, DHNN-3SATCSA achieved similar α in lower learning error. As observed
in Figures 8–11, the proposed DHNN-3SATCSA in 3-SATRA exhibits competitive performance with
respect to the learning error and α. The innovation of DHNN-3SATCSA lies in the solution diversity of
β that prevents CSA from getting trapped in local minima energy. In this case, a promising β will be
improved via hypermutation strategy during the learning phase of DHNN. In contrast, DHNN-3SATES
has no optimization layer and in most cases will contribute to suboptimal ϕB

i (see Figure 9). We expect
that DHNN-3SATES will exceed the threshold computational time when NN > 88 due to the structural
limitation of ES. Hence, we can further agree that generally DHNN3-SATCSA is a better model in
terms of α and the capability of its mechanism to employ different sizes and natures of real-life data
sets. We can further improve the retrieval property of DHNN-3SATCSA by implementing a mutation
operator such as in [19].

Table 4. List of benchmark data sets information.

Benchmark Data
Sets/Field Attributes Instances Sources

Bank Direct Marketing
Campaign

(BDMC)/Marketing

P: Age

45,211
UCI Machine

Learning Repository

Q: Job
R: Credit card status

S: Housing loan
T: Personal loan

U: Last contact day of the month
V: Last contact duration

W: Number of days passed by after the
client was last contacted from

a previous campaign
X: Number of contacts performed

before this campaign

Credit Card Default
Payment

(CCDP)/Finance

P: Amount of limit balance

3000
UCI Machine

Learning Repository

Q: Education
R: Marital status

S: History of repayment status in Month I
T: History of repayment status in Month II

U: Amount of bill statement in Month I
V: Amount of bill statement in Month II

W: Amount of previous payment
in Month I

X: Amount of previous payment
in Month II

Diabetic Retinopathy
Debrecen Disease
(DRDD)/Health

P: Result of quality assessment

1151
UCI Machine

Learning Repository

Q: Result of pre-screening
R: Features detection I
S: Features detection II

T: Features detection for exudates I
U: Features detection for exudates II

V: Affected patient condition according to
the Euclidean Distance (center of the

macula and the center of the optic disc)
W: Diameter of the optic disc

X: Result of the AM/FM-
based classification

Facebook Live Sellers in
Thailand

(FLST)/Marketing

P: Status type

7050
UCI Machine

Learning Repository

Q: Number of comments
R: Number of shared post

S: Number of likes
T: Number of reaction; Love emoticon
U: Number of reaction; Wow emoticon
V: Number of reaction; “Haha” emoji
W: Number of reaction; “Sad” emoji

X: Number of reaction; “Angry” emoji
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Table 5 extends the experiment by comparing benchmark data sets with other existing methods
which comprises conventional statistical methods such as decision tree (DT), naïve Bayes (NB),
support vector machine (SVM). The work of [68] utilized BDMC to predict the successful direct
marketing campaign that ensures customers subscribing to a term deposit plan by using DT analysis.
Our proposed model achieved better α with differences of 12.73%. On the other hand, the α attained
by [69] for CCDP is excessively lower than our proposed model. [69] applied an NB classifier to provide
information for risk management of handling customers with credit risks. In [70], this work applies
SVM analysis with a confusion matrix to accentuate feature selection and classification. However, the α
gained for the SVM method is 25.3% lower than DHNN3-SATCSA. As for FLST, there is no comparable
recent work that utilizes this data set.

Table 5. α of DHNN3-SATCSA in comparison with other existing methods.

Data Set DHNN3-SATCSA ES α/Method

BDMC 74% 74% 61.27%/DT [68]
CCDP 77% 36% 66.32%/NB [69]
DRDD 99% 99% 73.7%/SVM [70]
FLST 88% 88% -

Note that the proposed model does not consider the effect of attribute permutation.
This straightforward ϕlearn

i implementation helps us to effectively determine attributes in the induced
logic ϕB

i whenever we convert it to other logic programming form. It is worth mentioning that this
simulation only considers attributes that lead to ϕlearn

