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Abstract

Background

Repeated practice to acquire expertise could result in the structural and functional changes

in relevant brain circuits as a result of long-term potentiation, neurogenesis, glial genesis,

and remodeling.

Purpose

The goal of this study is to use task fMRI to study the brain of expert radiologists performing

a diagnosis task where a series of medical images were presented during fMRI acquisition

for 12s and participants were asked to choose a diagnosis. Structural and diffusion-tensor

MRI were also acquired.

Methods

Radiologists (N = 12, 11M, 38.2±10.3 years old) and non-radiologists (N = 17, 15M, 30.6

±5.5 years old) were recruited with informed consent. Medical images were presented for 12

s and three multiple choices were displayed and the participants were asked to choose a

diagnosis. fMRI, structural and diffusion-tensor MRI were acquired. fMRI analysis used FSL

to determine differences in fMRI responses between groups. Voxel-wise analysis was per-

formed to determine if subcortical volume, cortical thickness and fractional anisotropy dif-

fered between groups. Correction for multiple comparisons used false discovery rate.

Results

Radiologists showed overall lower task-related brain activation than non-radiologists. Radi-

ologists showed significantly lower activation in the left lateral occipital cortex, left superior

parietal lobule, occipital pole, right superior frontal and precentral gyri, lingual gyrus, and the

left intraparietal sulcus (p<0.05). There were no significant differences between groups in

cortical thickness, subcortical volume and fractional anisotropy (p>0.05).
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Conclusions

Radiologists and non-radiologists had no significant difference in structural metrics. How-

ever, in diagnosis tasks, radiologists showed markedly lower task-related brain activations

overall as well as a number of high-order visual and non-visual brain regions than non-radiol-

ogists. Some brain circuits appear to be uniquely associated with differential-diagnosis para-

digm expertise that are not involved in simpler object-recognition cases. Improved

understanding of the brain circuitry involved in acquisition of expertise might be used to

design optimal training paradigms.

Introduction

Expertise is the ability to produce a high level of performance consistently in a specific domain

[1]. Through repeated practice, experts are able to routinely produce remarkable results in

their chosen field. The amount of practice required to accomplish such feats results in the

structural and functional reorganization of the relevant brain regions as a result of long-term

potentiation, neurogenesis, glial genesis, and remodeling of different cellular and vascular

components [2].

MRI has been used extensively to characterize structural changes to the brain associated

with expertise. T1-weighted MRI showed gray and white matter volume differences between

experts and novices in such domains as chess [3, 4] and musical performance [5, 6]. Diffusion

tensor imaging (DTI) showed microstructural changes in the white matter tracts of motor-

related experts, such as gymnasts [7, 8] and golfers [9]. Functional MRI (fMRI) has been used

to detect task-specific differences in brain activation patterns between experts and novices in

domains ranging from memory games to soccer [10–12]. MRI helps to uncover functional and

structural adaptations of key systems associated with expert performance.

In regards to radiology expertise, there have been a few fMRI studies involving simple recog-

nition tasks of medical images by expert radiologists [13–17]. There have been no task fMRI

studies of radiologists while solving more difficult diagnoses or differentiating between two

probable pathologies. Cognitive problem-solving research shows that experts typically use dif-

ferent strategies for simple problems than they do for difficult problems [18]. A review of cog-

nitive research in medicine found that the same holds true for physicians generating diagnoses:

an “easy” case is a matter of pattern recognition, while more difficult cases require a “hypothet-

ico-deductive” approach, in which doctors form an initial hypotheses and test it against the

available data [19, 20]. In radiologists, Melo et. al found that identifying abnormalities on chest

x-rays activated the same brain regions as identifying animal shapes, suggesting that radiolo-

gists use the same process for categorizing medical images as non-radiologists use for common

everyday objects [16]. This is further supported by Bilalic et. al who showed that radiologists

engage the fusiform face area when discriminating between medical and non-medical images

[13]. It is also supported by radiologists themselves, who report that with simple cases where no

probable differential diagnosis exists, diagnosis becomes akin to object recognition: an intuitive

and near-instantaneous task [16]. However, in difficult cases, radiologists could not employ a

simple recognition strategy. Moreover, there have been no published structural and diffusion

tensor MRI studies associated with radiology expertise.

