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ABSTRACT 22 

Goal-directed tasks involve acquiring an internal model, known as a predictive map, of relevant 23 

stimuli and associated outcomes to guide behavior. Here, we identified neural signatures of a 24 

predictive map of task behavior in perirhinal cortex (Prh). Mice learned to perform a tactile 25 

working memory task by classifying sequential whisker stimuli over multiple training stages. 26 

Chemogenetic inactivation demonstrated that Prh is involved in task learning. Chronic two-27 

photon calcium imaging, population analysis, and computational modeling revealed that Prh 28 

encodes stimulus features as sensory prediction errors. Prh forms stable stimulus-outcome 29 

associations that expand in a retrospective manner and generalize as animals learn new 30 

contingencies. Stimulus-outcome associations are linked to prospective network activity 31 

encoding possible expected outcomes. This link is mediated by cholinergic signaling to guide 32 

task performance, demonstrated by acetylcholine imaging and perturbation. We propose that Prh 33 

combines error-driven and map-like properties to acquire a predictive map of learned task 34 

behavior.  35 

 36 

  37 
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INTRODUCTION 38 

The brain generates internal models of the environment that describe the relationship between 39 

stimuli, events, and outcomes. Models are learned through experience and can be stored as 40 

memories. These memories can be recalled to serve as predictions of upcoming stimuli or 41 

outcomes to guide ongoing task behavior. As sensory information is evaluated against internal 42 

models, they can generate at least two types of neural signals. Activity can report when sensory 43 

information does not match the prediction, referred to as a ‘sensory prediction error’. Activity 44 

can also report when sensory information is predictive of an outcome such as reward, referred to 45 

as a ‘stimulus-outcome association’. In sensory neocortex, sensory prediction errors are a 46 

hallmark of predictive coding, a proposed framework in which predictions of sensory 47 

information are generated and evaluated against actual sensory input1-3. Stimulus-outcome 48 

associations are the basis for cognitive maps in the hippocampus4-6, a representation that reduces 49 

similar spatial and non-spatial associations to a lower-dimensional ‘abstract’ format7,8. This 50 

format is proposed to facilitate generalization of novel stimulus-outcome associations9,10. 51 

 The extent to which predictive coding and cognitive maps are aspects of distinct or 52 

common neurobiological processes is unclear. Recently, it has been proposed that the two 53 

theories could be considered part of a broader framework, referred to as a ‘predictive map’11,12. 54 

During goal-directed sensory-guided behavior, sensory prediction errors and stimulus-outcome 55 

associations would both be readouts of a single predictive map of the task. This predictive map 56 

would be acquired and updated by a combination of error learning to minimize sensory 57 

prediction errors and associative learning to strengthen stimulus-outcome associations. The map 58 

would be used to predict upcoming task events and infer relationships of novel experiences. 59 

Different maps could be flexibly recalled depending on behavioral conditions.  60 

 To look for neural evidence of a predictive map, we focused on perirhinal cortex (Prh), a 61 

zone of convergence between sensory neocortex and the hippocampus13-15. Prh has multiple roles 62 

in sensory processing including unitizing features, assigning relational meaning, signaling 63 

novelty, and temporal ordering of stimulus items16-18. These sensory- and memory-related 64 

functions suggest that Prh generates a model of relevant sensory information associated with task 65 

behavior. This suggests that functions associated with predictive coding and cognitive maps are 66 

combined and expressed in this area. Prh also receives dense cholinergic inputs19-21. 67 

Acetylcholine is involved in reward expectation and enhancing sensory processing related to 68 

predictive coding22,23 as well as memory encoding and retrieval related to cognitive maps24-26. 69 

Cholinergic signaling could serve as a mechanism that would flexibly establish network states 70 

enabling predictive maps to be recalled and utilized in Prh. Here, we investigated whether neural 71 

substrates in Prh support the acquisition, representation, and implementation of a predictive map 72 

of learned sensory-guided behavior. 73 

 74 

RESULTS 75 

Perirhinal cortex is necessary for sensory learning tasks 76 

To investigate how predictive maps are acquired and updated, mice were trained to perform a 77 

goal-directed task that required them to classify sequentially presented whisker stimuli27,28 (Fig. 78 

1a). A motorized rotor was used to deflect multiple whiskers in either an anterior (A) or posterior 79 

(P) direction during an initial ‘sample’ and a later ‘test’ period. Mice were trained to report 80 

whether the presented sample and test stimuli were non-matching or matching. In addition to the 81 

direction of rotation, deflections were delivered at different speeds (‘fast’ or ‘slow’). Speed can 82 

be considered both a second stimulus dimension and a variation in the strength of the rotation 83 
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direction. This means that animals need to consider relevant (direction) and irrelevant (speed) 84 

stimulus features in order to abstract a complex sensory relationship (non-match or match). 85 

Temporally dissociating the stimulus features into two trial periods enabled us to investigate how 86 

predictive maps are evaluated when features are necessary but not yet sufficient to predict 87 

outcome (sample) and when the combined features are abstracted to sufficiently predict the 88 

outcome (test).  89 

 Overall training was divided into multiple training stages. Each stage was designed to 90 

assay aspects of stimulus-feature and stimulus-reward learning (Table 1-2). The initial training 91 

stages consisted of one non-match stimulus condition (AP) and two match stimulus conditions 92 

(AA, PP). Training under these conditions was subdivided into 2 stages according to initial naive 93 

performance (T1) and learned performance (T2, d’>0.45 for two consecutive sessions). 94 

Completion of T2 required the animal to unitize the sample and test stimuli and pair it with 95 

reward. In the following stage (T3), the remaining held-out non-match condition (PA) was 96 

introduced, which required the animal to learn a new stimulus-reward contingency and 97 

generalize non-match and match across all possible combinations. Following successful learning 98 

of T3, delays between the sample and test stimuli were gradually extended up to 2 seconds (T4) 99 

to increase the temporal separation between sample and test stimuli. During the final stage (T5), 100 

the rotor was fully retracted during the delay period to require animals to retain a working 101 

memory of the sample stimulus. This also prevented the animal from relying on potential 102 

positional cues that existed during T4 when the rotor remained in whisker contact throughout the 103 

delay period. 104 

 We first tested whether Prh was required to learn this classification task using chronic 105 

chemogenetic inactivation29. We utilized a custom-built automated home cage training system 106 

that allows for an unbiased assay of task acquisition (Supplementary Text S1, Extended Data 107 

Fig. 1). Advancement to successive training stages was contingent on pre-defined performance 108 

metrics that were applied uniformly to each animal. Reporting of non-match vs. match 109 

conditions was carried out by two-alternative forced choice licking of water ports and reinforced 110 

by delivery of water reward. We stereotaxically localized whisker-related regions of Prh by first 111 

using anatomical tracing to identify sites that exhibit reciprocal connectivity between secondary 112 

somatosensory cortex (S2) (Extended Data Fig. 2). Experimental hM4Di+ animals (n = 9) 113 

received bilateral injections of AAV/9-hSyn-dio-hM4Di-mCherry and rAAV-hSyn-Cre into the 114 

targeted area (Fig. 1b). Control hM4Di- animals (n = 13) either received no injection or bilateral 115 

sham injections of AAV/9-hSyn-dio-mCherry and rAAV-hSyn-Cre. All animals were placed in 116 

the home cage training system for up to six weeks (~80 training sessions) with Compound 21 117 

provided in the drinking water to silence neurons in Prh30. Histology was performed at the end of 118 

behavior experiments to verify viral targeting of Prh.  For some animals, the density of hM4Di-119 

mCherry expression (74.9±3.0% of neurons, n = 4 animals) along with mRNA Fos expression 120 

were quantified to verify Prh silencing (Extended Data Fig. 3). Individual hM4Di+ or hM4Di- 121 

animals showed a range of learning rates throughout the training period (Extended Data Fig. 4). 122 

However, the majority of hM4Di+ animals failed to demonstrate consistent learned behavior to 123 

advance past T2 (Fig. 1c). hM4Di+ animals spent more trials in T1-T2 than hM4Di- animals 124 

(Fig. 1d, 14,976±1,473 trials hM4Di+ animals vs. 11,058±1,512 trials hM4Di- animals; P<0.05, 125 

Student’s t-test). This demonstrates that Prh is involved in abstract sensory learning. 126 

Sensory and motor variables across head-fixed task learning  127 

To study how population activity evolves in Prh with task learning, we performed chronic multi-128 

depth two-photon calcium imaging in a separate cohort of head-fixed animals throughout the 129 
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entirety of training. Virus expressing the genetically encoded calcium indicator, RCaMP1.07 130 

(AAV/PHP.eB-EF1α-RCaMP1.07), was delivered into Prh. To non-invasively image Prh using 131 

an upright two-photon microscope, a 2mm microprism was laterally implanted to provide optical 132 

access along the cortical surface using a long working-distance objective (Fig. 2a). Compared to 133 

task training in the home cage training systems, task conditions were modified for head-fixed 134 

behavior (Supplementary Text S2). To help delineate activity between rewarded and non-135 

rewarded stimulus conditions, we employed a go/no-go reward contingency in which only non-136 

match stimulus conditions were rewarded. Compared to the home-cage training, similar 137 

performance criteria were applied to advance animals through each stage of training. However, 138 

some training parameters were manually tuned to each individual animal to maximize training 139 

success (Table 3, Supplementary Text S3-S4). Under these conditions, 7 out of 9 animals were 140 

successfully trained to T5 within ~60 training sessions (Fig. 2b). Analysis was performed on 141 

animals successfully trained through T5. 142 

 We first asked whether animals changed their behavioral strategies with learning by 143 

measuring changes in sensory or motor variables. In addition to two-photon calcium imaging, 144 

high-speed videography was performed to measure whisker kinematics and whisking behavior 145 

(Fig. 2c, Extended Data Fig. 5). Unlike in other whisker-based sensory tasks31,32, animals did 146 

not actively whisk during task performance. Whisking amplitude did not significantly change 147 

across training stages (Fig. 2d). We additionally examined licking behavior across training. In 148 

early training stages, animals showed sporadic licking across different trial epochs such as the 149 

sample and test period, but this became more restricted to the report period as animals advanced 150 

in the task (Fig. 2g, pre, P<1x10-29, F4,1159 = 38.8; sample, P<1x10-78, F4,1159 = 109.0; test, 151 

P<1x10-43, F4,1159 = 57.2; report, P<1x10-5, F4,1159 = 8.3, one-way ANOVA with post-hoc 152 

multiple comparison test). 153 

 We next compared whisker kinematics during different direction and speed conditions. 154 

Overall, whisker angle changes trended more in the anterior direction (Fig. 2e, sample, P<1x10-
155 

5, F4,593 = 8.01, one-way ANOVA with post-hoc multiple comparison test; test, P<1x10-4, F4,592 156 

= 7.10, one-way ANOVA with post-hoc multiple comparison test). Despite this, posterior stimuli 157 

consistently produced more negative angle deflections than anterior stimuli. Posterior stimuli 158 

also consistently produced more negative curvature changes than anterior stimuli (Fig. 2f). 159 

Compared to fast conditions, slow conditions produced weaker negative angle deflections and 160 

curvature changes in the anterior direction. No difference was observed for either angle or 161 

curvature changes between slow and fast stimuli in the posterior direction. 162 

 163 

Perirhinal cortex learns sensory prediction errors 164 

Given the specific changes in sensory and motor variables across learning, we sought to 165 

determine what aspects of sensory information are encoded in Prh. We focused on neural activity 166 

related to stimulus direction or speed and its relationship to task performance. Animals were 167 

primarily trained on directions with fast speeds (95% across T1-T4, 75% for T5) with slow speed 168 

trials provided as less frequent stimuli (5% across T1-T4, 25% for T5). Since whisker kinematic 169 

analysis shows that slower speeds produce less deflections in the anterior direction, weaker 170 

information about stimulus direction could affect task performance on slow speed trials. Indeed, 171 

while animals were able to learn the task at fast and slow speeds, they performed worse on slow 172 

compared to fast speed conditions as they approached later training stages (T4, P<0.05; T5, 173 

