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Abstract: In this work, the optical properties of tetra(imidazole) of palladium phthalocyanine
(PdPc(Im)4) in solution form and thin films on glass and fluorine-doped tin oxide (FTO) substrates
were investigated via the thermal evaporation technique. The optical band gap was evaluated by
ultraviolet–visible spectroscopy (UV-Vis). The energy band gap values were determined based on the
Tauc graph. In addition, time-dependent density functional theory (TD-DFT) was used to simulate
the UV-Vis absorption spectrum of the (PdPc(Im)4) molecule in the Dimethyl Sulfoxide (DMSO)
solution phase. A good correlation was found between the DFT results and the experimental optical
results. The band gap values between the experimental and DFT-simulated values are presented. The
energy band gap of (PdPc(Im)4) obtained from the DFT calculations showed that it can be efficiently
regulated. Frontier molecular orbitals and molecular electrostatic potentials were also proposed
in this work. The surface study of the layers deposited on FTO was considered by atomic force
microscopy (AFM) and scanning electron microscopy (SEM), and the results demonstrated good
homogeneity covering the entire surface. The SEM image showed a homogeneous distribution of the
grains with some spherical or rod-shaped structures and no agglomeration structures. This work
rendered a strategy for regulating the energy band gap and compared the experimental observations
obtained with theoretical studies, which provides a fundamental insight into the optical band for
optoelectronic and thin-film solar cells.

Keywords: PdPc(Im)4; band gap energy; DFT; atomic-scale simulation; thin films

1. Introduction

Recently, numerous efforts have been dedicated to the production and study of sev-
eral semiconductor materials in film form [1–9]. Metalophthalocyanines (MPcs) are the
best significant organic materials that are extensively used in optoelectronic devices such
as photoconducting agents [10], photovoltaic devices [11–14], nonlinear optics [15], elec-
trocatalysis [5,16], solar cells [17,18], sensors [19–27], catalysis [5,28], and many others.
Many researchers are interested in the study of various materials such as metal-substituted

Molecules 2022, 27, 6151. https://doi.org/10.3390/molecules27196151 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27196151
https://doi.org/10.3390/molecules27196151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-7687-5060
https://orcid.org/0000-0003-1311-7657
https://doi.org/10.3390/molecules27196151
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27196151?type=check_update&version=2


Molecules 2022, 27, 6151 2 of 14

phthalocyanines (Pcs) [29]. Most of these materials are p-type organic semiconductors.
There is considerable interest in the study of these materials because of their low cost,
excellent thermal and chemical stability, and being versatile alternatives for the fabrication
of thin-film-based devices. Moreover, PdPc exhibits longer exciton diffusion length in
comparison with other bivalent metal phthalocyanines, such as ZnPc and CuPc [30]. This
property, as well as the strong absorption within the visible spectral range, makes PdPc
films a quite useful candidate for photovoltaic applications [31]. It has been assumed in
the literature [32] that atmospheric oxygen absorbs at the air/MPc interface and at grain
boundaries. It was reported that the formation of charge-transfer complexes by coordina-
tion of O2 to MPc at the air/phthalocyanine interface leads to the formation of oxidized
MPc+ and O2− species and injection of hole charge carriers into the film’s bulk [33].