3−SAT = 1, because the proposed model aims to
minimize the Eϕ3−SAT = 0. Since there are no redundant attributes in 3SATRA, the satisfiability aspect of
ϕB

i can be guaranteed. In this case, the structure of ϕlearn
i should be modified into nonsatisfiability logic

such as maximum satisfiability [58]. By that standard, we expected DHNN-3SATCSA will outperform
DHNN-3SATES if Eϕ3−SAT , 0 is considered in 3-SATRA. In addition, the proposed DHNN-3SAT model
does not consider noise function such as in the work of [19]. Thus, the result from this section is important
as the ϕB

i can be easily analysed by the practitioners as compared to relying entirely on error analysis.
Through our findings of simulated and benchmark data sets, we further experiment the competency of
DHNN3-SATCSA in entrenching AERA by analysing several performance evaluation metrics.
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7.3. Amazon Employees Resources Access Data Set

7.3.1. Performance of DHNN3-SAT in Learning and Testing Phase

From the previous section, we can conclude that the proposed model is suitable to implement in
AERA. Therefore, this section investigates the behaviour of DHNN3-SATCSA analysing AERA to help
benefit Amazon.com Inc. Both models utilized the 3-SATRA method. However, our main contribution
is to investigate CSA capability to enhance the learning mechanism of DHNN. This is to ensure an
optimal learning environment. Relative to the experiment, the key findings of the attained ϕB

best will
also be presented in this section.

In Figures 12 and 13, both the MAE and SSE of DHNN3-SATCSA attained consistent value of errors,
approaching to 0, whereas, for DHNN3-SATES, the errors are gradually increasing. Particularly for
DHNN3-SATCSA, less accumulation of errors is due to the CSA mechanism improving the quality of
solutions in order to attain Eϕ3−SAT = 0. However, ES generated larger value of errors because the ES
mechanism is only effective with low NN. We illustrate the capability of the retrieval properties of
DHNN3-SAT models based on Figures 14 and 15. Overall, the value of α obtained by DHNN3-SATCSA is
relatively higher by at most 3% compared to DHNN3-SATES. Conversely, we also compare the α obtained
by other existing work such as [4] that also utilized AERA with conventional statistical methods such as LR,
GB and RF. Due to the imbalanced entries of AERA, the work also mentioned their efforts of constructing
a prediction model by trying out single models on categorical data. Subsequently, it was improved by
introducing various modified methods of decision trees to finally get the desired α. A summary of α
achieved by DHNN3-SATCSA with all comparative methods are shown in Table 6. From NN = 9 up
to NN = 36, the CT recorded for both models have a similar rate. However, from NN = 45 onwards,
DHNN3-SATES required more CT. The apparent reason of why DHNN3-SATES needed more time
compared to DHNN3-SATCSA is because the ES mechanism leads to a property of entire bit strings of
logical rule collapsing when any of the clauses is not satisfied, thus more iterations are required to produce
a plausible solution. That is unlike CSA’s ability to minimize iterations in the completion of learning
process due to its optimization operator [64].
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Table 6. α of DHNN3-SATCSA model in comparison with other existing methods.

Method α

DHNN3-SATCSA 94%
ES [65] 91%
LR [1] 87.21%
RF [1] 85.58%
GB [1] 85.14%

7.3.2. Key Findings of ϕB
best

Equation (26) shows the attained ϕB
i at the highest α(ϕB

best) by DHNN3-SATCSA. The generated
ϕB

best will help Amazon.com Inc. in identifying insignificant factors to improve the human resources
management. Table 7 shows the details of AERA utilized in this experiment.

ϕB
best =

(
P∨Q∨R

)
∧

(
S∨ T ∨U

)
∧

(
V ∨W ∨X

)
(26)

Table 7. List of information on Amazon Employees Resources Access (AERA) 2010–2011 data set.