P<0.05, paired Student’s t-test, Fig. 3a).  174 
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 We analyzed how Prh encodes direction and speed across training. For every training 175 

session, neuronal populations (n = 2335 neurons, 7 animals) in layer 2/3 (L2/3) of Prh were 176 

simultaneously imaged across 2 imaging depths using a multi-area two-photon microscope (Fig. 177 

3b, Extended Data Fig. 6)33. In single cells, we observed examples of preferred responses to 178 

stimulus direction during early training sessions that disappeared in later sessions (Fig. 3d). We 179 

also observed selectivity to stimulus speed emerging over training sessions (Fig. 3e). To 180 

characterize these changes at a population level, population decoding was performed on trial 181 

conditions related to direction or speed (Fig. 3c). Early during learning, direction could be 182 

decoded above chance but gradually decreased to chance levels by T5 (Fig. 3f, P<1x10-8, F4,266 = 183 

12.65, one-way ANOVA with post-hoc multiple comparison test). In contrast, decoders trained 184 

to speed increased performance with learning (Fig. 3g, P<0.02, F4,262 = 3.19, one-way ANOVA 185 

with post-hoc multiple comparison test). Overall, this indicates that task training results in 186 

weakening representations of task relevant stimuli (direction) and strengthening of task irrelevant 187 

stimuli (speed) in Prh.  188 

 The above results are in opposition to previous results observed in primary 189 

somatosensory cortex (S1) during task learning which is typified by strengthening of task 190 

relevant features32,34. They are also inconsistent with the changes in whisker kinematics observed 191 

across training stages in the high-speed videography. We assessed whether activity related to 192 

direction or speed differed depending on the animals’ choice. Decoders were trained on direction 193 

or speed separately for correct (‘hit’ or ‘correct rejection’) or error (‘miss’ or ‘false alarm’) trials. 194 

For direction, we found that decoder accuracy during the sample period decreased to chance over 195 

learning on correct trials, but this information remained above chance on error trials (Fig. 3h). In 196 

contrast, analysis of previously acquired S1 population data in expert animals performing the 197 

task showed that direction was stronger on correct compared to error trials (Extended Data Fig. 198 

7). In Prh, decoder performance for speed increased similarly for correct and error trials (Fig. 3i). 199 

To more closely examine how speed selectivity relates to choice selectivity in single neurons, we 200 

identified neurons with significant population decoder weights to speed (Fig. 3j). We then 201 

compared the firing rates of these neurons when sorted for speed conditions versus correct choice 202 

conditions. We found examples of neurons that were tuned to both speed and choice (Fig. 3k). 203 

We measured the choice-selective response distribution of speed-tuned neurons across learning. 204 

While the distribution of speed-tuned neurons showed balanced responses to choice during T1, 205 

choice selectivity became biased towards error trials once animals demonstrated learned 206 

performance (T2-T5) (Fig. 3l, sample: P<1x10-15, F4,7578=19.69, one-way ANOVA with post-hoc 207 

multiple comparison test; test: P<1x10-41, F4,7682 =50.69, one-way ANOVA with post-hoc 208 

multiple comparison test).  209 

  These neural signatures can possibly be explained by Prh’s role in familiarity and novel 210 

object recognition35. Familiarity can be detected by comparing, through subtraction, the current 211 

sensory input to one that was previously stored in memory36. As sensory information is stored 212 

into memory, subtraction results in reduced responses for familiar stimuli and increased 213 

responses for novel stimuli. A similar mechanism could be employed for encoding direction and 214 

speed during task learning. Memories of direction, as a task-relevant stimuli, may be 215 

preferentially stored instead of speed in connected brain areas such that only that component will 216 

be subtracted from the current stimulus when compared in Prh. To illustrate this, we constructed 217 

a simple model, focusing on encoding the stimulus features while neglecting models involving 218 

working memory37 or comparison of match and non-match38 which have been explained 219 

previously. The model consists of an autoencoder with input, hidden, and output layers 220 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2023. ; https://doi.org/10.1101/2023.03.17.532214doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.532214
http://creativecommons.org/licenses/by-nc-nd/4.0/


analogous to S1, the hippocampus, and Prh, respectively. The input to the model consists of two 221 

stimulus dimensions corresponding to direction and speed (Fig. 4a, left). The network was 222 

trained to reconstruct the input in the output layer. An additional output neuron was trained to 223 

generate the correct response required to get reward. This neuron biased the representation of the 224 

hidden layer of the autoencoder to make the direction of motion more relevant than speed. We 225 

also limited the activity in the hidden layer by imposing a sparseness constraint (L2-norm) (Fig. 226 

4a, right; see Methods). Finally, a downstream neuron read out the familiarity signal, that is, the 227 

difference between the reconstructed output and input36. With these simple components, we were 228 

able to reproduce the experimental results. Information about the task-relevant variable direction 229 

of motion decreased, whereas information about speed increased throughout learning (Fig. 4b). 230 

Importantly, this result was only possible when all components were included in the model (see 231 

Extended Data Fig. 8). 232 

 Overall, the results above indicate the Prh does not represent sensory information in the 233 

same manner as S1 does. Instead, it suggests that stimulus activity in Prh may reflect a sensory 234 

prediction error signal (ie. the difference between actual and expected sensory information), 235 

consistent with theories of predictive coding3 and Prh’s role in familiarity and novel object 236 

recognition. Information about direction decreases as Prh forms an internal model of direction as 237 

the task relevant feature, explaining away the delivered stimuli. Concurrently, information about 238 

speed increases to signal the prediction error between directions that are presented at the 239 

expected fast speeds versus the unexpected, weak slow speeds.  240 

 241 

Stimulus-reward associations emerge and stabilize with learning 242 

To understand how sensory and reward information are integrated to form stimulus-reward 243 

associations, we analyzed how representations of reward outcome evolved across learning. A 244 

cross-session decoder was trained using Hit vs. non-Hit trials from one session and tested on 245 

other sessions across learning (Fig. 5a). When assessing cross-session performance between 246 

neighboring sessions during the report period, representations of reward outcome were stably 247 

represented above chance on a session-to-session basis. No differences in session-to-session 248 

performance were found between training stages (Fig. 5b, P=0.19, F4,260 = 1.54, one-way 249 

ANOVA). Analysis of cross-session performance across longer time scales and across training 250 

stages showed that representations of reward outcome were less stable early in training (T1) but 251 

stabilized as animals learned the task (Fig. 5c). These results suggest that learning produces a 252 

stable, long-term representation of reward outcome.  253 

 Given that reward outcome stabilizes with learning, we asked whether such 254 

representations reflect a stimulus-reward association which would precede reward delivery. A 255 

cross-temporal decoder was trained on Hit. vs non-Hit trials during the report period and then 256 

tested on time points across the trial period. We identified a gradual retrograde expansion of 257 

decoder performance related to reward outcome over the course of learning that preceded reward 258 

and extended into the test stimulus period (Fig. 5d). Analysis of the onset of decodable reward 259 

outcome across training stages showed that this expansion emerged as animals demonstrated 260 

learned performance (T2) and continued to expand throughout the additional training stages (Fig. 261 

5e, P<0.002, F4,282=4.44, one-way ANOVA with post-hoc multiple comparison test). To test 262 

whether this temporal expansion is specific to rewarded trials, we conducted similar analysis of 263 

cross-temporal decoders trained to non-rewarded conditions that controlled for either licking 264 

behavior (false alarm) or correct choice (correct rejection). Neither decoder showed onset 265 

accuracy that extended into the test period. This demonstrates that neural representations on Hit 266 
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trials correspond to a stimulus-reward association. The temporal profile of this expansion 267 

suggests that this association emerges in a retrograde manner from reward outcome.   268 

 269 

Stimulus-reward associations generalize in an abstract format 270 

We next asked whether stimulus-reward associations were specific to a given stimulus set or 271 

could generalize across stimulus conditions. To address this, we analyzed how representations 272 

changed from T2 to T3 when the novel PA stimulus-reward contingency was introduced. 273 

Behaviorally, mice were flexibly able to correctly respond on the first session in which PA was 274 

introduced (T30). Performance on PA further improved over ~4-5 sessions, reaching similar 275 

levels as AP (Fig. 6a). We observed examples of single cells that exhibited distinct temporal 276 

responses between AP and PA conditions at T30. These responses changed over sessions, 277 

resulting in similar responses between the two conditions (Fig. 6b). To characterize these 278 

changes at a population level, we trained two separate population decoders on activity during the 279 

report period on rewarded conditions using either only AP or PA (Fig. 6c). This allowed us to 280 

independently evaluate each representation across T3 sessions. Cross-temporal analysis showed 281 

that the temporal profile of AP and PA representations were distinct at T30 but became similar 282 

after 4 sessions (T34) (Fig. 6d). Whereas the onset accuracy extended into the test period for AP 283 

at T30, indicative of a stimulus-reward association, onset accuracy for PA initially was restricted 284 

to the report period but expanded into the test period over the course of 3-4 sessions (Fig. 6e, 285 

P<0.002, F9,54=3.64, two-way repeated measures ANOVA with post-hoc Student’s t-test). This 286 

demonstrates that acquisition of new stimulus-reward contingencies occurs through a common 287 

mechanism of retrograde expansion from reward outcome. 288 

 Representations of AP-reward and PA-reward associations could exist in different or 289 

similar neural subspaces. The latter would imply that the geometry of stimulus-reward 290 

associations in Prh are represented in an abstract format7. To test this, we analyzed the cross-291 

condition performance for each of the two separate population decoders (ie. testing AP 292 

performance using a PA decoder and vice-versa). Cross-condition PA performance to the AP 293 

decoder during the test stimulus period was initially worse than the opposite cross-condition but 294 

gradually improved over the course of 9 sessions (Fig. 6f,g, P<0.05, F9,54=2.16, two-way 295 

repeated measures ANOVA with post-hoc Student’s t-test). This suggests acquisition of new 296 

stimulus-reward contingences occurs in two phases: an initial establishment of the stimulus-297 

reward association followed by a consolidation that aligns the new association into the same 298 

subspace of existing stimulus-reward associations. Overall, these findings demonstrate that Prh 299 

can generalize across novel stimulus-reward contingencies to form stimulus-reward associations 300 

that are representationally abstract. 301 

 302 

Neural signatures of expected outcome in Prh 303 

The observation that stimulus-outcome associations emerge in a retrograde manner to precede 304 

the report period suggests that stimulus information is integrated with ongoing activity that could 305 

signal an expected outcome (ie. reward delivery). Neural activity reflecting the expectation of 306 

reward or punishment has been observed during task engagement in other brain areas39. 307 

Therefore, we asked whether ongoing Prh activity throughout the trial period could contain an 308 

expectation signal of future outcomes. We looked for evidence of population activity 309 

corresponding to expected outcome. This was defined by the ability for a linear decoder to 310 

decode trial outcome when trained on activity at the beginning of the trial during the pre-311 

stimulus period. Additionally, we asked whether this population subspace was maintained across 312 
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the trial epoch to link task events to a given outcome. This was defined as the ability for the same 313 

decoder to cross-temporally decode trial outcome when tested on activity during the report 314 

period. 315 

 Two separate population decoders were trained on either hit vs. non-hit trials (Expected 316 

Hit) or correct rejection (CR) vs. non-CR trials (Expected CR) during the pre-stimulus period 317 

(Fig. 7a). When trained and tested during the pre-stimulus period (Fig. 7b), trial outcome could 318 

be decoded above chance throughout training. The accuracy of this decoder was consistently 319 

weaker than decoders trained and tested during the report period (Fig. 7d). Cross-session 320 

decoders to Expected Hit were not able to perform above chance, suggesting that this activity is 321 

unstable across sessions unlike the stimulus-reward associations (Fig. 5c). Expected Hit could 322 

also be decoded during the sample and test period (Extended Data Fig. 9). These same decoders 323 

did not encode information about stimulus direction or speed indicating that expected outcome 324 

activity occupied a different subspace from sensory prediction errors. 325 

 Analysis also demonstrates that this subspace is maintained throughout the trial period. 326 

