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Purpose: Superior limbic keratoconjunctivitis (SLK) is a bilateral, chronic inflammatory

disease that recurs for up to several years; however, the fundamental processes

involved in its pathogenic mechanisms remain unknown. We aimed to investigate

the metabolomic alterations in the tear fluids of patients with superior limbic

keratoconjunctivitis (SLK) compared with those of healthy volunteers (Ctrl group).

Methods: We performed a cross-sectional study involving 42 subjects. Tear fluid was

taken from one eye of 24 SLK patients (40.13 ± 14.55 years, 83.33% female) and

18 healthy volunteers (Ctrl, 39.89 ± 9.2 years, 72.22% female) using Schirmer strips.

After the liquid extraction of tear metabolites, samples were infused into the QE HFX

Orbitrap mass spectrometer in both positive and negative ion mode. Metabolites were

quantitatively analyzed and matched with entries in the HMDB database. Metabolic

differences between the SLK group and the control group were identified based

on multivariate statistical analysis. Open database sources, including SMPDB and

MetaboAnalyst, were used to identify metabolic pathways.

Results: Among 179 metabolites retained for annotation, 133 metabolites were

finally identified, among which 50 were found to be significantly changed in SLK

patients. Of these 50 metabolites, 31 metabolites significantly increased and 19

metabolites decreased in SLK patients. The altered metabolites are mainly involved

in α linolenic acid and linoleic acid metabolism, ketone body metabolism, butyrate

metabolism, mitochondrial electron transport chain, carnitine synthesis, and so

on. The most significantly changed pathway was linoleic acid metabolism. To

explore the utility of tear biomarkers, a model combining 9 metabolites (phenol,

ethyl glucuronide, eicosapentaenoic acid, 12-keto-leukotriene B4, linoleic acid,

hypoxanthine, triethanolamine, 1-nitrohexane, and terephthalic acid) was selected as a

candidate biomarker.

Conclusion: The results reveal that SLK has a specific metabolomic profile, of which

some key elements can serve as potential biomarkers of SLK for diagnostic and

prognostic purposes. The findings of this study are novel and provide a basis for further

investigations of the mechanism of SLK.

Keywords: metabolomics, tear fluids, superior limbic keratoconjunctivitis, liquid chromatography with tandem

mass spectrometry (LC-MS/MS), metabolites
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INTRODUCTION

Superior limbic keratoconjunctivitis (SLK) is a bilateral, chronic
inflammatory disease that affects the upper bulbar conjunctiva,
superior limbus and adjacent cornea (1, 2). Sixty years have
passed since SLK was first described by Theodore in 1961,
and increasing reports have revealed the association of SLK
with other diseases, such as dry eye disease (DED) (3),
thyroid disease (4), conjunctivochalasis (2), and so on. Although
there have been some aetiological hypotheses and meaningful
explorations, the exact pathogenesis of SLK is unknown.
SLK has been characterized by accumulations of mast cells,
inflammatory mediators (including stem cell factor, thymic
stromal lymphopoietin and matrix metalloproteinases), and
tear cytokines (such as monocyte chemoattractant protein-1),
which are arousing the interest of researchers (5–7). However,
targeted treatment based on these hypotheses has poor effects,
and the aetiological factors and mechanisms of the disease are
still unknown.

Tear fluid is composed of proteins, carbohydrates, lipids,
electrolytes, and some small organic molecules, which play great
roles in protecting and maintaining ocular surface normality. In
turn, molecular alterations of tear fluids would provide a great
deal of molecular information that is useful for the diagnosis,
prognosis, and treatment of ocular surface diseases (8–11).
Investigation at the molecular level is the most direct approach
to exploring the development mechanism and providing reliable
evidence. In recent years, exploring disease biomarkers from
tears has been of increased interest for many researchers,
especially by characterizing the proteomic and metabolomic
changes in the tears of different diseases (12–16).