However, there are limited studies on other phthalocyanines, particularly tetra(imidazole)
of palladium phthalocyanines (PdPc(Im)4). The element palladium in PdPc(Im)4 has sev-
eral useful applications [34–36]. Supported by this information, we report the optical
study of PdPc(Im)4 that renders features for core system advantages for the applications
in photovoltaic devices. In our previous work, we have studied PdPc in thin-film and
pellet form [37,38]. A few other references have been reported on the fabrication and char-
acterization of MPc thin films [39–42]. PdPc has been used for organic transistors [43,44],
perovskite solar cells [45], and sensors [46–48]. Pcs are organic semiconductors with out-
standing electrical features [49]. According to Lokesh et al. [50], the cyclic voltammetric
data in DMSO showed that the central metal ion Pd does not undergo a redox process, and
the redox behavior observed was mainly due to the macrocyclic ring reduction process.
This result confirms the hypothesis of the works of Gould R. D [51] and de Haan A. [52]
for the oxidation of the MPc species in MPc+ by atmospheric oxygen at the interface of
air/MPc. The UV-Vis spectrum of phthalocyanine materials is at the origin of the molecular
orbitals of the 18π aromatic electronic system [53]. These materials have been considered as
electrophotographic materials due to their absorption capacity in the ultraviolet and visible
range [54]. Currently, it has been reported that high mobility of PdPc(Im)4 thin films can be
achieved by using high substrate heating temperature; the latter directly affects the crystal
structure, morphology, and optical properties of the desired film.

The current study showed that the orientation of the grains strongly depends on the
nature of the substrate, the thermal annealing temperature, and the deposition technique
employed. The electronic structure, excitation process, and molecular interaction have
been studied for certain metallic phthalocyanines [55] by the density functional theory
(DFT) [56–58] and time-dependent DFT (TD) [59]. Herein, we studied the energy band gap
of the palladium phthalocyaninein in DMSO solution and in thin-film forms using the UV-
Vis absorption spectrum technique. Additionally, DFT calculations were used to calculate
the Eg (gap) between molecular orbitals of the main peaks of IN spectra and the frontier
highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(HOMO-LUMO). Optimized geometry for the PdPc(Im)4 molecule and other detailed
quantitative information with electronic structure calculations are also given.

2. Experimental and Theoretical Studies
2.1. Synthesis Method and Deposition of Thin Films

For the synthesis, we used 5 g (0.039 mole) of phtalonitrile mixed with 1.77 g (0.01 mole)
of palladium acetate in DMAE with 1 mL of DBU at 140 ◦C. Then, the mixture was stirred
for 2 h at 180 ◦C. Subsequently, the product was cooled at room temperature and filtered.
The obtained solid was finely ground and washed successively with methanol, hot alcohol,
and water to remove intermediates and unreacted components. Then, the compound was
purified in Bio-Beads using chloroform. The final product obtained was bluish-green in
color. The latter was dried in an oven for 1 h and subsequently prepared using the thermal
evaporation technique. Evaporation was carried out using resistive heating of about 20 mg
of the material in tungsten boat under a vacuum of 5 × 10−6 Torr. The boat was heated by
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passing a high current (100 A). The obtained layers on a clean glass and FTO substrates
were homogeneous and had a thickness of approximately 0.1 µm.

2.2. Characterization

The absorption spectra were measured using a UV-Vis spectrometer (Shimadzu) with a
resolution of 0.1 nm. The optical band gap was estimated using equation (1) and according
to the Planck formula as follows [60–65]:

Eg = ∆E =
hc
λ

(1)

where h is the Planck constant (6.62617× 10−34 J·s), c is the velocity of light (2.9979 × 108 m/s),
and λ represents the absorption limit wavelength (nm), achieved from the onset of the
absorption graph [60–65]. The visualization of the surface morphology of the layers was
done using atomic force microscopy (AFM, Veeco CP-II) in contact mode with a scanning
frequency of 1 Hz and points in Si and Shimadzu-type scanning electron microscopy (SEM,
Superscan SSX-550). The synthesis product purity was verified by 1H NMR (Varian XL-200
NMR spectrometer, DMSO d6), elemental analysis (Costech ECS 4010 instrument), and
MS and MS-MS spectra (Thermo Quantum Access Mass spectrometer with H-ESI probe
conducted in positive ion mode). The analyses were as follows: 1H NMR (DMSO): d, ppm
8.05–8.12(4H, s, broad), 7.71–7.75 (4H, s, broad), 7.4–7.6 (4H, s, broad), and 7.15–7.46(16H,
d, broad). Anal. (C44H24N16Pd): C, 59.84; H, 2.74; N, 25.37; Pd, 12.05; found: C, 59.40; H,
3.03; N, 25.82; MALDITOF-MS m/z: calculated 882.14; found + 883.3 (M + 1).