Decoders trained on the pre-stimulus period were able to decode outcome activity below chance 327 

when tested during the report period (ie. below the 5th percentile of the shuffled distribution) 328 

(Fig. 7c). This was particularly strong during T2-T5 sessions when animals exhibited strong task 329 

performance (Expected Hit: P<1x10-5, F4,296=7.64; Expected CR: P<1x10-19, F4,285=29.18, one-330 

way ANOVA with post-hoc multiple comparisons test). To better understand how pre-stimulus 331 

activity predicts outcome activity below chance in single neurons, we identified neurons with 332 

significant population decoder weights. These neurons exhibit low levels of activity during the 333 

pre-stimulus period that differed slightly when sorted between Hit, Miss, FA, and CR trials. One 334 

neuron that showed slightly elevated pre-stimulus activity on CR trials showed robust outcome 335 

responses on Hit trials. Another neuron that showed slightly elevated pre-stimulus activity on Hit 336 

trials showed robust outcome responses on CR trials (Fig. 7h). We examined the population 337 

trajectory along the subspace of the pre-stimulus decoder (Fig. 7i). For Expected Hit, the 338 

population activity was projected along the decision variable axis for each of the 4 choice 339 

conditions over the time course of the trial. We observed that activity on hit and non-hit trials 340 

was separated along the axis through the pre-stimulus and sample stimulus period. The 341 

trajectories converged during the test stimulus period and then flipped their sign during the report 342 

period. This suggests that the decoder trained on expected outcomes captures neurons whose 343 

firing intially favors one potential trial outcome during the pre-stimulus period but later reverses 344 

its response to prefer the actual outcome during report period. The sign flip along this subspace 345 

explains the below chance performance during the report period. 346 

 To confirm that activity in the pre-stimulus period constitute a prospective and not a 347 

retrospective signal, we analyzed the performance of several cross-temporal decoders. Cross-348 

temporal decoder trained during the report period was not able to explain reward information 349 

during the pre-stimulus period (Fig. 7e). To test if pre-stimulus information reflects a trial history 350 

of recent outcomes as observed in other cortical areas40, cross-temporal decoders between the 351 

pre-stimulus and the report period of the previous trial were tested (Fig. 7f,g). These decoders 352 

did not perform above chance. Overall, this demonstrates that activity early in the trial 353 

constitutes a prospective signal whose subspaces emerges with training to link expectation to 354 

learned outcomes.  355 

 356 

Cholinergic signaling mediates expected outcome calcium signals 357 
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To investigate how expected outcome signals are established in Prh and whether they link 358 

expectations with outcome in a behavior-dependent manner, we looked for signaling 359 

mechanisms that could mediate these neural dynamics. Acetylcholine (Ach) is a major 360 

neuromodulator that affects the state of cortical networks22 and has been associated with reward 361 

expectation41. We hypothesized that Ach signaling could establish expected outcome states in 362 

Prh. To visualize Ach activity during early stages of training (T1 and T2), we imaged Ach 363 

release in Prh using the fluorescent Ach indicator GRAB-Ach3.042 (Fig. 8a). Bulk Ach signals 364 

were measured across the field of view. Prominent high Ach release was measured during the 365 

pre-stimulus period across all trials (Fig. 8b,c, Extended Data Fig. 10). On hit trials, increases 366 

in Ach were also observed to be related to licking behavior prior to reward delivery but not 367 

during reward consumption. Similar dynamics were observed on false alarm trials when no 368 

reward was delivered. These dynamics suggest that Ach in Prh signals behavioral correlates of 369 

reward expectation. To quantify the relationship between Ach and the behavioral task, we 370 

modeled Ach signals using a generalized linear model (GLM) with task variables representing 371 

the pre-stimulus period, stimulus direction, pre-reward licking, post-reward licking, reward 372 

delivery, and the post-trial period (Fig. 8d,e, Extended Data Fig. 11). The pre-stimulus task 373 

variable best explained Ach signals and increased from T1 to T2 (Fig. 8f, P<0.05, Student’s t-374 

test). This increase in pre-stimulus Ach coincided with the emergence of sustained expected 375 

outcome signals (Fig. 7c).  376 

 Ach modulates neuronal activity via either nicotinic (nAch) or muscarinic (mAch) 377 

receptors22. To determine if sustained expected outcome depends on a specific Ach receptor, 378 

two-photon calcium imaging was performed on animals trained up through T2. Using reversible 379 

pharmacological treatments, population activity was monitored while nAch or mAch receptors 380 

were inactivated using mecamylamine or scopolamine, respectively. Inactivation occurred in 381 

alternating imaging sessions that were additionally interleaved with control recovery sessions 382 

(Fig. 8g). We found that systemic administration of scopolamine, but not mecamylamine, 383 

significantly impaired task performance (Fig. 8h, P<1x10-4, Student’s t-test). Population activity 384 

was also disrupted. Using a cross-temporal decoder trained on Hit vs. no-hit trials during the 385 

report period, we find that scopolamine treatment weakened stimulus-reward associations (Fig. 386 

8i,j). Compared to control conditions, the onset of decodable reward outcome was delayed with 387 

scopolamine (P<0.02, Student’s t-test). No difference was observed with mecamylamine. 388 

 We next examined how nACh or mACh receptor inactivation affected expected outcome 389 

activity and how those activity patterns related to task performance. Pharmacological blockade 390 

did not affect Expected Hit (Fig. 8k). However, while the strength of the decoder correlated with 391 

behavioral performance under control and mecamylamine conditions, no significant relationship 392 

was observed under scopolamine conditions (R=0.08, P=0.83, Pearson’s correlation). 393 

Scopolamine weakened decoder performance for Expected CR (P<0.02, Student’s t-test) and its 394 

correlation with behavioral performance. (Fig. 8l, R=0.23, P=0.54, Pearson’s correlation). 395 

 To determine whether the sustained property of expected outcome activity was also 396 

disrupted, we examined cross-temporal performance for Hit and CR decoders. Mecamylamine 397 

weakened the below chance Hit and CR cross-temporal performance (Hit: P<0.05, CR: P<0.002, 398 

Student’s t-test). Scopolamine only weakened CR cross-temporal performance (P<0.01, 399 

Student’s t-test). While cross-temporal decoder performance for Hit trials did not correlate with 400 

behavioral performance across any conditions (Fig. 8m), CR trial performance was negatively 401 

correlated with task performance under control and mecamylamine conditions (Fig. 8n). This 402 

was disrupted under scopolamine conditions (R=0.16, P=0.65, Pearson’s correlation). Overall, 403 
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this demonstrates that both nAch and mAch receptor-mediated signaling are involved in 404 

establishing sustained expected outcome activity in Prh. This expected outcome activity is 405 

necessary for correct task performance. 406 

 407 

DISCUSSION 408 

In summary, we demonstrate how Prh is involved in learning an internal model of sensory-409 

guided task behavior that we refer to as a predictive map. Through chronic chemogenetic 410 

inactivation of Prh during automated home-cage training, we show that Prh is involved in 411 

sensory-guided task learning. While home-cage training with animals under freely moving 412 

conditions enable high-throughput, unbiased assays of complex task learning, a limitation of this 413 

approach with respect to this study is that the behavioral conditions are not identical to the head-414 

fixed conditions used for characterizing Prh calcium and Ach responses. While experimental 415 

differences exist between freely moving and head-fixed tasks, the role of Prh has been 416 

demonstrated under other task conditions16,18, reinforcing the idea that Prh supports sensory 417 

learning across multiple behaviors. Our analysis of sensorimotor variables during head-fixed 418 

conditions along with Prh activity as described below indicates that Prh neurons do not encode 419 

sensory and motor information in a direct, bottom-up manner as observed in primary 420 

somatosensory cortex28,32,34. Instead, we propose that sensory information is transformed in Prh 421 

into a predictive map that is reflected in three forms of activity: 1) sensory prediction errors; 2) 422 

stimulus-outcome associations, and; 3) expected outcome signals (Extended Data Fig. 12).   423 

 Sensory prediction errors reflect the learning of task relevant stimulus features. We show 424 

that information about stimulus direction - a task relevant feature - decreases with learning but is 425 

still present in error trials. Stimulus speed information – corresponding to the strength in 426 

stimulus direction - increases with learning and is accompanied by higher firing rates on error 427 

trials. These changes with learning are consistent with theories of predictive coding in which 428 

neurons signal the difference between expected and actual sensory information1. We speculate 429 

that Prh evaluates an internal model of task-relevant stimuli via the hippocampus against 430 

ongoing stimuli information from sensory neocortex resulting in signals that reflect sensory 431 

prediction errors. These results are consistent with previous studies attributing Prh’s role in novel 432 

object recognition memory20,21, wherein familiarity is learned from repeated exposure to objects 433 

such that novel objects signal the prediction error between experienced and familiar stimuli. In 434 

our experimental design, animals experienced slow directions at lower frequencies than fast 435 

directions. This does not allow us to disambiguate whether the sensory prediction error signals 436 

we observe are driven by familiarity due stimulus probability or task-dependent feature learning. 437 

However, our computational model developed for familiarity detection36 and applied to 438 

recapiluate our experimental results suggests that both phenomena could arise from similar 439 

mechanisms. 440 

 Sensory prediction errors in Prh may serve two purposes. First, they may act as a 441 

teaching signal that promotes updating of task-related variables through error-driven learning 442 

that functions to minimize differences between actual and expected sensory information11. This 443 

would produce a more accurate internal model of task relevant sensory features. Second, 444 

considering feedback connections from Prh back to sensory neocortex, prediction errors may aid 445 

in sensory inference by boosting bottom-up sensory information in lower areas under 446 

circumstances of discrepant sensory signals to help guide behavior43. Our results suggest a 447 

relationship between the strength of prediction error signals and incorrect choice behavior. 448 
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Inference may help to support feature invariant encoding of task relevant stimuli (ie. encoding 449 

direction invariant to speed).  450 

 While stimulus features that are necessary but not sufficient to predict outcome are 451 

encoded as sensory prediction errors, combined features that are sufficient to predict reward are 452 

encoded as stimulus-reward associations. Through task learning, stimulus-reward associations 453 

stabilize and expand in a retrograde manner from the time of reward back to the test period. 454 

These signals show similarity to goal-approach neurons in the medial entorhinal cortex and 455 

hippocampus during spatial navigation behavior, which increase their activity as animals 456 

approach learned locations of reward44. This representation generalizes to novel stimulus-reward 457 

contingencies. New associations distinctly emerge through a similar mechanism of retrograde 458 

expansion. The novel contingency then geometrically aligns with existing associations into an 459 

abstract format7. This demonstrates that predictive maps can flexibly adapt to newly encountered 460 

stimulus-reward contingencies. 461 

 Finally, we observe sustained network activity that links prospective signals of expected 462 

outcome with the experienced outcome. These signals, along with stimulus-reward associations, 463 

depend on cholinergic signaling. More specifically, blockade of mAch receptors disrupts this 464 

sustained link in Prh as well as task performance. We speculate that expected outcome signals 465 

facilitate learning and recall of sensory-related task models20,21,45. Ach is released at the 466 

beginning of each trial to establish a task-specific expected outcome state space. High 467 

cholinergic tone has been associated with an encoding-like “external” mode of processing in the 468 

hippocampus and neocortex while low Ach is associated with a retrieval-like “internal” mode of 469 

processing24. We propose Ach-associated, expected outcome activity may enable sensory 470 

information to be evaluated against internal models underlying prediction coding and error-471 

driven learning, consistent with an external mode of processing. Once sensory evidence is 472 

sufficient to predict reward, the network switches to retrieval-like “internal” mode in which 473 

stimulus-reward associations are retrieved from long-term memories ascribed to cognitive maps. 474 

Thus, a predictive map of task behavior could emerge from these switches in network states that 475 

engages other brain areas and allows error-driven and associative plasticity to guide model 476 

learning in local circuits. 477 
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METHODS 495 

Mice. Experiments in this study were approved by the Institutional Animal Care and Use 496 

Committee at Boston University and conform to NIH guidelines. Behavior experiments were 497 

performed using male and female C57BL/6J mice (The Jackson Laboratory). All animals were 6-498 