Metabolomics is focused on a comprehensive analysis of
metabolites in a biological system and metabolic changes in
response to pathophysiological stimuli, genetic modifications
and/or environmental perturbations (12). The main analytical
techniques adopted are nuclear magnetic resonance (NMR)
spectroscopy, gas chromatography-tandem mass spectrometry
(GC–MS), and liquid chromatography-tandem mass
spectrometry (LC–MS/MS). Metabolomics has been widely used
to assess biological systems, providing molecular information
related to phenotypes since metabolites are the ultimate product
of gene, mRNA and protein activity (17). Moreover, in terms
of the high-throughput profiling of the whole metabolome in
a disease condition, identifying biomarkers becoming possible
(18, 19). With advances in technology, untargeted LC–MS
metabolomic analysis of tear fluid has been applied in clinical
and animal studies of several eye diseases, such as keratoconus
(12, 15, 20), dry eye (13, 21), and multiple sclerosis (16). Studies
of metabolomics used in eye diseases have been summarized
in a recent review article (12). As the reviewers suggested, to
date, possible biomarker candidates for dry eye disease are
lipid metabolites and androgens, and those for keratoconus are
cytokeratins, urea, citrate cycle, and oxidative stress metabolites.
In addition, palmitoylcarnitine, sphingolipids, vitamin-D-related
metabolites, and steroid precursors may be related to glaucoma,
and the dysregulation of amino acid and carnitine metabolism

is critical in the development and progression of diabetic
retinopathy (12).

In the present study, we analyzed tear samples obtained
from a clinical cohort of 42 subjects and investigated the
tear metabolomic differences between SLK patients and healthy
controls. We aimed to identify the metabolites in tears that
are pathologically relevant to SLK. In addition, we constructed
a potential metabolite biomarker model to assist us in
distinguishing SLK from a healthy status.

MATERIALS AND METHODS

Study Population
A total of 24 SLK patients and 18 healthy subjects were recruited
from October 2020 to March 2021 at Zhongshan Ophthalmic
Center, a tertiary eye hospital at Sun Yat-Sen University in
Guangzhou, China. All subjects were selected to obtain age-
and sex-matched study cohorts. SLK patients were diagnosed
according to the following criteria: (1) fluorescein staining
at the superior limbus and adjacent conjunctiva above the
limbus; (2) superior bulbar conjunctiva hyperaemia and/or
conjunctivochalasis; (3) papillae and hypertrophy in the tarsal
conjunctiva of the upper lid; and (4) punctate or confluent cornea
staining (2). Exclusion criteria included any of the following
conditions: (1) rheumatism, dry syndrome, or other diseases
affecting tear secretion; (2) a history of eye topical therapy or
use of contact lenses within the previous 3 months; or (3) ocular
diseases within the previous 6 months. Both eyes were evaluated,
but one eye per subject was randomly chosen for statistical
analysis. The study was conducted according to the Declaration
of Helsinki (World Medical Association, 2013) and approved by
the Institutional Review Board of the Zhongshan Ophthalmic
Center. All patients were informed about the procedures and
provided written informed consent to participate in the study.
Basic demographic information, such as age, sex, and medical
history, was recorded. Ocular surface examination for every
subject included visual acuity, intraocular pressure, slit lamp
examination, tear breakup time (TBUT), corneal staining and
Schirmer I test (SIT). The clinical and demographic features of
the enrolled subjects are summarized in Table 1.

Sample Collection
Tear samples were collected by Schirmer strips (Tianjin Jingming
New Technological Development Co., Ltd, China) as we reported
previously (22). The Schirmer strip was placed over the temporal
one-third of the lower eyelid for 5min. Then, the strip was
removed from the eye, and the length of the moistened area
was measured using the millimeter scale on the strip. After the
SIT, every filter strip was placed in a single 1.5mL microtube
(Axygen R©, Jiangsu, China) and stored at−80◦C.

