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Background: Cancer immunotherapy elicits functional activation and changes in immune cell distribution in cancer.
Tumour heterogeneity is a reason for treatment failure but is difficult to capture in experimental settings. This
proof-of-principle study describes the integrated functional and digital spatial profiling platform iPROFILER to
capture in-situ immune activation patterns with high precision.
Materials and methods: iPROFILER combines an algorithm-based image analysis approach for spatial profiling with
functional analyses of patient-derived tumour fragments (PDTFs). This study utilized a folate receptor 1 (FOLR1)xCD3
bispecific antibody in dual-affinity re-targeting (DART) format as a tool for inducing T-cell responses in patient
tumour samples, and an in-depth investigation of the immune perturbations induced in the tumour
microenvironment was performed.
Results: Ex-vivo DART stimulation induces upregulation of multiple activation markers in CD4þ and CD8þ T-cell
populations and secretion of pro-inflammatory cytokines in FOLR1-positive tumour specimens. This response was
reduced or absent in tissue samples that did not express FOLR1. Immunological responses were driven by a strong
induction of interferon gamma (IFNg) and IFNg-induced chemokines suggestive of activation of cytotoxic or Th1-like
T cells. Ex-vivo DART treatment led to a numerical increase in effector T cells and an upregulation of immune
activation markers in the tumour microenvironment as captured by digital image analysis. Analysis of immune
activation in tumour and stromal regions further supported the potential of the platform to measure local
differences in cell-type-specific activation patterns.
Conclusions: iPROFILER effectively combines functional and spatial readouts to investigate immune responses ex vivo in
human tumour samples.
Key words: Ex-vivo models, tumour biomarkers, immunotherapy, digital pathology, computer-assisted image process-
ing, tumour microenvironment
INTRODUCTION

Cancer immunotherapy, particularly immune checkpoint
blockade targeting the programmed death-1/programmed
death ligand 1 (PD-1/PD-L1) axis, has dramatically
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transformed the therapeutic field in cancer.1,2 While deep
and durable responses can be observed, this is still limited
to a small number of patients.3 Combinations of antibodies
blocking PD-1 and another immune checkpoint, cytotoxic
T-lymphocyte-associated protein 4, have been found to in-
crease survival,4-6 and combination treatments with PD-1/
PD-L1 are currently being tested in a large number of
ongoing clinical trials.7,8 However, many of these combi-
nations have yielded disappointing results in phase 3 trials,
underlining the need for the development of more
personalized immunotherapies. To this end, a better un-
derstanding of how immunotherapies act on the tumour
microenvironment (TME), as well as technologies to inves-
tigate such intratumoural immune responses, are essential.
https://doi.org/10.1016/j.iotech.2021.100034 1
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It has recently been shown that human ex-vivo systems,
such as patient-derived tumour fragments (PDTFs), allow
the profiling of early local immunological responses to PD-1
blockade.9 PDTFs are approximately 1x1x1mm-sized tissue
fragments processed from surgically resected tumour
specimens that preserve the TME and architecture during
ex-vivo culture, but can be exposed to immunotherapeutic
perturbations. While measuring the reactivation of tumour-
resident T cells as well as subsequent cytokine and
chemokine secretion induced by PD-1 blockade reliably
predicted clinical response in five cancer types, inter- and
intratumoural heterogeneity in such immune reactivation
was also observed.9 This may result from distinct distribu-
tion patterns of anti-tumoural effector cells mediating the
efficacy of the local anti-tumoural immune response, which
cannot be captured adequately by the measurement of
overall cytokine and chemokine production during ex-vivo
treatment. Hence, the integration of the PDTF platform
with spatial immune profiling technologies could provide a
multidimensional approach to study local immune activity
in the TME induced by immunotherapies.