8 weeks of age at time of surgery. Mice used for behavior were housed individually in reverse 499 

12-hour light cycle conditions. All handling and behavior occurred under simulated night time 500 

conditions. 501 

 502 

Animal preparation. Prh was targeted stereotaxically (2.7 mm posterior to bregma, 4.2 mm 503 

lateral, and 3.8mm ventral). For inactivation experiments, bilateral injections were targeted via 504 

the parietal bone. For each side, animals received either retroAAV-hSyn-Cre (4.5x1012 vg/mL) 505 

and AAV9-hSyn-dio-hM4Di-mCherry (6.0x1012 vg/mL) (1:1, 600nL) or retroAAV-hSyn-Cre 506 

and AAV9-hSyn-dio-mCherry (6.0x1012 vg/mL) (1:1, 600nL). For tracking in the home cage 507 

training, a radio frequency identification (RFID) glass capsule (SEN-09416, Sparkfun) was 508 

implanted subcutaneously in the animal’s back. For in vivo imaging experiments, a unilateral 509 

injection was targeted via the temporal bone at 250 µm and 500 µm below the pial surface of 510 

either AAV.PHP.eB-EF1α-RCaMP1.07 (600nL, 6x1012 vg/mL), AAV9-hSyn-GRAB-Ach3.0 511 

(600 nL, 2.5x1012 vg/mL), or AAV2-retro-CAG-GFP (600nL, 1x1012 vg/mL). For optical access, 512 

an assembly consisting was of a 2 mm aluminum-coated microprism (MPCH-2.0, Tower 513 

Optical) adhered to coverglass along the hypotenuse and the side facing Prh was implanted over 514 

the pial surface. A metal headpost was implanted on the parietal bone of the skull to allow for 515 

head fixation. For unilateral retrograde tracing between Prh and S2, CTB-Alexa647 (Molecular 516 

Probes, Invitrogen; 300 nL, 1% wt/vol) was delivered into Prh, targeted via the temporal bone 517 

and CTB-Alexa488 (300 nL, 1% wt/vol) was delivered into S2 (0.7 mm posterior to bregma, 4.2 518 

mm lateral, 250 and 500 µm below the pial surface). 519 

 520 

Home cage task training.  Two weeks after injections, animals were trained to a whisker-based 521 

context-dependent sensory task adapted for training in an automated live-in environment 522 

(Supplementary Text S1). The animals were singly housed in individual cages. Three cages 523 

were attached to a shared training system wherein individual access was restricted via servo-524 

operated doors (SG92R, Tower Pro) controlled by a microcontroller (Uno Rev3, Arduino). The 525 

training system consists of a narrow corridor that restricts body and head movement at the front 526 

of the corridor where sensory stimulus is delivered. Equipment for whisker stimulus, lick 527 

detection, sound delivery, air puff delivery, and water delivery were similar to as described28. 528 

Water ports were attached to a capacitive lick sensor (AT42QT1010; SparkFun) that dispenses 5 529 

to 6 uL of water through a miniature solenoid valve (LHDA0531115H; The Lee Company). For 530 

the rotation stimulus, commercial grade sandpaper (3M; roughness: P100) was mounted along 531 

the outside edge of a 6 cm diameter rotor, attached to a stepper motor (Zaber) to deflect the 532 

whiskers which was mounted onto a linear stage (Zaber) to place the rotor within whisker reach. 533 

Two lick ports were mounted onto a linear actuator (L12-P, Actuonix) that controlled access to 534 

water during the task. An LED beam breaker (2167, Adafruit) at the head of the training system 535 

such that animals self-initiated behavioral trials by breaking the beam with their body. 536 

 Each animal was provided access to the training system via the servo door through 537 

scheduled two-hour morning and two-hour afternoon session blocks. Animals were initially 538 

acclimated by learning to retrieve water from the lick ports. Once acclimated, animals proceeded 539 

to task training. During task training, the rotor providing whisker stimulus was retracted during 540 
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the inter-trial interval and placed in reach during stimulus periods.  The lick spouts were only 541 

presented during the report period and retracted at all other times. A two-forced alternative 542 

choice task design was used in which correct choice required licking to the right port for non-543 

match stimuli and to the left port for match stimuli. Only fast rotations (1.75 cm/s) of stimulus 544 

direction were used.  545 

 Training was divided into 5 stages (T1-T5) (Table 1, Supplementary Text S3). For T1 546 

and T2, one non-match stimuli (AP) and two match stimuli (AA, PP) were included. T1 was 547 

defined as initial naïve performance. T2 was defined as learned performance beginning from the 548 

point in which animals displayed d’ > 0.45 for two consecutive sessions.  For T3, the second 549 

non-match stimuli (PA) was introduced.  For T4, delays between the sample and test stimuli 550 

were gradually lengthened up to 2 seconds. The rotor was also gradually retracted up to 1.5cm 551 

out of whisker reach. T5 was defined as consistent expert performance with 2s delay and 1.5cm 552 

rotor retraction. Advancement from T2-T5 was automated based on behavioral performance of 553 

two consecutive sessions of >80% correct (d’ ~1.68). The delay period and rotor withdrawal 554 

distance during T4 was automatically increased based on behavioral performance of >80% 555 

correct (d’ ~1.68) across a 15-trial sliding window.  556 

 In addition to water reward, correct behavioral choice was reinforced using three 557 

automatically adjusted task settings (Table 3, Supplementary Text S4). Punishment in the form 558 

of a combination of time outs (2-10s) and air puffs to the face were introduced to discourage 559 

incorrect decisions. Time outs ranged from 2-10s. Air puffs (100ms) ranged from 1-5 trains and 560 

were introduced for >7s time out. Punishment systematically increased during poor performance 561 

corresponding to <70% correct (d’ ~1.05) over a 50 trial sliding window. Punishment was 562 

automatically decreased if the proportion of misses in this window exceeded 50%. To correct for 563 

report biases in which animal repetitively licked one port irrespective of stimulus condition, the 564 

probability of match vs. non-match stimulus conditions was increased in favor of the stimulus 565 

condition associated with the neglected spout. To correct for primacy and recency stimulus bias 566 

resulting in disproportionally greater error trials for one of the two match conditions or one of the 567 

two non-match conditions, probability of one of the two match or non-match conditions was 568 

adjusted in favor of the condition with the greater proportion of errors.   569 

 For chemogenetic inactivation, Compound 21 (HB6124, HelloBio) was provided in the 570 

drinking water (9.5µg/mL H2O, 1mg/kg body weight). Animals only received water by 571 

performing the task. Their weight was monitored daily to ensure body weight did not drop below 572 

80% of initial weight. Animals were trained continuously for six weeks. 573 

 574 

Head-fixed task training. Two weeks after microprism implantation and injections, animals 575 

were handled and acclimated to head fixation. Training to a head-fixed whisker-based context-576 

dependent sensory task was performed similar to as described28 (Supplementary Text S2). 577 

Water ports and stimulus delivery hardware were same as the home-cage training system. 578 

Whiskers were trimmed to a single row for videography. Animals trained for two sessions per 579 

day. A go/no-go task design was used in which animals licked for water reward for non-match 580 

stimulus conditions and withheld licking for match stimulus conditions. T1-T3 training stages 581 

were similar as stages defined in home cage task training (Table 2). For T4, the delay between 582 

sample and test stimuli was gradually increased from 100ms to 2s with the rotor remaining 583 

within whisker reach through the delay period. For T5, the rotor was retracted 1.5cm during the 584 

delay period across delays of 2s, 3s, and 4s which were randomly presented with probabilities of 585 

50%, 25%, and 25% respectively. Fast (1.75 cm/s) and slow (0.87 cm/s) rotations of stimulus 586 
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direction were used. For T1-T4, slow directions represented 5% of all trials. For T5, the fraction 587 

of slow trials was increased to 25% of all trials 588 

 Adjustments to task settings to reinforce correct behavioral choice were carried out semi-589 

automatically. Punishment in the form of a combination of time outs (2-10s) and air puffs 590 

(100ms) ranging from 1-5 trains to the face was manually adjusted to discourage false alarm 591 

licking on match trials. During T1, the probability of non-match stimulus conditions was 592 

manually reduced to 35-40% of all trials reduce false alarm trials or increased up to 60% to 593 

reduce miss trials. To correct for primacy and recency stimulus bias resulting in 594 

disproportionally greater error trials for one of the two match conditions or one of the two non-595 

match conditions, probability of one of the two match or non-match conditions was adjusted in 596 

favor of the condition with the greater proportion of errors. Animals only received water by 597 

performing the task. Their weight was monitored daily to ensure body weight did not drop below 598 

80% of initial weight. Animals were trained continuously and terminated once animals had 599 

performed at least 4-6 T5 sessions. 600 

 601 

Acetylcholine receptor inactivation. Microprism implanted animals expressing RCamp1.07 in 602 

Prh were imaged and trained up to expert T2 performance. Mecamylamine (1mg/kg b.w.) or 603 

scopolamine (1-5 mg/kg b.w.) was delivered systemically vis intraperitoneal (IP) injection ~1h 604 

prior to behavior imaging session. For control conditions, behavior imaging sessions was 605 

performed at least 16 hours after the previous pharmacological inactvation session to allow for 606 

recovery.  607 

 608 

Histology. Mice were anaesthetized (sodium pentobarbital; 100 mg per kg and 20 mg per kg 609 

body weight) and perfused transcardially with 4% paraformaldehyde in phosphate buffer, pH 610 

7.4. For anatomical tracing experiments, coronal sections (50-75 µm) were cut using a vibratome 611 

(VT1000; Leica). For chemogenetic inactivation experiments, coronal sections (150 µm) were 612 

cut, tissue cleared and embedded in hydrogel using PACT-CLARITY, and stained for Fos (B4-613 

Alexa647 hairpin amplifiers) using HCR-FISH as previously described27.  Images were acquired 614 

using a epifluorescent microscope (Eclipse NiE, Nikon) or spinning disk confocal microscope 615 

(Ti2-E Yokogawa Spinning Disk, Nikon). 616 

 617 

Two-photon imaging. Two-photon calcium imaging was performed with a custom-built 618 

resonant-scanning multi-area two-photon microscope with a 10x/0.5NA, 7.77mm WD air 619 

objective (TL10X-2P, Thorlabs) using custom-written Scope software33. A 31.25 MHz 1040 nm 620 

fiber laser (Spark Lasers) was used for RCaMP1.07 imaging. Simultaneous imaging at 32.6 Hz 621 

frame rate was performed of two imaging planes in L2/3 separated 50 µm in depth. For GRAB-622 

Ach3.0 or GFP imaging, a single area at 32.6 Hz frame rate was acquired using an 80MHz 623 

ti:sapphire laser (Mai Tai HP DeepSee, Spectra Physics) tuned to 950 nm. Average power of 624 

each beam at the sample was 50-90mW. Imaging was performed during head-fixed task behavior 625 

or during passive stimulation sessions in naïve animals using similar stimulus conditions as T5. 626 

 627 

In vivo image analysis. All image processing was performed in MATLAB, Python, and ImageJ 628 

as described28,46. For calcium imaging analysis, two-photon images were first motion corrected 629 

using a piece-wise rigid motion correction algorithm47. Independent noise related to photon shot 630 

noise was removed from the image times-series using DeepInterpolation48.  To identify neurons 631 

chronically imaged across all behavior sessions, a global reference image was generated by tiling 632 
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FOV images from each session to account for slight variations in positioning and to reveal a 633 

common FOV shared by all sessions. ROIs were manually identified by comparing structural 634 

images based on fluorescence intensity and a map of active neurons identified by constrained 635 

non-negative matrix factorization from image time series. ROI positions were adjusted for each 636 

session to account for tissue changes or rotations over longer time scales. Calcium signals were 637 

then extracted for each ROI for each session. A global neuropil correction was performed for 638 

each neuron and the resulting fluorescence traces were detrended on a per trial basis. For 639 

acetylcholine imaging analysis, the fluorescence intensity across the entire FOV was averaged to 640 

obtain a bulk signal of Ach dynamics. Ach signals were z-scored on a per trial basis.  641 