2.3. Theoretical Calculations

DFT calculations were performed with Gaussian09w [56,58,66,67] using the functional
B3LYP-GD3 with Grimme’s dispersion correction [68] and the SDD basis set [69]. The effect
of the DMSO solvent on (PdPc(Im)4) was calculated by the SMD model [70]. To study the
UV spectra, we used the TD-DFT method on the optimized structure in the DMSO solvent
using the same level of theory (B3LYP-GD3/SDD and SMD to simulate the DMSO effect).
In addition, we determined the energy of the molecular orbitals and then evaluated the
optical gap energy (Eg) (difference between the HOMO and the LUMO border orbitals and
between the molecular orbitals of the main peaks of the spectrum). The PdPc(Im)4 structure
was optimized using the B3LYP-GD3 function. Frequency calculations were performed to
identify the nature of the stationary points.

3. Results and Discussion
3.1. The Optimized Molecular Structure

Figure 1a depicts the optimized molecular structure of the PdPc(Im)4 polymer which
shows a square-planar-type configuration with a metal ion at the center (Pd). N atoms
are marked in blue; C atoms are in gray. The average Pd–N bond length of the four Pd-N
bonds of the optimized structure was 2.006 Å. Figure 1b illustrates the M-plan structure
of the PdPc molecule. Figure 1c,d presents distances and angles between atoms in the
PdPc(Im)4 molecule. Technically speaking, N1 and N2 are the pyrrole and meso positions
of nitrogen, respectively. C1 and C2 are the alpha and beta positions of the carbon. The
positions, which are of significant interest, are the meso position of the nitrogen that varies
with analogous molecules and the position of the nitrogen pyrrole due to the direct bond
with the central atom of palladium.
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Figure 1. (a) Chemical structure of the singlet stat of the neutral PdPc(Im)4 Ci symmetric molecule
calculated at the B3LYP-D3/SDD level of theory, taking into account the effect of the DMSO solvent
with the SMD model, (b) plan structure of the optimized PdPc(Im)4 molecule, (c) distances in Å on
a quarter (1/4) magnification of the PdPc(Im)4 molecule (all hydrogen atoms have been omitted
for clarity of the figure), and (d) angles between atoms in degrees represented on a quarter of the
molecule for more clarity (all hydrogen atoms have been omitted for clarity of the figure).

3.2. The Frontier Molecular Orbitals (FMOs)

The LUMO and the HOMO mainly form the frontier molecular orbitals (FMOs). The
FMOs are very important for studying the chemical and electrical features of substrates [71].
They impact material properties through the development of their polarities and the
abilities for absorbing light. On the other hand, they function as acceptor and donor
orbitals [72]. Figure 2 presents the computational study based on the density functional
theory (DFT) and time-dependent DFT (TD-DFT). This study was carried out to better
understand the geometric and photophysical properties of PdPc(Im)4. It describes the
HOMO and LUMO electron density, the optimized molecular structures, and the isosurfaces
of PdPc(Im)4. The apparent plane geometries, the largely delocalized LUMO and HOMO
electron densities, and the existence of π and σ orbitals in the FMOs are favorable to the
processes of electron migration between these macrocycles. In addition, the related density
of state calculations of the PdPc(Im)4 was studied in DMSO solution, which presents the
virtual and occupied orbitals.
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Figure 2. OMs that contribute to UV transitions. Contour plots (contour value = 0.025) of HOMO-n
and LUMO + n of PdPc(Im)4 calculated at the B3LYP-D3/SDD level of theory in DMSO. LUMO and
LUMO + 1 are degenerate.