This proof-of-concept study describes the iPROFILER (in-
tegrated profiling of intratumoural immune responses)
platform (Figure 1), an algorithm-based image analysis
approach for interrogating the cellular composition of the
TME at single-cell resolution10 combined with functional
analyses in the PDTF ex-vivo system. A bispecific antibody in
a dual-affinity re-targeting (DART) format was used as a tool
to induce a tumour-directed T-cell response in human lung
and ovarian cancer samples. The iPROFILER platform
allowed the characterization of in-situ responses elicited by
the DART by directly linking spatial tumour properties and
immune activation patterns in each perturbed tumour
fragment. Moreover, immunological responders and non-
responders could be identified, as well as potential under-
lying causes for treatment resistance, highlighting the
translational potential of the platform.

MATERIALS AND METHODS

PDTF cultures

PDTF cultures were performed as described previously.9 In
brief, cryopreserved PDTFs were thawed slowly, washed
extensively with tumour medium [DMEM þ sodium pyru-
vate (1 mM) þ MEM non-essential AA (1x) þ L-glutamine
(2 mM) þ penicillin/streptomycin (100 ng/ml) þ
2-mercaptoethanol (50 nM) þ ciproxin (1 mg/ml) þ 10%
fetal bovine serum] and embedded in an artificial extra-
cellular matrix [sodium bicarbonate (Sigma, 1.1%), collagen
I (BD Biosciences, 1 mg/mL), matrigel (Matrix High Con-
centration, Phenol Red-Free, BD Biosciences, 4 mg/mL) and
tumour medium] in a flat-bottomed 96-well plate. To this
end, 30 ml of matrix was added to each well and solidified at
37�C for 20-30 min. One tumour fragment was placed on
top of the matrix in each well and covered with a second
layer of 30 ml of matrix. PDTF cultures were topped up with
tumour medium containing folate receptor 1 (FOLR1)xCD3
DART at 100 ng/mL where indicated. After 48 h of culture at
2 https://doi.org/10.1016/j.iotech.2021.100034
37�C, supernatants were collected and frozen immediately
at �80�C for subsequent cytokine and chemokine analysis.

ngTMA generation and immunohistochemistry

Following PDTF culture, the tumour fragments were fixed in
4% formalin and embedded in paraffin according to standard
protocols for a total of 36 tissue blocks (four per tumour, two
untreated and two DART-treated) with one sample each.
Next-generation tissue microarrays (ngTMAs)11 were
designed using digital pathology to capture and array all PDTF
formalin-fixed paraffin-embedded samples on a single
recipient block using an automated and digitally controlled
semi-robotic tissue microarrayer with a 1.5-mm punch size
(3DHISTECH Ltd, Budapest, Hungary). For visualization of
immune cell infiltrates and signalling molecules, strict serial
sections were cut from the finished TMA block at 4 mm for
immunohistochemical staining of the following parameters:
T-cell markers CD4, CD8 and FOXP3; B-cell marker CD19;
proliferation markers (Ki67); markers of cell-dependent
cytotoxicity (T-cell intracellular antigen 1; Granzyme B; Per-
forin); activation of interferon signalling [signal transducer
and activator of transcription 1 (STAT1); interferon regulatory
factor 1 (IRF1); IRF5]; expression of the immune checkpoint
molecules PD-1 and PD-L1; visualization of tumour cells
[epithelial cell adhesion molecule (EpCAM)]; and tumour cell
apoptosis [apoptotic protease activation factor 1 (APAF-1),
caspase 3 and caspase 9]. Binding of the primary antibodies
was detected using anti-immunoglobulin-coupled horse-
radish peroxidase with 3,30-diaminobenzidine (DAB, Opti-
View Kit, Roche Diagnostics, Ventana, catalogue no. 760-700)
as substrate. Nuclear counterstaining was performed with
Mayer haematoxylin. Table S3 (see online supplementary
material) shows the specific staining protocols. A haema-
toxylin and eosin slide was generated for pathological review
and assessment of tissue necrosis.

Digital image analysis

All slides were scanned at high resolution on a Pannoramic
P250 slide scanner (3DHISTECH Ltd) with a 40� objective
with a numerical aperture of 0.95, achieving a pixel reso-
lution of 0.121 mm/pixel with a 12 MP camera with Xenon
Flash illumination, and uploaded on to the digital image
analysis platform (Indica Labs HALO, v3.1.1076.433). A
board-certified pathologist reviewed all digital images.
Areas with staining artefacts were excluded, and spots were
segmented and annotated with the PDTF clinical metadata.