The main goal of this study is to use task fMRI to study the brain of expert radiologists while

performing a difficult diagnosis task in which a series of medical images with a brief patient his-

tory are presented during fMRI acquisition for 12s and participants are asked to choose a diag-

nosis. Comparisons were made with age- and education-matched non-radiologists. The images
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were chosen by qualified radiology experts to be difficult or ambiguous to interpret, thus forc-

ing an alternative to the pattern recognition strategy used in previous fMRI studies of radiolo-

gists. As mentioned above, the literature has so far focused on the immediate, “gestalt” visual

processing of radiologists. We predict that our task will not only activate brain areas involved

in such gestalt visual processing and pattern recognition as has been reported in previous fMRI

studies of radiology expertise [13, 14, 16], but our task will also activate brain areas involved in

hypothetico-deductive problem-solving. This work will further our understanding of the

underlying executive functions, spatial processing of working memory, and problem solving

associated with radiology expertise. In addition, we also collected anatomical and diffusion-ten-

sor MRI, and analyzed for differences in cortical thickness, subcortical gray matter volume,

and fractional anisotropy in white matter between radiologists and non-radiologists.

Methods

Participants

This study was approved by the Stony Brook Institutional Review Board, approval #1077893.

All participants provided written, informed consent. Participant demographics are provided

in Table 1. Participants were recruited from the University Hospital and were split into two

groups: radiologists and non-radiologists. Radiologists (N = 12, 11M, age = 38.2±10.3) were

defined as participants that have passed the American Board of Radiology Core Exam, includ-

ing attending radiologists, radiology fellows and 4th year radiology residents. Non-radiologists

(N = 17, 15M, age = 30.6±5.5) included non-radiologist physicians and researchers with PhD

or MD degrees in fields that did not involve medical imaging, 1st year radiology residents,

interns, and 4th year medical students matched with radiologists for age and education. There

was however a significant difference in age between radiologist and non-radiologist groups,

which was addressed by adding age as a nuisance regressor in the analysis of group differences.

Our behavioral performance scores of attending radiologists and 4th year residents were not

statistically different, justifying combining the two groups. In addition, previous studies of res-

ident and attending radiologists have shown comparable diagnosis accuracy [21, 22].

fMRI tasks

The fMRI task paradigm is summarized in Fig 1. The paradigm was explained to subjects out-

side of the MRI scanner, and a short three-question training paradigm was run with the subject

inside of the scanner prior to data acquisition. Subjects were first shown a scrambled radiologi-

cal image. In the “puzzle” phase, subjects were instructed to examine a medical image with

some patient history for 12 seconds and search for possible causes for the symptoms or other

abnormalities. Finally, in the “solution” phase, subjects were asked to choose a diagnosis by

pressing a button, and then shown the correct solution. The responses to each question was

recorded with E-Prime software (Psychology Software Tools, Pittsburgh, PA). The images and

questions were chosen by 2nd year radiology residents from a database of board exam practice

questions. The images were selected such that each would have at least two probable diagnoses

Table 1. Subject demographics.

Experts N Age Non-experts Novice Age

Radiologist attendings 4M/0F 50.8 ± 5.6 Attendings/researchers 2M/1F 40.3 ± 5.8

Fellows 3M/1F 34.5 ± 4.5 Non-radiologist fellows 0

4th yr radiology residents 4M/0F 29.3 ± 1.0 1st yr radiology residents 3M/1F 30.5±3.1

4th yr medical students 10M/1F 27.4±1.4

https://doi.org/10.1371/journal.pone.0231900.t001
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that would require expertise to differentiate. All questions were based in abdominal, musculo-

skeletal, and neurological imaging using x-ray, CT, and MRI modalities. Each run consisted of

20 question trials lasting a total of 9 minutes.

MRI acquisition

MRI experiments were performed at the University Hospital (3T Siemens Biograph mMR).

Sagittal T1-weighted structural MRI were acquired using 3D MPRAGE with a repetition

time (TR) = 2300 ms, echo time (TE) = 3.24 ms, field of view (FOV) = 19.2x22.3x22.3 cm,

matrix = 192x256x256, voxel size = 0.9x0.9x0.9 mm. BOLD fMRI was acquired with

TR = 2000 ms, TE = 30 ms, FOV = 19.5x19.5x10.2 cm, matrix = 78x78x31, voxel

size = 2.5x2.5x3.3 mm. DTI was acquired with b = 0 and b = 1000 (30 directions),

matrix = 96x96x65, voxel size = 2x2x2 mm, FOV = 19.2x19.2x13 cm. In addition, for esti-

mation of the susceptibility-induced off-resonance field, three EPI volumes with the

Fig 1. fMRI task paradigm.

https://doi.org/10.1371/journal.pone.0231900.g001
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opposite phase encoding direction were acquired. Field estimations were calculated using

FSL’s Topup tool [23, 24].

fMRI analysis

All fMRI data processing was performed using the FMRIB Software Library (FSL) [25, 26].