Metabolite Extraction and LC–MS/MS
Analysis
The parts of Schirmer strips that were imbibed by tears were
cut into 2–3mm paper pieces and transferred into GV 0.22µm,
Ultrafree R©-MC Filter Devices (Merck Millipore Ltd, Ireland).
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TABLE 1 | Demographic characteristics of study subjects in the SLK and Ctrl

groups.

Feature Ctrl SLK p value

(n = 18) (n = 24)

Sex (# female, %) 13, 72.22% 20, 83.33% 0.46

Age (years) 39.89 ± 9.24 40.13 ± 14.55 0.96

FBUT (S) 8.28 ± 2.02 3.88 ± 2.35 0.00

SIT (mm) 7.5 (4.5) 6.0 (8.63) 0.37

Tear volume (µl) 5.6 (4.38) 4.90 (7.7) 0.22

FBUT, fluorescein breakup time; SIT, Schirmer I Test; p value less than 0.05 was

considered statistically significant.

Each filter cup was prefilled with ultra-pure grade water 20 times
the volume of tears in Schirmer strips [calculated from 7 µl
tears/10mm wetted Schirmer test paper (23)]. Each device was
placed vertically on an ice box for 30min and then centrifuged
at 13,800 × g for 15min at 4◦C. Then, 100 µl of the filtrate was
transferred to an EP tube. After the addition of 400 µl of extract
solution (acetonitrile: methanol = 1:1, containing isotopically
labeled internal standard mixture), the samples were vortexed for
30 s, sonicated for 10min in an ice-water bath, and incubated
for 1 h at −40◦C to precipitate proteins. Then, the sample was
centrifuged at 13,800 × g for 15min at 4◦C. The resulting
supernatant was transferred to a fresh glass vial for analysis. The
quality control (QC) sample was prepared by mixing an equal
aliquot of the supernatants from all of the samples. Seven QC
samples were injected in a random order.

LC–MS/MS analyses were performed with an integrated
platform (Guangdong Magigene Biotechnology Co., Ltd.
Guangzhou, China), using an ultra-high performance liquid
chromatography (UHPLC) system (Vanquish, Thermo Fisher
Scientific) with a UPLC BEHAmide column (2.1mm× 100mm,
1.7µm) coupled to a Q Exactive HFX mass spectrometer
(Orbitrap MS, Thermo). The mobile phase consisted of 25
mmol/l ammonium acetate and 25 mmol/l ammonia hydroxide
in water (pH = 9.75) (A) and acetonitrile (B). The autosampler
temperature was 4◦C, and the injection volume was 2 µl.

A QE HFX mass spectrometer was used for its ability to
acquire MS/MS spectra in information-dependent acquisition
(IDA) mode in the control of the acquisition software (Xcalibur,
Thermo). In this mode, the acquisition software continuously
evaluates the full-scan MS spectrum. The electrospray ionization
(ESI) source conditions were set as follows: a sheath gas flow rate
of 30 Arb, Aux gas flow rate of 25 Arb, capillary temperature of
350◦C, full MS resolution of 60,000, MS/MS resolution of 7500,
collision energy of 10/30/60 in NCE mode, and spray voltage of
3.6 kV (positive) or−3.2 kV (negative).

Data Processing and the Identification of
Metabolites
The raw data were converted to the mzXML format using
ProteoWizard and processed with an in-house program, which
was developed using R and based on XCMS, for peak detection,
extraction, alignment, and integration. MS/MS spectra of 6

metabolites were provided in the Supplementary Materials

as representative spectra (Supplementary Figure 1). The
metabolites were identified by matching MS/MS spectra with an
in-house MS2 database. The cut-off for annotation was set at
0.3. All identified metabolites were matched with entries in the
Human Metabolome Database (HMDB, http://www.hmdb.ca),
Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.
kegg.jp) and Small Molecule Pathway Database (SMPDB, https://
smpdb.ca/).