A deep neural network was trained (Simonyan and Zis-
sermann VGG, implemented in the HALO AITM platform12)
to detect, annotate and measure tumour epithelium and
stromal regions in each PDTF sample. In brief, html-based
annotations of stromal and tumour regions were gener-
ated in the HALO graphical user interface for each ngTMA
slide and each marker group of interest. A third class was
introduced to capture background areas for exclusion. For
all classes, a balanced representation with a minimum of
100 separate region examples was generated. Next, the
VGG network implemented in HALO AITM was trained for
Volume 10 - Issue C - 2021
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Figure 1. Integrated profiling of intratumoural immune responses e the iPROFILER platform.
Combination of ex-vivo culture of patient-derived tumour fragments (PDTFs) with functional and spatial analyses comparing treated and untreated samples allows for
multidimensional analysis of treatment-induced immune responses at single-cell level.
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the classification of tumour, stromal and background re-
gions until convergence was achieved (cross entropy <0.1)
on a NVIDIA Titan XP GPU with 12 GB of memory. Mark-up
images of the predicted region labels were then generated
and cross-validated against pathologist-based assessment.
In the case of classification errors, additional annotations
were generated, and the training and review process was
repeated in an active learning process.

Nuclear density of the haematoxylin counterstain was
measured following channel separation at RGB values of 57,
49 and 137, and minimum thresholds for nuclear optical
density were set according to pathologist review. Nuclear
segmentation was performed using a seeded watershed on
the haematoxylin counterstain followed by cell/nuclear
boundary detection and post processing according to
pathologist-controlled cellular parameters, such as nuclear
size, roundness and optical density as implemented in
Indica Labs HALO, v3.1.1076.433, ‘Cytonuclear’ and ‘Multi-
plex IHC’ modules. Detection of the cell population of in-
terest was controlled individually for each slide and marker.
Visual overlays of the nuclear segmentation masks were
generated, and quality control was performed by patholo-
gist review. Cell detection and segmentation were opti-
mized for detection of the cell population of interest.

Marker positivity (DAB staining) of lineage markers was
detected and analysed according to pathologist-set positivity
thresholds utilizing non-immune cell populations as internal
controls, leading to the classification of each cell as either
positive or negative. Subset analyses were performed for
markers where expression intensity was of additional interest,
such as interferon signalling molecules STAT1, IRF1 and IRF5.
Here, the optical density of the DAB precipitate in the nuclear
compartment was measured as a measure of expression in-
tensity. For the subset analysis of interferon signalling mole-
cules, the optical density of the DAB precipitate in the nuclear
compartment was additionally measured as a measure of
expression intensity. Cells were then scored as 1þ if they
exceeded the set threshold of the negative control, as 2þ if
they exceeded the set threshold of staining intensity by at
least 2x, and as 3þ if they exceeded the set threshold by at
least 3�. Marker-positive cells were quantified separately in
the tumour and stromal compartments. Areas of necrosis,
staining artefacts and tissue anthracosis were excluded from
analysis. Immune cell infiltrates were normalized by tissue
area; for immune activation markers, the percentage of pos-
itive cells and expression intensity were recorded in each
compartment. To obtain sufficient cell numbers for compari-
son of ex-vivo treatment effects, six PDTFs from four tumours
were selected for which at least a 0.5�0.5 mm tissue area
could be analysed. The reader is referred to the online
supplementary material for additional details.