Attributes Example Instances/Sources

P: An ID for each resources Types of resources (computer,
laptops, software)

Q: Manager employee ID Supervised or not supervised employee

R: Company role up category ID 1 US Data Analyst

S: Company role up category ID 2 US Manufacturing

T: Company role department Manufacturing
32,769/Kaggle Machine

Learning and Data
Science Community [71]

U: Company role business title Junior Data Analyst,
Senior Manufacturing Staff

V: Company role family extended description Security Data Analyst, Product fault
detection manufacturing staff

W: Company role family description Security Data Analyst

X: Company role code (unique to each role) Data Analyst

Equation (26) gives information of which attributes carry a trivial role in Amazon.com Inc.
employees resources applications. We recognized the negation of literals in Equation (26) as a
factor that does not affect the problem faced by Amazon.com Inc. For example, Q indicates a
manager’s unnecessary role to grant resources application. This is believed to add more pointless
human administration to solve the employees’ complications regarding their resources. In addition,
attributes like P will influence the application process as the availability of resources is required
to be known for sufficient needs of all employees. P also provides resources information to other
departments like the operations and maintenance departments to manage defective equipment and
appliances. R and S are correlated. However, it shows clearly different major levels of management,
such as top-level, middle-level and first-level are crucial in deciding which resources are first in line.
The example of roles related to R and S are engineers and retailers respectively, thus Equation (26).
We can conclude that engineers should be prioritized first compared to retailers as Amazon.com
Inc. emerges as a well-known tech giant. Furthermore, Amazon.com Inc. should prioritize T to
decide which departments are more vital and need new resources to accomplish their tasks in the
company. Amazon.com Inc. have to underline certain standards to maintain the quality of work from
certain departments that hold a greater role in the norm business of Amazon.com Inc. Consequently,
factors like U clearly show the insignificant need of considering the business title of an employee in
order to grant or revoke their employees resources applications. Top management of Amazon.com
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Inc. could improve business personnel in a value-added business to other employees in their business
duties. The attributes of V and W are related to one another, however, the difference is the specification
of an employee role. V is the extended version or additional role given to an employee, by referring to
the attained ϕB

best. We can deduce that Amazon.com Inc. should only consider employees’ main role in
the company to prioritize the resources applications. Attribute X is only essential when Amazon.com
Inc. recollects which role is open to vacancy and does not affect much in resources management of
Amazon.com Inc.

In line with the no free lunch theorem [72], it is impractical to propose a specific algorithm or model
which claims to solve all real-life applications. Thus, new developments on improving metaheuristics
and optimization model are continuously needed to handle particular optimization tasks. This work
focused on DHNN3-SATCSA transforming AERA into 3-SAT logic representation with 3-SATRA to
generate optimum ϕB

best to extract information from AERA. On the other hand, [73] reports that the
CSA mechanism computational time may take longer because the number of affinity evaluations is
increasing as the population of β increases. Nonetheless, the ϕB

best attained from DHNN3-SATCSA
may help provide Amazon.com Inc. an alternative model to predict resources applications of the
future set of employees. Furthermore, DHNN3-SATCSA could be tested by implementing other
types of optimization problems from other companies, such as Walmart’s efforts to reduce food waste
through distribution processes or Ikea’s attempts to scale up their system of product fault detection.
The implementation of DHNN3-SATCSA will provide beneficial information to a company that wishes
to know which factors are more significant than others and which could lead to better control and
management of their production.

8. Conclusions

In conclusion, we believe the findings of this study will broaden fundamental optimization
methods, such as statistical methods or conventional evolutionary algorithms. In this experiment,
the incorporation of 3-SAT in DHNN was crucial to exhibit the relationship and behaviour of AERA
symbolically. In addition, 3-SATRA was developed in this study to extract information from AERA,
despite its large size with imbalanced entries. Subsequently, 3-SATRA is vital to generate induced
logics which displayed insignificant factors in AERA that lead to the problem faced by Amazon.com
Inc. Also, the construction of our modified DHNN3-SAT model integrated with modified CSA was
revealed to be useful to improve the traditional learning phase of DHNN. In addition, we demonstrated
the competency of our hybrid DHNN model of DHNN3-SATCSA by entrenching three different data
sets: simulated, benchmark and AERA, in comparison with other existing methods. The comparative
investigation was executed by employing various performance evaluation metrics. The findings
showed DHNN3-SATCSA outperformed other existing methods. In order to construct a possible
model that can cater to all optimization tasks, further improvement of the proposed model could be
done to improve the performance and mechanism of the model by implementing a mutation feature in
the testing phase of DHNN. Therefore, the exploration of the testing phase in DHNN is worthy of
attention, alongside future research addressing the variability of implementing other algorithms to
enhance the mechanism of modified DHNN models.
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