3.3. Molecular Electrostatic Potentials

Molecular electrostatic potentials (MEPs) are very beneficial for studying the rela-
tionship between physicochemical features and its molecular structure. This is done by
visualization of molecular size and shape, as well as by the charge distribution in the
molecule in terms of color calibration [73]. Figure 3 depicts the electrostatic potential
surface (EPS) and contours of PdPc(Im)4 from the total self-consistent field (SCF) density
and mapped with ESP. Figure 4 presents electrostatic potential surface and contours of
PdPc(Im)4 from the total SCF density in the plan of a molecule and a cross-section in
terms of that mapped with electrostatic potential from the total SCF density and contour
map on N and Pd atoms. The electrostatic potential surfaces generally render information
regarding the stacking of PdPc(Im)4 molecules in the sample at the nano-scale. The possible
agglomeration in the sample is the H atom, which is owing to a high-energy change in the
absorption graph as well as details given by the distribution of electrostatic potential on
the molecule.
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Figure 3. Electrostatic potential surface and contours of PdPc(Im)4: (a) from total SCF density
(isoval = 0.025); (yellow = positive, orange = negative) and (b) mapped with ESP.

Figure 4. (a) Electrostatic potential surface and contours of PdPc(Im)4 from total SCF density
(isoval = 0.025) in the plan of molecule (yellow = positive, orange = negative) and (b) a cross-section
in terms of that mapped with electrostatic potential from total SCF density and contour map.

The surface map of the molecular electrostatic potential (MEP) was calculated and is
shown in Figure 5. This map shows the existence of four possible sites of electrophilic attack,
and it is neutral on the conjugate ring. The region near the central atom of the molecule
(Pd) is positive because the carbon atom (C) is surrounded by electropositive atoms. The
findings demonstrate that the site including nitrogen atoms are the most reactive site of
the PdPc(Im)4 molecule. These sites provide details related to the region wherein the
compound have intermolecular interplays. The behavior of ESP on the phthalocyanine ring
is also related to the magnetic separation and position of chemical shift in C-NMR [74,75].
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Figure 5. Molecular electrostatic potential (MES) surface for PdPc.

3.4. Optical Absorption Analysis

The optical absorption spectra were made in the wavelength range between 300
and 900 nm using a UV–visible spectrometer. In fact, n→π* and π→π*-type electronic
transitions in π-conjugated organic compounds result in a UV-Vis absorption graph [76].
These transitions are usually owing to movements of electrons among boundary molecular
orbitals (FMOs). In addition, organic molecules of phthalocyanine and their compounds
exhibit optical features due to their cyclic structure. These compounds possess two different
types of energy bands including the Q band (a porphyrin band) and the B band (c or Soret
band). The peaks observed in the region of the Q band cited in the 610-680 nm range are
responsible for the observed green color of this synthesized complex (Figure 6). These
transitions can also be attributed to π–π* transitions. Figure 7 shows the UV-Vis absorption
spectra for PdPc(Im)4 in DMSO solution and thin-film form. For PdPc(Im)4 dissolved
in DMSO, Figure 7a illustrates a first absorption peak at 350 nm (band B) in the visible
spectrum region. A less intense shoulder peak around 610 nm corresponds to the dimer of
the phthalocyanine, and a peak at 650 nm to the Q band absorption [77]. Figure 7b depicts
the UV-Vis spectrum of PdPc(Im)4 thin film. It shows a typical Soret band at around 340 nm,
which corresponds to π→π* transition. Furthermore, the band located in the range of
600–680 nm corresponds to Q bands, which was assigned to the dimer of phthalocyanines.
(PdPc(Im)4) molecules can interact with each other through delocalized π electrons and
hydrogen bonds.

Figure 6. Color of complex at different concentrations (100 mg·L−1~1.6 × 10−4 M; 200 mg·L−1~
3.2 × 10−4 M; 1000 mg·L−1~1.6 × 10−3 M).
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Figure 7. Electronic absorption spectra of PdPc(Im)4 in DMSO solution (10−5 M) (a) and (b) thin-
film forms.