RESULTS

Characterization of T-cell-driven immunological responses
in human cancers

To assess the immunological consequence of broad T cell
activation in the TME, a bispecific antibody targeted to
4 https://doi.org/10.1016/j.iotech.2021.100034
human CD3 and FOLR1 in a DART format was used as a tool
to induce T-cell stimulation in human cancer samples. In
contrast to PD-1-blocking antibodies, for which T-cell rein-
vigoration is limited to a small number of tumours con-
taining tumour-specific T cells, bispecific antibodies that
contain one arm specific for human CD3 and one arm
directed towards a tumour antigen can broadly activate
T cells by bypassing major histocompatibility complex/
peptide recognition and, thus, overcome the need for an-
tigen specificity.13,14 Importantly, activation only occurs
when the tumour antigen and the T-cell receptor are bound
simultaneously. The recently described FOLR1xCD3 bispe-
cific DART used in this study has been shown to crosslink T
cells and FOLR1-expressing tumour cells efficiently in vitro
and in vivo.15 While FOLR1 shows limited expression in
healthy tissues, it is highly overexpressed on the surface of
cancer cells in a number of malignancies, including lung,
ovarian and other solid cancers.16 Thus, immune activation
induced by the DART is limited to T cells at the tumour site.

First, the specificity of the DART was confirmed in
co-culture assays by stimulating peripheral blood mono-
nuclear cells or sorted CD8þ T cells from healthy donors,
either in the presence or absence of the FOLR1-expressing
Skov3 tumour cell line with the DART (Figure S1A,B, see
online supplementary material). By performing dose titra-
tion experiments in the same experimental setting, the
optimal concentration of the DART was established at
100 ng/ml (Figure S1C,D, see online supplementary mate-
rial). Next, it was assessed whether the DART could also
induce T-cell activation in human cancer samples, using the
recently developed PDTF platform9 (Figure 1). PDTFs from
nine lung and ovarian cancer specimens (Table S1, see
online supplementary material) were exposed to the DART
for 48 h, and the upregulation of activation markers on
CD4þ and CD8þ T cells was measured by flow cytometry
(Figure 2A-C). Most tumours (7/9) showed a strong increase
in multiple T-cell activation markers in both subsets upon
DART treatment compared with the unstimulated control,
indicating that the DART can also activate tumour-resident
T cells. To investigate whether lack of FOLR1 expression
and/or low immune infiltration were reasons for non- or
weak response, these properties were assessed in the study
samples. One of the two tumours showing no or weak T-cell
activation (BS515) was negative for FOLR1, further con-
firming the specificity of the DART (Figure 2D; Figure S2A,
see online supplementary material). The other tumour
(BS295) expressed FOLR1 but showed only a minor immune
infiltrate, which may explain the low level of T-cell activa-
tion induced by the DART in this sample (Figure 2E;
Figure S2B, see online supplementary material).

Next, multiple cytokines and chemokines secreted by the
tumours were assessed to understand whether the DART
also elicits a broader immune response (Figure 3A,B).
Notably, induction of IFNg was observed in all tumours
except BS515, in line with the lack of FOLR1 expression in
this tumour. Interestingly, the IFNg response could also be
observed in BS295, suggesting that even a small T-cell
infiltrate in a tumour may be sufficient for the DART to
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Figure 2. Folate receptor 1 (FOLR1)xCD3 DART induces T-cell activation in human lung and ovarian cancer patient-derived tumour fragments (PDTFs).
(A) Example of the flow analysis of four T-cell activation markers in CD4þ and CD8þ T cells, respectively, in unstimulated and DART-treated PDTFs. (BþC) Heatmap
showing the percent expression (B) and quantification (C) of all four activation markers in CD4þ and CD8þ T cells for nine lung and ovarian cancer samples. Data
represent a pooled analysis of three fragments per condition for each tumour. (D) FOLR1 expression for each tumour (left) and correlation between OX40 expression on
CD4þ T cells and CD137 expression on CD8þ T cells, respectively, with FOLR1 expression (middle and right). The non-responsive tumour BS515 is indicated by the circle.
(E) Immune infiltrate (% CD45þ cells within live cells) for each tumour (left) and correlation between OX40 expression on CD4þ T cells and CD137 expression on CD8þ T
cells, respectively, with the immune infiltrate (middle and right). The weak responsive tumour BS295 is indicated by the circle.
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induce an immune response. Secretion of the IFNg-induced
chemokines CXCL9 and CXCL10 (cluster 1) was observed in
most tumours, while patterns of other cytokines and che-
mokines were more heterogeneous (Figure 3A,B). For
instance, cluster 2 parameters consisting of some CD4
helper cytokines and the chemoattractants CCL3 and CCL4
were increased in four of the seven responding tumours,
and most cluster 3 parameters remained largely unchanged
in the majority of tumours. Taken together, these data un-
derline that immunological responses upon T-cell activation
by the DART are characterized by strong induction of IFNg
and IFNg-induced chemokines that is found consistently
across tumours, and may be suggestive of activation of
cytotoxic or Th1-like T cells, as well as secretion of addi-
tional soluble factors that are more heterogeneous be-
tween cancers.