 642 

Calcium event estimation. Calcium signals were deconvolved using an Online Active Set 643 

method to Infer Spikes (OASIS), a generalization of the pool adjacent violators algorithm 644 

(PAVA) for isotonic regression49. First, calcium signals below baseline fluorescence (bottom 10th 645 

percentile of signal intensity) were thresholded. For each cell, a convolution kernel with 646 

exponential rise and decay time constants were determined using an autoregressive model. For 647 

measurement of photon shot noise, signal-to-noise (v) was calculated as for each cell: 648 

 649 

1) � �  
�������|����	��|


��
 650 

 651 

where the median absolute difference between two subsequent time points of the fluorescence 652 

trace, F, is divided by the square root of the frame rate, fr
50.  The convolution kernel was applied 653 

to the calcium signals to obtain an initial deconvolved signal that was then normalized by the 654 

signal-to-noise resulting in a calcium event estimate (ŝ).   655 

 656 

Population decoding analysis. To decode population activity with respect to trial conditions, 657 

maximum margin support-vector machine (SVM) linear classifiers were used on the single-trial 658 

population response vectors of simultaneously recorded neurons within one imaging session7. 659 

For each neuron in the population, calcium events across a given time window was averaged for 660 

each trial and then z-scored across all trials in session time. For each classifier, activity from 10-661 

20% of trials was separated for testing while the remaining trials were used to train the classifier. 662 

In the case of comparing stimulus direction or reward, in which >100 trials were recorded for 663 

each condition (i.e., anterior vs. posterior for stimulus direction or hit vs. non-hit), the accuracy 664 

of the decoder performance was determined using 10-fold cross validation. For comparing 665 

stimulus speed or choice in which slow speed conditions or error conditions were very few or 666 

varied across task learning (Fig. 3, Extended Data Fig. 9), trials in the minority condition in the 667 

training set were randomly resampled to match trial numbers in the other condition before 10-668 

fold cross validation.  This process was repeated 100 times and the decoder accuracy was 669 

calculated from the average accuracy. The statistical significance of the decoding accuracy was 670 

assessed by shuffling the trial labels in the training set prior to classification. This process was 671 

repeated 1000 times and decoder accuracies above the 95th or below the 5th percentile of the 672 

shuffled distribution was determined to be statistically significant. 673 

 For a cross-temporal classifier (Figs. 5-8), SVMs were trained as described above using 674 

average activity across the pre-stimulus period, sample period, test period, report period, or a 675 

sliding window of 1000 milliseconds. The cross-temporal accuracy was determined using 10-676 

fold cross-validation by testing on withheld trials from activity across different pre-stimulus 677 

period, sample period, test period, report period, or a sliding window of 300 milliseconds. 678 
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Significant cross-temporal decoding was determined by shuffling the population vector weights 679 

and then testing performance on the resulting shuffled decoder. This process was repeated 1000 680 

times and cross-temporal accuracies above the 95th or below the 5th percentile of the shuffled 681 

distribution was determined to be statistically significant. The decodable onset of the reward 682 

outcome classifier was defined as the first significant timepoint across the test and report period.  683 

 For a cross-session classifier (Fig. 5), SVMs were trained using average activity across 684 

the pre-stimulus or report period consisting of 80-90% trials from one imaging session. The 685 

cross-session accuracy was determined using 10-fold cross-validation by testing on average 686 

activity in the same trial period window in a different session using all trials. The same neuronal 687 

population imaged across sessions was used for training and testing. Significant cross-session 688 

decoding was determined by shuffling the population vector weights and then testing 689 

performance on the resulting shuffled decoder. This process was repeated 1000 times and cross-690 

session temporal accuracies above the 95th percentile of the shuffled distribution were 691 

determined as statistically significant.  692 

 For cross-condition analysis of rewarded stimulus conditions (Fig. 6), non-match 693 

stimulus trials were separated by stimulus condition (anterior-posterior or posterior-anterior) into 694 

a training or testing set. Match stimulus trials were randomly separated into the training or 695 

testing set. SVMs were then trained using average activity from the report period along hit vs. 696 

non-hit trial conditions. The cross-temporal accuracy of the cross condition was determined 697 

using 10-fold cross-validation by using the average activity across a sliding window of 300 698 

milliseconds of the test set. The cross-temporal accuracy at 300ms from the end of the test period 699 

was used to assess the strength of the cross-condition of the test period. 700 

 701 

Choice selectivity.  To determine the relationship between stimulus speed encoding and choice 702 

selectivity, an SVM was trained to speed trials. Neurons with significant population vector 703 

weights were determined by shuffling the trial labels in the training set prior to classification. 704 

This process was repeated 1000 times to obtain a shuffled distribution for each neuronal weight. 705 

Neuron weights above the 95th or below the 5th percentile of the shuffled distribution were 706 

determined to be statistically significant.  For significant neurons, selectivity to correct (hit, 707 

correct rejection) or error (miss, false alarm) trials was determined by calculating the average 708 

event rate for each of the two trial conditions. The peak activity level during either the sample or 709 

test period as measure of a neuron’s stimulus response (SR). Choice selectivity was expressed as 710 

(SRERROR - SRCORRECT)/(SRERROR + SRCORRECT) where SRERROR is the peak response on error trials 711 

and SRCORRECT is the peak response on correct trials. 712 

 713 

Computational modeling. An autoencoder was trained to reconstruct a two-dimensional input 714 

signal (Fig. 4). The input signal consisted of two independent variables, direction of movement 715 

and speed, with two different values each. This made a total of four experimental conditions: 716 

anterior direction and low speed, posterior direction and low speed, anterior direction and fast 717 

speed, and posterior direction and fast speed. These four experimental conditions were mapped 718 

to four points on a two-dimensional space [-1,-1], [-1,1], [1,-1], [1,1]. Simulations of k trials per 719 

experimental condition were performed, producing a total of 4k trials (k = 100). On each trial 720 

additive Gaussian noise with mean zero and variance σ2
inp was added to the experimental 721 

conditions and then expanded by a random projection to an Ninp space (σ2
inp = 0.5, Ninp = 10). 722 

 The autoencoder consisted of input, intermediate, and output layers. Intermediate neurons 723 

were ReLU units with noise (additive Gaussian noise, σ2
neu = 0.5). Additionally, an additional 724 
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read-out unit was included that read the intermediate layer to classify direction of motion on a 725 

trial-by-trial basis. This additional read-out neuron was added to impose an asymmetry between 726 

direction of motion and speed in both the intermediate and output layers. The loss function that 727 

was minimized through learning was: 728 

 729 

1) Loss = βr*Lossreconstruction + βc*Losscrossentropy + βs*Losssparsity. 730 

 731 

The reconstruction loss was the mean squared error (MSE) between the input and the output 732 

layer (βr = 0.0001). The cross-entropy loss corresponded to the classification loss of the 733 

additional read-out unit that classified direction of motion from the activity of the intermediate 734 

layer (βc = 1). Finally, we also added an L2-norm sparsity loss on the activity of the intermediate 735 

layer to constrain the activity of the intermediate layer (βs = 10). The autoencoder was trained 736 

with stochastic gradient descent (ADAM, lr = 0.01, batch size = 10) for 200 epochs. A final 737 

downstream unit (logistic regression, sci-kit learn) was added that read out from the familiarity 738 

population, that is, the difference between the reconstructed output and the input36. An 739 

independent classifier was trained on each training epoch. The reported decoding performance 740 

on both direction and speed corresponds to the mean across cross-validation iterations (5-fold 741 

CV) and independent simulations (n = 50).  742 

 Alternative models were trained and analyzed. This includes models containing only 743 

reconstruction loss (βr = 1, Extended Data Fig. 8a), reconstruction and cross-entropy with 744 

respect to direction (βr = 0.0001, βc = 1, Extended Data Fig. 8b), and reconstruction, cross-745 

entropy, and L2 sparsity on the hidden layer (βr = 0.0001, βc = 1, βs = 10, and βs = 100, Extended 746 

Data Fig. 8c,d). Modeling was performed in Python and PyTorch. Code is available at 747 

github.com/ramonnogueira/AutoPerirhinal. 748 

 749 

Acetylcholine signal analysis. To understand the effects of task-relevant variables on the 750 

acetylcholine (Ach) dynamics, we fit a Normal GLM to the normalized Grab-Ach3.0 751 

fluorescence acquired on each trial within a recording session. The model calculates an estimated 752 

signal, ���, using: 753 

 754 

1) ��� � ∑ ����
�	


�  755 

 756 

where xi(t) represents the time course for the ith explanatory variable, and wi represents the 757 

weight assigned to this variable relating its estimated effect on the signal51. All GLMs were fit 758 

using MATLAB’s lassoglm function with a normal distribution, identity link function, 6 penalty 759 

values (γ), and 4 fold cross-validation. 760 

 Task variables xi(t) were represented as boxcars corresponding to their occurrence during 761 

the time course of a trial. These boxcars had value “true/1” during appropriate time points and 762 

“false/0” otherwise. These include “pre-stimulus,” “stimulus direction anterior,” “stimulus 763 

direction posterior,” and “post-trial” variables. “Reward” was represented as a boxcar lasting 764 

300ms after the point of reward delivery. Licking events were resampled to match the image 765 

acquisition rate. This was then convolved with a 10-sample Gaussian kernel and separated into 766 

“pre-reward licking” (LickPRE) and “post-Reward licking” (LickPOST) variables based on 767 

rewarded trials. All licking on miss, false alarm, and correct rejection trials were considered 768 

LickPRE. For hit trials, licks before water reward were LickPRE while licks after water reward were 769 

LickPOST. 770 
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 Related covariates were grouped together into ‘task factors.’ Each task variable was 771 

treated as its own “task factor” with the exception of “stimulus direction anterior” and “stimulus 772 

direction posterior” which were grouped into a task factor for “stimulus direction.” For each task 773 

factor, a partial model was constructed that excluded the covariates associated with this task 774 

factor. Any increase in deviance from the full model to the partial model therefore resulted from 775 

the exclusion of this task factor’s covariates. Akaike Information Criterion (AIC) was used to 776 

compare deviance between partial models in which different number of covariates were excluded 777 

such that:  778 

   779 

2) ��� � 2� 	 2 ln�
� �  2� � �������� 780 

 781 

where k is the number of model parameters, deviance = -2ln(L), and L is the model likelihood. 782 

The difference in AIC (ΔAIC) between the full and partial model was calculated as: 783 

 784 

3) ���� � �����
���� 	  ������� 785 

  786 

Statistical procedures. No statistical methods were used to predetermine sample size. For Prh 787 

inactivation experiments, investigators were blinded to hM4Di+ or hM4Di- groups during 788 

experiments and outcome assessment. For two-photon experiments, animals were not 789 

randomized and the investigators were not blinded to allocation during experiments and outcome 790 

assessment. Statistical tests used are indicated in figure legends. Error bars on plots indicate 791 

standard error of the mean (SEM) unless otherwise noted.  792 

 For Prh inactivation experiments, a bootstrap analysis was used to compare the fraction 793 

hM4Di+ versus hM4Di- animals able to successfully accomplish the T2 stage. For testing of 794 

sequence reliability or stimulus similarity across passive and training stages, a one-way ANOVA 795 

was performed followed by a multiple comparisons test. For testing of differences in linear 796 

decoder or cross-temporal decoder performance in individual sessions between training stages, a 797 

one-way ANOVA was performed followed by a multiple comparisons test. For performance of 798 

linear decoders for direction or speed, a Student’s t-test was used to compare correct versus error 799 

trials at specific training stages. For comparisons of choice selectivity in individual neurons 800 

across training stages, a one-way ANOVA was performed followed by a multiple comparisons 801 

test. For statistical tests of Ach signal encoding, a repeated-measures ANOVA was performed 802 

followed by a multiple comparisons test was used to compare the strength of GLM ΔAIC values 803 

between task factors. A Student’s t-test was used to compare AP versus PA decoder performance 804 

as well as cross-conditional decoder performance at specific T3 sessions. The Bonferroni-Holm 805 

method was used to correct for multiple comparisons. 806 

  807 
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  938 

Figure 1. Perirhinal cortex is necessary for learning an abstract sensory task. a, Schematic 939 

of an abstract sensory learning task. For home cage task training, animal licked left port (L) or 940 

right port (R) for reward for non-match or match stimulus conditions, respectively. For head-941 

fixed task training (2P), non-match stimulus conditions were rewarded (Yes) while match 942 

conditions were not (No). During head-fixed task training, animals were primarily trained on 943 

directions with fast speeds (95% across T1-T4, 75% for T5) with a smaller fraction of slow 944 

speeds trials provided as unexpected stimuli (5% across T1-T4, 25% for T5). b, Coronal section 945 

stained with DAPI (blue) showing bilateral expression of hM4Di-mCherry (magenta) from 946 

chemogenetic inactivated animals during home cage task training. c, Distribution of final training 947 

stage reached for each animal after 84 training sessions for hM4Di- (top) versus hM4Di+ 948 