Metabolomics and Statistical Analysis
All statistical analyses were performed using SPSS software
(version 26.0, IBM, Armonk, NY, USA). Normality tests to
numerical data were applied first. The results were expressed
as the mean ± standard deviation or median (interquartile
range) for numerical variables and as the number (percent)
for categorical variables. The comparison of the mean of
numerical variables between the groups was assessed using
Student’s t-test or Mann-Whitney U-test as appropriate. For
categorical variables, differences between groups were analyzed
using Fisher’s exact test. P-values less than 0.05 were considered
statistically significant.

All metabolites were normalized by log2 transformation
before analysis. Principal component analysis (PCA), orthogonal
partial least squares discriminant analysis (OPLS-DA) and
volcano plotting were performed to reveal the data structure
and identify metabolic differences in Simca-P V.14.1 (Umetrics
AB). Metabolites with (1) an MS2 score of >0.8, (2) a variable
importance in the projection (VIP) of >1, and (3) a P of <0.05
(t-test) were regarded as differentially abundant. GraphPad Prism
8 (GraphPad Software, Inc., 2018, La Jolla, CA, USA) was used
to plot the box-and-whisker plots. MetaboAnalyst 5.0 (http://
www.metaboanalyst.ca) was used to perform pathway topology
analysis and generate operating characteristic curves (ROCs)
(24), aiming to identify themost relevantmetabolic pathways and
assess the potential combined biomarker model.

RESULTS

Demographic Data and Ocular Surface
Parameters
A total of 42 subjects were enrolled in this study, with 24 patients
in the SLK group and 18 volunteers in the healthy control group
(Ctrl). The demographic data and ocular surface parameters are
shown in Table 1. The sex proportions and ages showed no
significant difference between groups (P = 0.398 and P = 0.955,
respectively). The patients in the SLK group showed lower values
of fluorescein breakup time (FBUT) than those in the healthy
control group (P = 0.000). Considering challenges in metabolite
extraction and instrumental sensitivity (25), only subjects with
appropriate Schirmer I test (SIT) scores were included in the
study, so there was no difference in SIT scores or tear volume
in Schirmer strips between the two groups (P = 0.727 and P =

0.515, respectively).
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FIGURE 1 | Metabolomics analysis of tear samples from patients with superior limbic keratoconjunctivitis (SLK) compared with the controls (Ctrl). (A) Principal

component analysis (PCA) score plots of Ctrl (blue), SLK (red), and quality control (QC, green). The X-axis (t[1]) and Y-axis (t[2]) indicate the first and second principal

components, respectively. (B) Orthogonal projections to latent structures-discriminate analysis (OPLS-DA) score plots for the Ctrl (blue) and SLK (red) groups. The

X-axis (t[1]) and Y-axis (to[1]) indicate the predictive and orthogonal directions, respectively. (C) Volcano plots highlighting the tear metabolites that increased (red) or

decreased (blue) in SLK tear fluids compared to the control group, with p < 0.05, log2FC >1 or <-1. (D) Hierarchical cluster analysis and heatmap of the differentially

expressed metabolites from the SLK and Ctrl groups. The color code in the heatmap represents the relative metabolite abundance: red and blue colors indicate

increased and decreased levels of each metabolite in the SLK group versus the Ctrl group, respectively.

Overall Metabolites of Tear Samples
Through data processing and identification ofMS peaks, a total of
179metabolites were retained with a cut-off of 0.3 for annotation,
including 99 metabolites derived from positive ionization
modes and 89 metabolites derived from negative ionization
modes. Ensuring the confidence of annotated metabolites, 133
metabolites, including 71 metabolites in positive ion mode and
62 metabolites in negative ion mode, with an MS2 score of >0.8
were finally identified in tears in the study. These metabolites
were selected for further analysis, with part having no precedence
reports in the literature (8, 26).