Development of an ngTMA and digital pathology platform
for PDTF analysis

To better understand the heterogeneity of immunological
responses, approaches are needed that directly link pat-
terns of immune activation to cellular composition and ar-
chitecture of patient tumour samples. To this end, the
iPROFILER platform (Figure 1) was developed, which com-
bines the PDTF system with an image analysis platform,
thereby allowing to connect dynamic readouts to spatial
information for multidimensional characterization of im-
mune responses. As a proof-of-concept experiment, a sec-
ond set of PDTFs from the seven responsive tumours were
exposed to the DART as described above, but instead of
performing flow cytometry after culture, the fragments
were embedded in paraffin for further histological analysis.
To reduce variation due to processing and staining pro-
cedures, and to enable high-throughput screening and
analysis, an ngTMA was constructed as described previ-
ously11 containing all the tumour fragments from one
experiment (Figure 4A). Immunohistochemistry analysis for
key cell lineage and functional markers was performed to
characterize the in-situ immune response (Table S3, see
online supplementary material). For each marker, a digital
image quantification protocol was established, and marker-
positive cells were quantified either in the full fragment or
in separately annotated tumour and stroma regions as
detailed in the ‘Methods’ section.

To test the reproducibility of the responses that were
observed in the first analysis in this data set, cytokines and
chemokines in the supernatant of individual PDTFs that
were subjected to immunohistochemistry were assessed
(Figure 4B,C; Figure S3, see online supplementary material).
The response patterns to the DART were similar as observed
in the experiment before, with strong induction of IFNg in
all PDTFs and more variable patterns in the secretion of
other cytokines and chemokines. The average change in
single parameters was comparable between the two co-
horts (Figure 4D), supporting the robustness of the func-
tional readout.

To gain better understanding of changes in the immune
composition induced by the DART, CD8þ, CD4þ and
6 https://doi.org/10.1016/j.iotech.2021.100034
FOXP3þ T cells as well as CD19þ B cells in the PDTFs were
quantified digitally. Changes in the tissue, such as a ten-
dency towards increased background staining, reduced
nuclear morphology, focal tissue necrosis or tissue loss,
which led to the drop-out of some measurements [33/532
(6.2%) measurements], could generally be controlled by
careful optimization of the image analysis protocols
(Figure S4A-C, see online supplementary material). Ex-vivo
treatment with the DART increased the number of T cells
compared with B cells, which was significant for CD4þ
T cells and showed a trend in both CD8þ and FoxP3þ
T cells (Figure 4E,F). As PDTFs contain only the intra-
tumoural T-cell compartment, this increase was suggestive
of induction of local T-cell proliferation by the DART. To
understand whether the increased secretion of cytokines
and chemokines upon DART treatment simply reflects these
higher CD4þ and CD8þ T-cell numbers in PDTFs, Spearman
correlations between the changes in each soluble factor and
in CD4þ and CD8þ T-cell numbers, respectively, were
performed (Figure 4G). Based on the lack of any significant
correlation, the changes in soluble parameters seem not to
solely reflect differences in the T-cell infiltrate, and may
instead represent specific immune cell activation.