The optical band gaps of the PdPc(Im)4 in DMSO solution and thin-film form are also
deduced from the figures, which were about 2.41 and 2.48 eV, respectively. The bandgap
energy and threshold wavelength were determined using DFT data. The absorption spec-
trum obtained from the DFT calculations of PdPc(Im)4 in the DMSO solvent is presented in
Figure 8. The values of energy bandgaps obtained from experimental graphs, theoretical
data, and threshold wavelengths are summarized in Table 1. In the Q band, the electronic
transition occurred from the electron density centered on the phthalocyanine (HOMO)
molecule to the low electron density on the Pd-N bond (LUMO) as demonstrated in Figure 8.
The evaluated optical energy was about 2.23 eV. The theoretical optical transition obtained
by the TD-DFT calculation is in accordance with that determined experimentally [78]. Rec-
ognizable functionality groups of palladium phthalocyanine can be deduced depending on
the position of the peak and the intensity of the infrared spectrum. Figure 9 demonstrates
the IR spectrum obtained from the DFT method and experimental analysis. A large peak
was obtained in the 3100-3500 cm−1 range due to the stretch band between O-H and N-
H [79–85]. The peaks are the signals of OH, CH2, and C-O [74–77]. In Figure 9, additional
peaks observed at 2200 and 3100 cm−1 were assigned to C=N and N-H, which are the
characteristic signals of palladium phthalocyanine. For PdPc(Im)4 films deposited on FTO,
the band gap energy was evaluated based on the study of the absorption graph and the
graph described by Tauc [86]. In the literature [87], the obtained band gap energy related
to direct transitions in the material is 3.62 eV. The SEM images in Figure 10a shows the
morphology of the PdPc(Im)4 on the FTO. It is seen that surface was homogenous and
composed of grains with a size between 150 and 200 nm. The three-dimensional AFM
image in Figure 10b revealed that the PdPc(Im)4 layer deposited on FTO caused surface
smoothening with spherical grains of different sizes and shapes.
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Figure 8. (A) Variation of absorbance using DFT and (B) PdPc(Im)4 molecular orbital energies in eV.
The levels to the right show degenerate energies.

Table 1. Band gap and threshold wavelengths value for PdPc(Im)4 in DMSO solution, PdPc(Im)4-thin
films, and PdPc(Im)4-DFT.

Q-Band

Material Wavelength (nm) Eg (eV)

PdPc(Im)4 in DMSO solution 515 2.41

PdPc(Im)4-thin films 500 2.48

PdPc(Im)4-DFT 490 2.23

Figure 9. (a) Theoretical and (b) experimental infrared spectra.
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Figure 10. (a) SEM analysis and (b) three-dimensional AFM analysis of PdPc(Im)4 deposited on FTO
by vacuum thermal evaporation technique.

4. Conclusions

In summary, the PdPc(Im)4 in DMSO solution and thin films deposited on glass and
FTO by thermal evaporation were prepared. The UV-Vis technique was employed to
establish the optical bandgap of the PdPc(Im)4. The optical results demonstrated a band
gap of 2.41 eV for the PdPc(Im)4 in the DMSO solution and values of 2.48 and 3.62 eV for
the thin layers of PdPc(Im)4 Pc deposited on glass and FTO, respectively, using a Tauc route.
MEP analysis was used to identify electrophilic and nucleophilic sites in the molecule
as well as to provide additional information about regions of intermolecular interaction.
DFT calculations using the DFT-B3LYP method were also used to calculate the band gap
of the PdPc(Im)4 molecule, and the achieved bandgap was 2.23 eV, which is close to the
experimentally obtained value. The simulated UV-Vis domains are consistent in the shape
and position of band B with those of the experimentally obtained results. This study of the
PdPc(Im)4 band gap is fundamental for various appliances such as organic photovoltaic
devices and light-emitting diodes.
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