Metabolomic Profiling Differences
Between the SLK and Ctrl Groups
The metabolomic profiles of the two groups were first
compared by means of principal component analysis (PCA),
and for exploring the stability and reliability of the data,
QC samples were contained. As shown in Figure 1A, PCA
revealed the internal structure of the data and indicated a
distinct separation among the SLK, Ctrl, and QC groups. The
QC samples clustered tightly together indicating high quality
of the data. The samples were within the 95% confidence
interval (CI). Furthermore, OPLS-DA showed more reliable

differential metabolite information between SLK and Ctrl tears
(Figure 1B). All the samples were within the 95% CI. On
the basis of volcano plots, 31 metabolites were significantly
increased and 19 were decreased in the SLK group compared
with the control group (Figure 1C, p < 0.05, log2FC > 1
or <-1, VIP > 1). To further understand the alterations
in metabolites between the two groups, we used a heatmap
to visually represent the differentially abundant metabolites.
The results showed correct sample group clustering and the
dendrogram structure by Euclidean distance and resulted in two
main clusters, relating to the compared samples of the SLK
and Ctrl groups (Figure 1D). These data analyses confirmed
the existence of significant differences in the metabolic profile
between the two groups.

Using the model that was optimized at 2 principal
components, with R2Y = 0.986 and Q2 = 0.961, we employed
the VIP score to help select differential metabolites because
higher values of VIP indicate metabolites that are more
important to classification (Supplementary Table 1). Combined
with the VIP and P-values, we identified 50 differential
metabolites that changed significantly, contributing to the
separation, 32 metabolites in positive ion mode and 18
metabolites in negative ion mode (Figure 2). According
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FIGURE 2 | Boxplots show significantly altered metabolites in the tears of SLK patients. Compared with Control subjects, 19 decreased metabolites and 31 increased

metabolites represented by relative expression in the boxplot (SLK vs. Ctrl: P < 0.05). Specifically, for better visualization of box plots in this analysis, the expressions

of the metabolites was converted into log2(x + 1) values and a different Y-axis scales and range were applied in (A,B). (A) Metabolites with maximum converted

values less than 1 [log2(x + 1) ≤ 1], (B) Metabolites with maximum converted values more than 1 [log2(x + 1) > 1]. Both figures present increased metabolites in the

left [20 in (A), 11 in (B)] and decreased metabolites in the right [7 in (A), 12 in (B)], separated by two tick intervals.

to the fold change, 31 metabolites were significantly
increased in SLK patients. In contrast, the levels of the
other 19 metabolites were significantly decreased in the
SLK group.

Metabolite Set Enrichment and Pathway
Analysis
For the interpretation of differentially expressed metabolites and
further investigation of the most significant metabolic pathways
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FIGURE 3 | Metabolite set enrichment and pathway analysis of changed metabolites in SLK tear fluids. By MetaboAnalyst (http://www.metaboanalyst.ca), 50

significantly changed metabolites were subjected to metabolite set enrichment analysis (A) and to pathway analysis (B). The main involved metabolic processes were

noted with varying color according to the significance of each metabolite.

that may be involved in the pathophysiological mechanism
of SLK, 50 significantly changed metabolites were subjected
to set enrichment and pathway analysis. Figure 3 shows the
metabolite set enrichment and metabolic pathways according to
their biologically meaningful metabolite sets or pathway impact
by selected databases. These changed metabolites are mainly
involved in α linolenic acid and linoleic acid metabolism, ketone
body metabolism, butyrate metabolism, mitochondrial electron
transport chain, carnitine synthesis, oxidation of branched chain
fatty acids, phytanic acid peroxisomal oxidation, citric acid
cycle, and so on. The most significant pathway was linoleic
acid metabolism. Both linoleic acid (LA), which has a high
impact on the pathway, and eicosapentaenoic acid (EPA),
another significantly altered metabolite, are associated with
the biosynthesis and metabolism of the unsaturated fatty acid
pathway. Notably, LA and EPA in the pathway were significantly
decreased, indicating the potentially changed activity of the two
metabolism pathways and their associated function in the process
of SLK.