(bottom) groups. The majority of hM4Di+ animals failed to advance past T2. d, Number of trials 949 

performed in stages T1-T2 by hM4Di- versus hM4Di+ groups. hM4Di+ animals spent more 950 

training time in T1-T2. (*P<0.05, Student’s t-test, n = 13 hM4Di- animals, 9 hM4Di+ animals). 951 

Scale bar = 0.5mm. Error bars = SEM.  952 
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  953 

Figure 2. Measuring behavioral correlates throughout task learning. a, Schematic of two-954 

photon imaging of Prh using chronically implanted microprisms allowed during head-fixed task 955 

training. b, Learning curves for individual head-fixed animals trained during two-photon 956 

imaging. Only imaged animals reaching T5 were analyzed. c, High-speed videography was used 957 

to measure whisker kinematics during task behavior. d, Whisking amplitude during each trial 958 

period across training stages. e-f, Change in whisker angle [e] and curvature [f] during sample 959 

and test stimulus periods across training stages sorted by speed and direction. g, Licking rate 960 

during each trial period across training stages sorted by choice. Scale bar = 2mm. Error bars = 961 

SEM. 962 
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 963 

Figure 3. Perirhinal cortex learns sensory prediction errors. a, Behavioral performance 964 

across training stages separated by fast versus slow speed trials. b, Example imaging area at 965 

denoted training stage and session number (top row). Mean activity sorted by stimulus condition 966 

or choice (bottom row) for indicated neuron (yellow arrow). c, Schematic of population decoders 967 

to stimulus direction or speed. Black line separates decoder trial types. For correct trials, only hit 968 

and correct rejection (CR) trials were used. For error trials, only miss and false alarm (FA) trials 969 

were used. d, Example neuron with selectivity to direction and speed during early training 970 

sessions (T14) that showing reduced selectivity in expert sessions (T51). e, Example neuron with 971 

developing selectivity to speed in expert sessions (T52). f, Decoder performance to stimulus 972 

direction across training stages (P < 1x10-8, one-way ANOVA with post-hoc multiple 973 

comparison test). g, Decoder performance to stimulus speed across training stages (P<0.02, one-974 

way ANOVA with post-hoc multiple comparison test). h-i, Decoder performance to stimulus 975 

direction [h] or speed [i] across training stages during the sample (left) and test (right) stimulus 976 

period separated by correct versus error trials (Student’s t-test). j, Example population vector 977 

weights for decoder to stimulus speed from one imaging session. Significant weights are 978 

indicated (red). k, Mean event rates for example neurons with significant weights in [j] sorted by 979 

fast versus slow speed trials (left) or correct versus error trials (right). l, Distribution and box plot 980 

of choice selectivity during sample (left) or test (right) stimulus period for speed-tuned neurons 981 

across training stages (sample period: P<1x10-15; test period: P<1x10-41, one-way ANOVA with 982 

post hoc multiple comparison test). Lines indicate 95th percentile of shuffled performance in [f-i]. 983 

Error bars = SEM; [f-i]. **P<0.005 for [f-i]. n = 70 T1 sessions, 75 T2 sessions, 30 T3 sessions, 984 

79 T4 sessions, 48 T5 sessions from 7 animals for [f-i]. n = 529 neurons from 7 animals for [l]. 985 
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 987 

 988 

Figure 4. Computational model of sensory prediction errors in perirhinal cortex. a, An 989 

autoencoder with three layers (input, hidden, and output) was trained to represent the input. The 990 

input consisted of two independent stimulus variables: direction of motion (red) and speed 991 

(blue). A downstream neuron was trained (logistic regression) to decode direction (red) and 992 

speed (blue) by reading out the difference between the reconstructed output and the input (dotted 993 

line). Sparsity in the hidden layer was imposed by adding an L2-norm term on the loss function. 994 

b, Decoding performance of direction (red, left) and speed (right, blue) as a function of training 995 

epoch for the downstream neuron reading out from familiarity activity. Similar to experimental 996 

results, decoding performance of direction decreases, whereas decoding performance for speed 997 

increases throughout training. Error bars correspond to SEM across independent simulations (n = 998 

50). See also Extended Data Fig. 8. 999 

 1000 

 1001 

 1002 

 1003 
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 1005 

 1006 

Figure 5. Learning of stimulus-reward associations. a, Example of cross-session decoder 1007 

performance trained on Hit trials during the report period for one animal across training. b, 1008 

Cross-session performance for decoders trained on sessionN and tested on sessionN+1 for report 1009 

activity (left) or pre-stimulus activity (right) across training stages. c, Cross-session decoder 1010 

performance across training stages for report activity (left) or pre-stimulus activity (right). d, 1011 

Example of cross-temporal (CT) decoder for reward conditions trained on report activity across 1012 

each training session for one animal. First decodable time point above chance is shown (white 1013 

dot). e, Decodable onset timepoint for cross-temporal decoder of report activity for decoders 1014 

trained on hit, false alarm, or correct rejection trials (P<0.002, F4,282=4.44, one-way ANOVA 1015 

with post-hoc multiple comparison test. Error bars = SEM. Lines indicate 95th percentile of 1016 

shuffled performance [b]. n = 70 T1 sessions, 75 T2 sessions, 30 T3 sessions, 79 T4 sessions, 48 1017 

T5 sessions from 7 animals. 1018 
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 1021 

Figure 6. Stimulus-reward associations are abstract. a, Behavioral performance aligned to the 1022 

first T3 session for AP versus PA stimulus conditions. Mean and individual animal performance 1023 

is shown. b, Mean activity in an example neuron separated by stimulus conditions across the first 1024 

four T3 sessions. c, Schematic for population decoder for reward using either only AP or PA 1025 

stimulus conditions. Cross-condition (CC) decoder also shown for the complementary condition. 1026 

d, Cross-temporal decoder performance trained on report activity for the rewarded AP or PA 1027 

condition during the T30 or T34 session. e, Decodable onset timepoint for either the rewarded AP 1028 

or PA condition T3 sessions (P<0.002, two-way repeated measures ANOVA with post-hoc 1029 

Student’s t-test). f, Cross-temporal decoder performance trained on report activity for the 1030 

rewarded AP or PA condition and tested on the cross condition during the T30 or T312 session. g, 1031 

Cross-temporal decoder performance trained on report activity for the rewarded AP or PA 1032 

condition and tested on the cross condition test period activity across T3 sessions (P<0.05 ). 1033 

Error bars = SEM. *P<0.05, **P<0.02, ***P<0.001 for [e] and [g]. n = 7 animals for [b, d-g]. 1034 

 1035 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2023. ; https://doi.org/10.1101/2023.03.17.532214doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.532214
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1036 

 1037 

Figure 7. Perirhinal cortex encodes expected outcome throughout task learning. a, 1038 

Schematic of population decoder trained to Expected Hit (top) or Expected CR (bottom). b, 1039 

Decoder performance to Expected Hit (top) and Expected CR (bottom). c, Cross-temporal (CT) 1040 

decoder performance to Expected Hit (top) and Expected CR (bottom). Black box indicates 1041 

trained time window during the pre-stimulus period. Grey box indicates (solid box) tested time 1042 

window during the report period. d, Decoder performance during the report period for Hit (top) 1043 

and CR (bottom).  1044 

e, CT decoder performance trained during the report period (black box) and tested during the 1045 

pre-stimulus period (grey box) for Hit (top) and CR (bottom) trials. f, CT decoder performance 1046 

trained during the report period (black box) and tested during the pre-stimulus period of the 1047 

following trial (grey box) for Hit (top) and CR (bottom) trials. g, CT decoder performance 1048 

trained during the pre-stimulus period (black box) and tested during the report period of the 1049 

previous trial (grey box) for Hit (top) and CR (bottom) trials. h, Mean estimated firing rate for 1050 

example neurons with significant weights for Expected Hit decoder. Cell 1 shows elevated firing 1051 

during the pre-stimulus period on CR trials but strongly responds during the report period of Hit 1052 

trials. Cell 484 shows elevated firing during the pre-stimulus period on Hit trials but strongly 1053 

responds during the report period of CR trials. i, Projection of neural activity along the decision 1054 

variable for Expected Hit [c] across the trial period sorted by trial type across training stages. 1055 

Error bars = SEM. , ***P<1x10-3, one-way ANOVA with post-hoc multiple comparisons test. 1056 

For [b-g], dashed lines indicate 95th percentile (red) and 5th percentile (blue) of nulled 1057 

performance for classifier after shuffling trial labels. n = 70 T1 sessions, 75 T2 sessions, 30 T3 1058 

sessions, 79 T4 sessions, 48 T5 sessions from 7 animals.   1059 
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 1060 

 1061 

Figure 8. Expected outcome depends on acetylcholine signaling. a, Two-photon images of 1062 

GRAB-Ach3.0 expression in perirhinal cortex. b, Example bulk Ach signals (left) and licking 1063 

behavior (right) sorted by trial type for one session. Timepoint of reward and the end of the trial 1064 

are also indicated. c, Mean Ach signals across the trial period separated by choice aligned 1065 

beginning of trial (top). Bottom panel shows magnified view of signals (dotted line in top panel) 1066 

aligned to behavioral report. d, Schematic of GLM depicting basis functions for task variables 1067 

(top) applied to model Ach signals (bottom). e, Example encoding of task factors from imaging 1068 

session shown in [b]. f, Encoding of task factors across T1 and T2 sessions. g, Schematic of T2 1069 

calcium imaging sessions alternating between control no inactivation (Ctl), nAch receptor 1070 

inactivation by mecamylamine (Mec.), and mAch receptor inactivation by scopolamine (Sco.). h, 1071 

Task performance across pharmacological inactivation sessions. i, Stimulus-reward association 1072 

determined by cross-temporal (CT) decoder performance for Hit vs. non-Hit trials across 1073 

pharmacological conditions. j, Decodable onset timepoint for Stimulus-reward association for [i] 1074 

across pharmacological conditions. k, Decoder performance to Expected Hit (left) across 1075 

pharmacological conditions. Scatter plot (right) correlation to task performance for individual 1076 

behavior sessions. l, Decoder performance to Expected CR (left) across pharmacological 1077 

conditions. Scatter plot (right) correlation to task performance for individual behavior sessions. 1078 

m, Cross-temporal (CT) performance to Expected Hit (left) across pharmacological conditions. 1079 

Scatter plot (right) correlation to task performance for individual behavior sessions. n, CT 1080 

performance to Expected CR (left) across pharmacological conditions. Scatter plot (right) 1081 

correlation to task performance for individual behavior sessions. Error bars = SEM. Scale bar = 1082 

20µm. *P<0.05, **P<0.01, ***P<1x10-4. n=4 animals, 29 T1, 26 T2 sessions for [f]; n=4 1083 

animals, 19 Ctl., 10 Mec., 11 Sco. sessions for [g-n]. 1084 
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 1085 

Extended Data Figure 1. Automated home cage training system. a, Mechanical design of 1086 

home-cage training system designed to support automated training of three individually housed 1087 

mice. b, Rotating daily timetable used for training three animals (1, 2, 3). c, Flow chart for 1088 

managing individual animals in the training system.  1089 
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 1091 