Detection of spatially restricted patterns of immune
activation induced by the DART

To facilitate the analysis of spatial differences in immune
activation, it was next assessed whether the induction of
immune responses by the DART could be detected by digital
image analysis of immune activation markers. As the
detection of soluble factors by immunohistochemistry is
challenging, 13 markers of immune activation that are
expressed either on the cell surface or in the nucleus were
assessed (Figure 5A). These markers related to cytotoxicity
(granzyme B, perforin, Tia1), proliferation (Ki67), interferon
signalling (STAT1, IRF1, IRF5), apoptosis (caspase 3, caspase
9, APAF1) and immune checkpoint molecules (PD-1 and PD-
L1); in addition, EpCAM was assessed as a marker for cancer
cells (Figure 5B; Figure S5A, see online supplementary
material). Notably, ex-vivo treatment with the DART
induced upregulation of all cytotoxicity markers, as well as a
strong increase in STAT1, in line with the secretion of IFNg
by all tumours (Figure 5C). These changes were accompa-
nied by a decrease in EpCAMþ cancer cells, which may
reflect killing of these cells by cytotoxic T cells. In addition, a
trend towards higher PD-L1 expression was observed in
some tumours, which is in line with the role of IFNg as an
inducer of PD-L1 expression.

To understand whether this technology would enable the
detection of spatial differences in immune cell activation, a
deep neural network was trained to automatically detect
and localize tumour and stroma regions in each fragment
(Figure 5D). While tumour and stromal content were com-
parable between conditions, the tumour regions were small
(0.07 and 0.02 mm2, on average, for untreated and DART-
treated conditions, respectively), which resulted in a
limited number of data points that could be analysed
for the majority of markers (Figure S5B, see online
Volume 10 - Issue C - 2021
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supplementary material). Therefore, an exploratory analysis
of six PDTFs from four tumours was performed, and markers
for cytotoxicity, proliferation and interferon signalling in
each region were quantified (Figure 5E,F; Figure S5C, see
online supplementary material). This analysis showed a
trend for the DART towards inducing cytotoxicity markers
preferentially in T cells located in tumour regions
(Figure 5F), which is in line with its design to activate T cells
only when they are located in proximity to a FOLR1-
expressing cell. This was not the case for the induction of
Ki67 and STAT1, which were upregulated in both tumour
and stroma regions. Notably, cells with a strong STAT1
signal (STAT1 2þ/3þ) were preferentially located in the
stroma (Figure 5F). As STAT1 may indicate the presence of
Volume 10 - Issue C - 2021
IFNg-responsive cells, this observation suggests that the
activation of T cells in tumour regions may be able to
induce a broader immune response in surrounding stromal
regions. Collectively, this initial data points to the potential
of iPROFILER to measure local differences in cell-type-
specific activation patterns at the tumour site.
DISCUSSION

While better patient stratification and the development of
personalized immunotherapy treatments have become a
central goal in immuno-oncology, our understanding of how
such therapies act at the tumour site is still limited. Anti-
tumour immune responses are dynamic multifaceted
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processes that develop in heterogeneous TMEs, which
makes it challenging to capture them within a single plat-
form. Hence, technologies that can profile both the
composition and architecture of the TME, as well as broad
changes in immune activity upon treatment are crucial to
gain a deeper understanding of how such immune re-
sponses develop.17-19 This study describes the iPROFILER
platform, which, by integrating multidimensional readouts
in a flexible and modular manner, allows combined
8 https://doi.org/10.1016/j.iotech.2021.100034
assessment of dynamic and spatial properties of treatment-
induced immune responses in human cancer samples.