Potential Biomarker Screening Associated
With the ROC Curve
Receiver operating characteristic (ROC) curve analysis is
generally considered to be the gold standard for the assessment
of biomarker performance. Based on VIP, P-values, fold change,
peak intensities and literature reviews, 9 metabolites were
manually selected and identified as potential biomarkers capable
of classifying SLK with high sensitivity (true-positive rate)

and specificity (true-negative rate). As shown in Figure 4,
the areas under the ROC curves (AUCs) for phenol, ethyl
glucuronide, EPA, 12-keto-leukotriene B4, LA, hypoxanthine,
triethanolamine, 1-nitrohexane, and terephthalic acid were 1, 1,
0.995, 0.986, 0.972, 0.972, 0.963, 0.958, and 0.914, respectively.
Furthermore, an ROC curve-based biomarker model was
established to evaluate the predictive power of the combined
9 metabolites. The cumulative ROC curve showed that the
AUC value was 1, which gives the maximum confidence
of differentiation and distinguishing SLK patients from Ctrl
subjects. Moreover, the predicted class probability, after a 100-
fold cross validation test, highlights 100.00% of samples correctly
classified as SLK patients or as Ctrl subjects. Thus, one or more of
these 9 metabolites can serve as potential biomarkers associated
with SLK.

DISCUSSION

SLK is an ocular surface disorder of which the pathogenesis
is not fully understood. Previous reports suggested that the
underlying mechanical pathogenesis is likely a combination of
mechanical injury, tear film instability, and inflammatory and
autoimmune etiology (2) on the basis of investigations of patients’
tear fluids or surgical removal of conjunctival tissues. For
example, no galectin-3 expression in the abnormal conjunctiva
areas of patients with SLK indicates a disturbance of mucosal
epithelial barrier function, which may lead to tear film instability
(27). Changed expression of stem cell factor, thymic stromal
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FIGURE 4 | Receiver operating characteristic (ROC) curve analysis of 9 changed metabolites in SLK tear fluids. (A) Diagnostic efficacy evaluation using ROC curves

of altered metabolites of tear between SLK and Ctrl individuals. For all 9 metabolites, the AUC ranged from 0.914 to 1 indicating good predictive ability. (B) According

to data combining 9 metabolites in (A), the cumulative ROC curve-based model evaluation (AUC = 1).
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lymphopoietin, matrix metalloproteinases and tear cytokines,
such as monocyte chemoattractant protein-1, shows the possible
function of inflammation in SLK (5–7). Our present study
demonstrated that the tear metabolic profiling of SLK patients
was distinct from that of healthy controls, providing novel
molecular insights into disease pathogenesis. Based on the union
of VIP, P-value, and MS2 score, we confirmed 50 significantly
different metabolites between the SLK and Ctrl groups. Again,
metabolic pathways associated with these metabolites were
probably involved in the development of SLK, of which low
LA and EPA levels may play key roles on the basis of their
highest impact.

Our data show that polyunsaturated fatty acid (PUFA)-
related metabolites were changed in SLK patients. EPA, a ω-
3 PUFA precursor, is the substrate of the production of 3-
series prostaglandins and 5-series leukotrienes and have anti-
inflammatory properties (28, 29). Furthermore, arachidonic
acid (AA) derived from LA is an ω-6 PUFA and significantly
decreased in our study (p < 0.001, data not shown because
its MS2 score = 0.69). As a metabolic substrate for the
generation of 2-series prostaglandin and 4-series leukotriene
families (in the present study, 12-keto-leukotriene B4 in SLK/Ctrl
= 0.368, p < 0.01) of eicosanoid mediators, the release of AA
and the subsequent generation of eicosanoid lipid mediators
are responsible for triggering inflammation under pathogenic
conditions (13, 30, 31). Both ω-3 and ω-6 PUFAs modulate
inflammatory processes by producing distinct classes of lipid
mediators that play proinflammatory and proresolving functions.
For example, resolvins, one of the four proresolving mediators,
are synthesized from omega-3 (EPA and docosahexaenoic acid)
and omega-6 (AA) fatty acids (32, 33). Current findings related
to SLK suggest that an imbalance of ω-3 and ω-6 PUFAs,
leading to an underproduction of proresolving lipid mediators,
may promote non-resolving inflammation on the ocular surface,
which is similar to findings in dry eyes (31, 34, 35). Studies in
healthy human volunteers and in dry eye patients revealed that
the effects of dietary supplementation with increasing ω-3 PUFA
andω-3 PUFA supplementationmay rebalance the DHA/AA and
EPA/AA ratios, leading to a change in the LTB5/LTB4 ratio in
favor of less inflammation (36–38). However, PUFA effecting on
SLK patients needs further study.