 1092 

Extended Data Figure 2. Reciprocal connections between perirhinal cortex and secondary 1093 

somatosensory cortex. Fluorescent micrographs of coronal sections showing retrograde labeling 1094 

of projection neurons between perirhinal cortex (CTB-647) and secondary somatosensory cortex 1095 

(CTB-488). Right panels show magnified view of indicated area in left panel (dotted rectangle). 1096 

Scale bars: 1mm (left panels), 0.2mm (right panels). 1097 
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 1099 

 1100 

Extended Data Figure 3. Chemogenetic inactivation of perirhinal cortex. a, Validation of 1101 

chronic inactivation of perirhinal cortex by Fos mRNA expression. Animals received Compound 1102 

21 in drinking water for up to 6 weeks. Fos mRNA was visualized using HCR-FISH. Examples 1103 

of hM4Di-mCherry+ neurons (yellow) with low Fos expression versus hM4Di-mCherry- 1104 

neurons (grey) with high Fos expression are shown. b, Cumulative distribution of Fos expression 1105 

measured by HCR-FISH in hM4Di-mCherry+ vs. hM4Di-mCherry- neurons. 74.9±3.0% of 1106 

neurons were hM4Di-mCherry+, n = 4 animals. Scale bar: 20 µm. 1107 
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 1109 

 1110 

Extended Data Figure 4. Performance curves for individuals in home cage training task. a, 1111 

Session performance across training for hM4Di- animals sorted by final training stage reached 1112 

after 84 sessions. Training was stopped prior to 84 sessions for some animals that reached T5. 1113 

The majority of hM4Di- animals passed T2. The noted animal (*) reached T4 at session 84. b, 1114 

Session performance across training for hM4Di+ animals sorted by final training stage reached 1115 

after 84 sessions. The majority of hM4Di+ animals failed to passed T2. 1116 
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 1118 

 1119 

Extended Data Figure 5. Sensory and motor variables throughout learning. a, Mean 1120 

whisking amplitude over the trial period averaged across training stages. b-c, Mean change in 1121 

whisker angle [b] and curvature [c] by sorted stimulus condition across training stages. d-e, 1122 

Mean lick rate through the trial period across training stages sorted by choice [d] or stimulus 1123 

speed [e]. Shaded regions = SEM. 1124 
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 1125 

Extended Data Figure 6. ROI selection across imaging sessions. Examples of ROIs identified 1126 

throughout the time course of training. ROIs were manually identified and segmented by 1127 

comparing structural images of native RCaMP1.07 fluorescence and images of ‘active’ neurons 1128 

through constrained non-negative matrix factorization (CNMF) of the image timeseries across 1129 

the training session. Structural images were used to identify all neurons (active and inactive) in 1130 

the session while the CNMF images helped to define boundaries of ROIs. Scale bar: 50µm. 1131 
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 1133 

Extended Data Figure 7. Population encoding of stimulus direction Prh versus S1 in expert 1134 

animals. Decoder performance on stimulus direction during Sample or Test periods using 1135 

activity T5 sessions from Prh or S1. S1 neural data was obtained from (ref. 28). Separate 1136 

decoders were trained and tested using Correct (Hit and Correct Rejection) or Error (False Alarm 1137 

and Miss) trials. Error bars = SEM. Red and gray bars = 95th percentile of shuffled distribution 1138 

on Error and Correct trials, respectively. 1139 
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 1141 

 1142 

Extended Data Figure 8. Alternate models produce different decoding performance of 1143 

direction and speed across learning. Decoding performance for direction of motion (red) and 1144 

speed (blue) of a downstream neuron that reads out the output layer of the autoencoder (logistic 1145 

regression, sci-kit learn). a, Results from an autoencoder trained to minimize only reconstruction 1146 

loss (Mean Squared Error, MSE). Direction and speed show very similar dynamics throughout 1147 

learning. b, Model with an extra term added in the loss function (cross-entropy loss, CE) to 1148 

minimize the classification error on direction of motion. The decoding performance of the 1149 

downstream neuron is higher for the direction of motion. c, Model with an additional term on the 1150 

loss function to limit the activity of the hidden layer in the autoencoder (L2-norm). This 1151 

configuration of network parameters is similar to Fig. 4b with the downstream neuron reading 1152 

out from the difference between the reconstructed output and the input. The model discards 1153 

information about speed and only keeps information about direction of motion. d, Same network 1154 

configuration as [c] with a sparsity penalty that is too large. The network discards information 1155 

about both speed and direction of motion. Error bars in all panels correspond to SEM across 1156 

independent simulations (n = 50).  1157 
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 1159 

 1160 

Extended Data Figure 9. Population coding of reward prediction during sample and test 1161 

periods and its relationship to stimulus coding. a, Linear decoder performance of sample 1162 

period activity to rewarded conditions across training. b, Linear decoder performance of test 1163 

period activity to rewarded conditions across training. c, Cross-condition performance of sample 1164 

period activity trained to rewarded conditions and tested on stimulus direction conditions across 1165 

training. d, Cross-condition performance of test period activity trained to rewarded conditions 1166 

and tested on stimulus direction conditions across training. e, Cross-condition performance of 1167 

sample period activity trained to rewarded conditions and tested on stimulus speed conditions 1168 

across training. f, Cross-condition performance of test period activity trained to rewarded 1169 

conditions and tested on stimulus speed conditions across training. Error bars = SEM. Red line = 1170 

95th percentile performance of the shuffled distribution.  1171 
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 1173 

Extended Data Figure 10. Validation of GRAB-Ach3.0. Z-scored fluorescence traces across 1174 

the trial period during T2 sessions in task trained animals expressing either GRAB-Ach3.0 or 1175 

GFP. n = 16 T2 sessions from 4 GRAB-Ach3.0 animals, 17 T2 sessions from 2 GFP animals.  1176 
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 1179 

Extended Data Figure 11. Task encoding of acetylcholine signals. a, Overview of covariate 1180 

representations and their corresponding task factors used in the GLM for acetylcholine signals 1181 

over six trials. b, Schematic of full and partial models used to calculate ∆AIC for individual task 1182 

factors.  1183 
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 1185 

 1186 

Extended Data Figure 12. Model of predictive map in Prh. Prh forms a model of task-1187 

relevant stimulus information through error learning. Differences in predicted stimulus features 1188 

elicit sensory prediction errors. Stimuls-reward associations emerge in a retrograde manner from 1189 

reward outcomes and generalize to similar stimulus-reward contingencies. Expected outcomes 1190 

are linked to experienced outcomes via a network space that is regulated by cholinergic 1191 

signaling.  1192 

  1193 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2023. ; https://doi.org/10.1101/2023.03.17.532214doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.532214
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUPPLEMENTARY TEXT 1194 

S1. Home-cage task training 1195 

In this study, two variations of the tactile working memory task were used to study the role of 1196 

Prh in abstract sensory learning. To assay the effects of inactivating Prh on behavior, the home 1197 

cage version of the task was designed to train animals in an unbiased manner. Task training 1198 

occurred in a training module consisting of a narrow passageway that restricted movement of 1199 

freely moving animals so that head position was consistent throughout training for reliable 1200 

delivery of whisker stimulus and water reward (Extended Data Fig. 1a). For whisker stimulus, 1201 

commercial grade sandpaper (3M; P100) was mounted along the outside edge of a 6 cm diameter 1202 

rotor, attached to a stepper motor (Zaber) to deflect the whiskers. This was mounted onto a linear 1203 

stage (Zaber) to place the rotor within whisker reach. 1204 

 For lick sensing and water delivery, an angled dispensing needle (75165A22; McMaster-1205 

Carr) served as a water port. This was attached to a capacitive touch sensor (AT42QT1010; 1206 

SparkFun) that dispensed 5-7 µL of water through a miniature solenoid valve (LHDA0531115H; 1207 

The Lee Company). Unlike head-fixed behavior (Supplementary Text S2), persistent and 1208 

impulsive licking was prevalent during freely moving behavior. Attempts to train home-cage 1209 

animals to learn a go/no go stimulus-reward contingency were not successful due to impulsive 1210 

licking (data not shown). For these reasons, a two-alternative forced choice (2AFC) task 1211 

structure using two lick ports was employed for home-cage behavior. To further discourage 1212 

impulsive licking, lick spouts were mounted onto a linear actuator (L12-P; Actuonix) and only 1213 

presented to the animals during the report period. This differed from head-fixed training in which 1214 

lick spouts were fixed always in reach of the animal. Air puffs were controlled using a 12V 1215 

solenoid (EV-2-12; Clippard). Task training was performed using a custom written LabVIEW 1216 

software (National Instruments) to control hardware and a data acquisition interface (USB-6008; 1217 

National Instruments) for measuring licks, water delivery, and air puff delivery.  1218 

 The task was designed for live-in conditions in which trials were self-initiated and task 1219 

parameters automatically adjusted based on performance. A single training module was 1220 

connected to three cages, each containing a singly-housed mouse. Mice were singly-housed to 1221 

avoid social interactions that would interfere with equal access to task training. Head-fixed mice 1222 

were similarly singly-housed to minimize potential damage to their implants. Cages were 1223 

connected via passageways to a common meeting chamber. For each passageway, access to the 1224 

training module via the meeting chamber was regulated by mechanical doors. These doors were 1225 

controlled by servos operated by an Arduino microcontroller. Door closing was trigged by an 1226 

infrared beam break sensor placed between the door and home cage in order to ensure that the 1227 

door did not close while the animal was in the training module.  1228 

 Access to home-cage training was scheduled similarly to head-fixed task conditions to 1229 

ensure equivalent water deprivation periods, motivation levels, session duration, and trial 1230 

numbers.  1231 

Each animal gained daily access to the training module for two, two-hour sessions (Extended 1232 

Data Fig. 1b). To ensure that each animal performed the task across all dark portions of light-1233 

dark cycle, the scheduled animal order was rotated daily. At the end of each session, the training 1234 

module break beam sensor was deactivated to prevent trial initiation. A continuous train of air 1235 

puffs was delivered into the chamber signaling the animal to exit and for the door to close behind 1236 

them (Extended Data Fig. 1c). A USB radio frequency identification (RFID) reader above the 1237 

meeting chamber was used to ensure that the correct animal accessed the training module at the 1238 

properly scheduled time. 1239 
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 1240 

S2. Head-fixed task training 1241 

The head-fixed version of the task was designed to reliably image neuronal activity during 1242 

learning under highly consistent, well-controlled stimulus conditions. A go/no go stimulus-1243 

reward contingency was employed to characterize activity patterns related to stimulus 1244 

information with and without reward associations. Similar to home-cage training, the task was 1245 

performed using a custom written LabVIEW software (National Instruments) to control 1246 

hardware and a data acquisition interface (USB-6008; National Instruments) for measuring licks, 1247 

water delivery, and air puff delivery. A water port was attached to a capacitive lick sensor 1248 

(AT42QT1010; SparkFun) that dispenses 5 to 6 µL of water through a miniature solenoid valve 1249 

(0127; Buekert). For the rotation stimulus, commercial grade sandpaper (3M; roughness: P100) 1250 

was mounted along the outside edge of a 6 cm diameter rotor, attached to a stepper motor 1251 

(Zaber) to deflect the whiskers which was mounted onto a linear stage (Zaber) to place the rotor 1252 

within whisker reach.  1253 

 Given the time demands of the experiment for operating the two-photon microscope 1254 

through learning (~70 sessions, 2 sessions per day, 7 days per week), ensuring successful 1255 

training was a priority for animals undergoing imaging. Given the natural variability in learning 1256 

across individual animals, experimenters manually adjusted a range of behavioral parameters 1257 

designed to reinforce correct choice behavior (Supplementary Text S4). 1258 

 1259 

S3. Training stages 1260 

The task settings defining each training stage in the home cage (Table 1) and head-fixed (Table 1261 

2) training task were largely similar with the following exceptions. For the head-fixed task, the 1262 

proportion of non-match versus match trials were gradually changed from 0.9/0.1 to 0.5/0.5 1263 