To establish the platform, a bifunctional FOLR1xCD3 DART
was used as a tool for broad intratumoural T-cell stimula-
tion.13 As the DART does not depend on the presence of
tumour-specific T cells, even a small number of tumour
specimens is sufficient to capture T-cell activation, compared
with, for instance, PD-1 blockade where T-cell reinvigoration
is limited to a small group of patients.20 In line with this
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Figure 5. Immune activation and spatial immune response patterns following DART stimulation.
(A) Histology images from a DART-treated patient-derived tumour fragment (PDTF) showing expression of the interferon signalling molecules STAT1, IRF1 and IRF5 (first
column); markers of cytotoxic T-cell activation (second column); and markers related to apoptosis (third column), proliferation (fourth column, top) and immune
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notion, after 48 h of ex-vivo treatment, an upregulation of
activation markers on tumour-resident T cells, as well as
release of inflammatory mediators dominated by an IFNg-
driven response was observed in samples expressing FOLR1.
Of note, these changes are accompanied by an increase in
T-cell numbers as well as in the expression of cytotoxic
effector molecules. By applying digital image analysis and
Volume 10 - Issue C - 2021
machine learning methods to segregate tumour and stromal
regions, it was seen that T-cell activation seemed to pre-
dominantly occur in tumour areas, whereas the IFNg-driven
downstream responses showed the strongest signal in the
stroma. Interestingly, two samples could be identified as
non-/weak responders to the DART based on the lack of
changes in immune activity. The platform further allowed
https://doi.org/10.1016/j.iotech.2021.100034 11
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delineation of low expression of FOLR1 and a lack of immune
infiltrate as potential reasons for the lack of efficacy. Jointly,
these data show that approaches such as the iPROFILER
platform are capable of visualizing treatment-induced spatial
and temporal alterations in the TME, which should help to
gain new mechanistic insights into the development of im-
mune responses at the tumour site. Moreover, such plat-
forms can allow the identification of non-responding
patients as well as potential underlying causes of resistance,
which could facilitate the development of novel treatments,
as suggested recently in the context of neoadjuvant immu-
notherapy combination trials in melanoma.19
12 https://doi.org/10.1016/j.iotech.2021.100034
This study reports a model system that, by preserving the
cellular diversity and spatial interactions between tumour,
stromal and immune populations, enables the dissection of
in-situ immune responses after immunotherapeutic pertur-
bations. As this was a proof-of-concept study, it is noted that
the iPROFILER platform in its current form still has some
limitations that may be optimized in future studies. First, to
account for intratumour heterogeneity, some tumours may
require a high number of tumour fragments. In this study, two
to three PDTFs were used per condition, which was sufficient
for a treatment such as the DART, which can theoretically
activate every T cell in proximity of a cancer cell expressing
Volume 10 - Issue C - 2021
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the target antigen. However, for therapies such as PD-1
blockade that rely on the reactivation of low-frequency
tumour-specific T cells, this is likely not sufficient. Second,
the current small size of the PDTFs (1 mm3) makes spatial
analyses challenging, and leads to the drop-out of samples
affected by changes in tissue morphology and viability that
may be induced during tumour processing or ex-vivo culture.
The use of larger fragments or slice culture systems, as well as
adaptations of the culture time, may help to overcome these
two issues. Finally, this study utilized robust single-colour
chromogenic immunohistochemistry stains to visualize im-
mune cell infiltrates and activation markers. While this strat-
egy enables better validation of the assessed markers,
particularly in samples with high inherent variability such as
human tumour tissue, this may not be sufficient for the
assessment of more complex changes in multiple immune cell
populations. The ngTMA design, which reduces variability in
staining and tissue analysis methods over standard methods,
could support the combination of PDTF cultures with novel
highly multiplexed imaging methods such as CODEX,21 imag-
ing mass cytometry22 or spatial RNA sequencing23 ap-
proaches. A core strength of the iPROFILER platform lies in
the strict spatial correspondence of the tissue samples utilized
for functional and tissue-level analysis. Utilizing advanced
bioinformatics methods and artificial intelligence for scientific
discovery, integration of the iPROFILER platform with high-
dimensional spatial readouts could provide novel insights
into mechanistic interactions of immune, tumour and stromal
cell populations that cannot otherwise be captured in clinical
samples. Ultimately, results from such analyses should foster
the identification of new biomarkers and the development of
personalized immunotherapy treatments.
CONCLUSIONS

This article describes a proof-of-principle study utilizing the
ex-vivo PDTF platform for in-depth profiling of the in-situ
immune response to immunostimulatory drugs in patient
samples. By integrating functional assays and spatial anal-
ysis, this platform can provide an in-depth analysis of the
immune contexture linked to response and non-response to
immuno-oncology drugs. This approach could be of great
clinical utility to develop personalized immunotherapy
treatments while, at the same time, providing ample op-
portunities for exploratory science to improve our biological
understanding of disease.
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