Apart from PUFA-related metabolites, our data includes other
potential biomarkers for SLK via ROC curve analysis. However,
it is difficult to clearly discuss the presence and role of these
substances because the findings need further evaluation in this
rare disease. Of the 9 metabolites, phenol and terephthalic
acid, both involved in the aminobenzoate degradation pathway,
increased significantly in SLK tear fluids, indicating their active
functions in themetabolic regulatory network in the disease state.
Phenol, 4-aminophenol, and terephthalic acid can be detected
in blood, urine, or saliva by metabolomics analysis (39–45). In
addition, phenol is one of the important components of volatile
organic compounds that are generally considered to be toxic to
the gut and are associated with ulcerative colitis, Crohn’s disease,
irritable bowel syndrome, celiac disease by metabolite profiling
identification (46, 47).

Notably, our data showed that hypoxanthine decreased and
adenosine increased in SLK tear fluids. These two substances

are closely related in biosynthesis and degradation of the purine
metabolism. Adenosine is an important neuroactive nucleoside
and a homeostatic cellular modulator (48). It occurs in anoxic
conditions and mainly produced by ATP breakdown. A study
in rat brain extracts strongly suggests that intracellular ATP
catabolism at normoxic concentration follows the pathway
ATP⇄ADP⇄AMP→ IMP→ inosine⇄hypoxanthine. At
ischemia/hypoxia concentration, intracellular ATP breakdown
follows the pathway ATP⇄ADP⇄AMP→ adenosine→
inosine⇄hypoxanthine with little IMP formation (49). Recent
studies have also demonstrated that the microenvironment at
sites of inflammation often becomes profoundly hypoxic, due
to a combination of increased oxygen demand and decreased
supply (50–52). We are aware that cellular environment,
metabolism, and inflammatory response are affected during
ischemia/hypoxia. When considered together, whether the
alterations of hypoxanthine and adenosine are related to SLK
remains to be clarified.

In recent years, there have been a number of reports
on tear metabolomics. However, due to different collection
methods and various detection instruments, discrepancies are
observed between reports. Our study had several limitations.
First, considering the sensitivity of the instrument, we excluded
some samples with little or too large tear volumes, which may
result in sample selection bias. Second, our study did not further
analyze the different metabolites according to the severity of SLK,
which may provide disease-phase-related molecular information.
In addition, it is important to emphasize that metabolomics data
were obtained by a small group of tear samples of SLK and Ctrl
individuals, and it would be necessary to confirm these data in
studies with more patients and other tests.

In summary, we applied LC–MS/MS-based metabolomics
to demonstrate the unique metabotypes of SLK and identified
significant alterations in tear metabolites. The results obtained
here not only provided potential diagnostic biomarkers for
SLK screening but also expanded our understanding of the
physiopathology of the disease. For the first time, metabolomic
profiling revealed a possible change in the ω-3 and ω-6 PUFA
balance in SLK patients, which demonstrates the inflammatory
process in the pathogenesis of the disease. In addition, a
combination model of 9 metabolites was identified as a potential
biomarker in the present study to distinguish SLK patients from
healthy controls, which should be validated in a larger and
prospective cohort study.
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