(non-match/match) over the course of the first 5 T1 sessions. The purpose of this was to 1264 

acclimate the animals to licking for reward and to avoid miss trials by providing a high 1265 

proportion of rewarded (non-match) stimulus trials and gradually exposing animals to the non-1266 

rewarded (match) stimulus trials. For the home cage task, the proportion of non-match versus 1267 

match trials were set to 0.5/0.5. During early T1 sessions, the maximum consecutive trials 1268 

belonging to either match or non-match stimulus was set to 1. This meant that water reward 1269 

alternated between each lick port in order to acclimate the animal to licking to each port. The 1270 

target spout alternated between trials through four sub-stages which taught animals how to 1271 

receive rewards and gradually introduced the moving parts of the task. In the first sub-stage, the 1272 

texture was positioned against the training module but did not provide directional stimuli. 1273 

Instead, animals were able to trigger a trial and lick when an audible tone was played in order to 1274 

receive a water reward. With consistent lick responses, the delay between triggering a trial and 1275 

the tone indicating the report period was increased from 100ms to 6s, approximating the time 1276 

course of a trial with two stimuli and a 2s delay. In the second sub-stage, the sample and test 1277 

stimuli were presented and the report period was still indicated with a tone. This tone was 1278 

removed during the third sub-stage. The fourth sub-stage introduced linear movement of the 1279 

texture, withdrawing it at the end of a trial and moving it to presentation position for the sample 1280 

and test periods. The maximum number of consecutive trials with the same target spout was then 1281 

increased to 3 in the fifth sub-stage to randomize the stimulus conditions. 1282 

 During T4, the delay between the sample and test stimulus was gradually increased 1283 

through a progression of sub-stages. An initial delay was used at the beginning of the session.  1284 

Behavioral performance was measured every 15 trials. The delay was increased by a defined 1285 
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increment if performance exceeded >85% correct (d’ > 2.07) over the past 15 trials up to a 1286 

maximum of 2 seconds.  If the overall performance for the session was d’>1.68, the animal 1287 

advanced to the next T4 sub-stage in which the starting delay and increment was greater than that 1288 

used in previous session.  The rotor was withdrawn once animals could begin sessions with 1289 

delays of 2 seconds. In general, head-fixed animals could readily adapt to the rotor withdrawal 1290 

during the delay period. Initial piloting of the same training progression during home-cage task 1291 

training suggested that animals had difficulty with adapting to this transition. For this reason, the 1292 

training protocol in the home-cage task was modified to include a gradual withdrawal of the 1293 

rotor occurring concurrently with the gradual increase in delay period.  1294 

 During T5, delays were randomly varied between 2, 3, and 4 seconds for head-fixed 1295 

animals to examine sequential activity across varying delay periods.  In home-cage animals, the 1296 

delay was fixed at 2 seconds. Finally, slow speed stimulus conditions were included for head-1297 

fixed task in order to measure activity related to relevant and irrelevant stimulus features but 1298 

were not included during the home-cage task since the motivation of the latter was to broadly 1299 

assay the dependence of Prh on task learning. 1300 

 1301 

S4. Reinforcing correct choice 1302 

Due to the complexity of task conditions and stimuli, we observed that individual animals 1303 

adopted a range of incorrect choice strategies early during task training. Occasionally, behavioral 1304 

lapses were also observed in which animals demonstrated correct choice strategies across 1305 

extended trial periods but then reverted to incorrect choice strategies. Incorrect choice strategies 1306 

were categorized as report bias, primacy bias, and recency bias. A set of task parameters were 1307 

included in the training protocol to identify and correct for these biases without changing the 1308 

stimulus-reward contingency (Table 3).  1309 

 For go/no-go behavior under head-fixed conditions, a report bias was defined as 1310 

persistent licking of the lick port regardless of stimulus condition. For 2AFC version of the task 1311 

used in the home cage training system, persistent licking of one of two lick ports regardless of 1312 

stimulus condition was considered a report bias. Report bias primarily contributed to poor task 1313 

performance early in training during T1 and was also occasionally observed at the beginning of 1314 

behavior sessions in trained mice.  For the go/no go head-fixed task, report biases were defined 1315 

by a high fraction of total hit and false alarm trials. For 2AFC home cage task, report biases were 1316 

defined a high fraction of hit and false alarm trials attributed to one of the two lick ports. 1317 

Depending on the severity of the report bias, two corrective strategies were adopted.  The first 1318 

strategy is the use of punishment to discourage licking of the incorrect stimulus condition. 1319 

Punishment consisted of a combination of time out and air puffs to the face. Initially introduced 1320 

punishment was mild and gradually became more severe with longer time outs and multiple air 1321 

puffs considered as more severe punishment. Tolerance for punishment can vary for individual 1322 

animals (data not shown). For both task conditions, animals disengaged from the task if 1323 

punishment was too aversive, resulting in miss trials.  Punishment levels are reduced if misses 1324 

increase. In addition to adjusting punishment levels, the probability of stimulus conditions was 1325 

also adjusted to increase the frequency of the incorrect stimulus condition in order for animals to 1326 

“practice” the correct response. Typically, non-match and match stimulus conditions were 1327 

presented at 50% probability. This was increased up to 80% for the incorrect stimulus condition 1328 

depending on the severity of the report bias. 1329 

 A primacy stimulus bias represented incorrect choice strategies in which the animal 1330 

responded based on whether the sample stimulus was A or P. In contrast, a recency stimulus bias 1331 
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represented incorrect choice strategies in which the animal responded based on whether the test 1332 

stimulus was A or P. These biases were operationally defined as differences in performance 1333 

between the two stimulus conditions belonging to the same category (AP vs. PA for non-match, 1334 

AA vs. PP for match). Typically for each stimulus category, one of the two possible stimulus 1335 

conditions is presented with 50% probability with respect to the other. To correct for primary or 1336 

recency bias, the probability of stimulus conditions belonging to the same category was adjusted 1337 

to increase the frequency of the incorrect stimulus condition in order for animals to “practice” 1338 

the correct response.   1339 

  1340 
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 Performance Criteria NM/M PA? Fast/Slow Delay (ms) Withdraw (cm) 
T1 d’>0.45, 2 sessions 0.5/0.5 No 1/0 100ms 0 
T2 d’>1.68, 2 sessions 0.5/0.5 No 1/0 100ms 0 
T3 d’>1.68, 2 sessions 0.5/0.5 Yes 1/0 100ms 0 
T4 d’>1.68 / 2.05 (skip) 0.5/0.5 Yes 1/0 100-2000 (100 inc.) 0 
 d’>1.68 / 2.05 (skip) 0.5/0.5 Yes 1/0 200-2000 (200 inc.) 0 
 d’>1.68 / 2.05 (skip) 0.5/0.5 Yes 1/0 300-2000 (300 inc.) 0 
 d’>1.68 / 2.05 (skip) 0.5/0.5 Yes 1/0 400-2000 (400 inc.) 0.1-1.5 (0.1 inc.) 
 d’>1.68 / 2.05 (skip) 0.5/0.5 Yes 1/0 500-2000 (500 inc.) 0.2-1.5 (0.2 inc.) 
 d’>1.68 / 2.05 (skip) 0.5/0.5 Yes 1/0 1000-2000 (500 inc.) 0.3-1.5 (0.3 inc.) 
 d’>1.68 / 2.05 (skip)  0.5/0.5 Yes 1/0 1500-2000 (500 inc.) 0.6-1.5 (0.3 inc.) 
 d’>1.68 / 2.05 (skip)  0.5/0.5 Yes 1/0 2000  0.9-1.5 (0.3 inc.) 
 d’>1.68 0.5/0.5 Yes 1/0 2000 1.2-1.5 (0.3 inc.) 
T5  0.5/0.5 Yes 1/0 2000 1.5 
Table 1. Home-cage task training stages. Summary of task settings utilized at each training 1341 

stage. Performance criteria indicates the behavioral performance necessary to graduate to the 1342 

next training stages. NM/M indicates the proportion of stimulus conditions belonging to each 1343 

category. PA indicates whether that stimulus condition was included in the stimulus set. 1344 

Fast/Slow indicates the proportion of speed stimulus conditions. Delay indicates the starting and 1345 

ending delay period length along with the interval in which the delay was increased. Withdraw 1346 

indicates the distance in which the rotor was withdrawn during the delay period along with the 1347 

increments of increase.  1348 

  1349 
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 1350 

  1351 

 Performance criteria NM/M PA Fast/Slow Delay (ms) Withdraw 
(cm) 

T1 d’>0.45, 2 sessions 0.9/0.1 to 0.5/0.5 
over 5 sessions 

No 0.95/0.05 100 0 

T2 d’>1.68, 2 sessions 0.5/0.5 No 0.95/0.05 100 0 
T3 d’>1.68, 2 sessions 0.5/0.5 Yes 0.95/0.05 100 0 
T4 d’>1.68 0.5/0.5 Yes 0.95/0.05 100-2000 (100 inc.) 0 

d’>1.68 0.5/0.5 Yes 0.95/0.05 200-2000 (200 inc.) 0 
d’>1.68 0.5/0.5 Yes 0.95/0.05 300-2000 (300 inc.) 0 
d’>1.68 0.5/0.5 Yes 0.95/0.05 400-2000 (400 inc.) 0 
d’>1.68 0.5/0.5 Yes 0.95/0.05 500-2000 (500 inc.) 0 
d’>1.68 0.5/0.5 Yes 0.95/0.05 1000-2000 (500 inc.) 0 
d’>1.68 0.5/0.5 Yes 0.95/0.05 1500-2000 (500 inc.) 0 
d’>1.68 0.5/0.5 Yes 0.95/0.05 2000  1.5 

T5  0.5/0.5 Yes 0.75/0.25 2000/3000/4000 
(0.5/0.25/0.25) prob. 

1.5 

Table 2. Head-fixed task training stages. Summary of task settings utilized at each training 1352 

stage. Performance criteria indicates the behavioral performance necessary to graduate to the 1353 

next training stages. NM/M indicates the proportion of stimulus conditions belonging to each 1354 

category. PA indicates whether that stimulus condition was included in the stimulus set. 1355 

Fast/Slow indicates the proportion of speed stimulus conditions. Delay indicates the starting and 1356 

ending delay period length along with the interval in which the delay was increased. Withdraw 1357 

indicates the distance in which the rotor was withdrawn during the delay period.  1358 
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 1360 

Task Goal  Criteria Adjustment 
Head-fixed Increase punishment to correct for 

port bias.  
Manual 
>70% (hit + false alarm) 

Manual 
2-10s time out 
1-10 air puffs 

Head-fixed Decrease punishment to reduce 
disengagement 

Manual 
20-50% miss  

Manual 

Home cage Increase punishment to correct for 
port bias.  

50 trial sliding window 
<70% correct (d’ ~1.05)  

Increase 1s time out (10s max) 
For >7s time out, increase 
1 air puff (5 max) 

Home cage Decrease punishment to reduce 
disengagement 

50 trial sliding window 
>50% miss 
 

Decrease 2s time out and 2 air 
puffs  

Head-fixed Adjust stimulus probability to 
correct for report biases  

Manual 
>70% (hit + false alarm) 

Manual 
Up to 0.35/0.65 (NM/M) 

Home cage Adjust stimulus probability to 
correct for report biases  

20 trial sliding window 
X=% trials favored port  
Y=% trials neglected port 
Moderate bias: X-Y>0.25  
Severe bias: X-Y>0.5 

X=stim. of favored port 
Y=stim. of neglected port 
moderate: 0.35/0.65 (X/Y)  
severe: 0.2/0.8 (X/Y) 

Both Adjust stimulus probability to 
correct for primacy or recency 
stimulus bias 

20 trial sliding window 
For non-match stim: 
X = % correct fav. stim  
Y = % correct NM stim 
For match stim: 
X = % correct fav. stim  
Y = % correct M stim 
moderate: (X/Y-0.5)>0.55  
severe: (X/Y-0.5) >0.6 

X=favored stim.  
Y=neglected stim. 
moderate: 0.4/0.6 (X/Y) 
severe: 0.3/0.7 (X/Y) 

Table 3. Training parameters to reinforce correct choice. 1361 

 1362 
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