Individual fMRI images were motion-corrected with a rigid-body registration to the middle

volume using MCFLIRT [27]. Images were smoothed with a Gaussian spatial filter with a full

width half maximum (FWHM) of 6 mm. One explanatory variable (EV) was defined for each

phase of the task paradigm by convolving a square wave with a gamma function. The temporal

derivatives of each EV were also added to the General Linear Model to account for small phase

shifts in the data. The six motion parameters estimated by MCFLIRT, along with their squares,

derivatives, and squares of their derivatives, were included as nuisance regressors to remove

the effects of motion. Age of the participants was also added as a nuisance regressor, as the

mean age of the radiologists tended to be higher than non-radiologists. Brain activation pat-

terns during the puzzle phase were contrasted with activation upon viewing the scrambled

image in order to remove brain activity that was due to simple visual stimulation. Compari-

sons were then made between radiologists and non-radiologists with a mixed effects model in

FSL [26]. Significant activation was defined as a z-score greater than 2.6 and a cluster probabil-

ity p-value of less than 0.05.

Structural analysis

T1 images were segmented and parcellated using Freesurfer [28]. Cortical thickness maps

were created and mapped onto an average template created from the study population using

the standard Freesurfer workflow. Cortical thickness was compared between radiologists and

non-radiologists on a vertexwise basis with a two-tailed t-test with the False Discovery Rate

held to 0.05 to correct for multiple comparisons. Subcortical gray matter structures were also

segmented using Freesurfer. The volumes of subcortical structures, including the caudate,

putamen, thalamus, hippocampus, and globus pallidus, were normalized by total intracranial

volume and compared between groups with a two-tailed t-test.

DTI analysis

DTI images were linearly registered to each subject’s T1 scan and the result was nonlinearly

registered into MNI space using FSL’s FLIRT and FNIRT tools, respectively [27]. Voxel-wise

analysis was performed on fractional anisotropy (FA) images with nonparametric permutation

inference through FSL’s randomise tool, using 5000 permutations and threshold-free cluster

enhancement for multiple comparison correction [29].

Results

Behavioral data are shown in Fig 2. Radiologists chose the correct diagnosis 57 ± 9% of the

time, significantly more accurate than random guessing on the 3-option multiple choices

(p<0.001). Non-radiologists chose the correct diagnosis 33 ± 7% of the time, statistically no

different from random guessing (p = 0.9). Note that the task was intentionally designed to be

challenging so that radiologists could not get the right answers all the time for the given time

allotted to make the decision. There was no significant difference in accuracy between 4th year

residents and the attending radiologists.
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Radiologists showed overall lower task-related brain activation than non-radiologists (Fig

3). In fact, there was no brain region where radiologists had higher activation. These results

suggest that experts used less energy in performing the tasks compared to non-radiologists.

When compared using a mixed-effects model, radiologists showed significantly lower acti-

vation in several areas: the lateral occipital cortex (LOC, inferior and superior divisions), the

Fig 2. Radiologists performed significantly better than non-radiologists, whose results were close to chance. The sample sizes were smaller than

fMRI sample sizes due to technical failure in recording the responses.

https://doi.org/10.1371/journal.pone.0231900.g002
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left superior parietal lobule (SPL), the right superior frontal gyrus (SFG), the right precentral

gyrus, the lingual gyrus (LG), and the left intraparietal sulcus (IPS). (Fig 4, Table 2).

LOC & SPL

Radiologists had lower task-related activation in the lateral occipital cortex while viewing med-

ical images than non-radiologists. The LOC is associated with object and shape recognition

[30], and our result agrees with Harley et al.’s finding that disengagement of the LOC in radiol-

ogists in a lesion-location task [14]. The superior parietal lobule, another visual region, also

showed lower task-related activation in radiologists. The SPL is typically activated during spa-

tial cognition tasks such as mental rotation of 3D shapes [31] and other manipulations of spa-

tial information in working memory.

IPS

Radiologists had lower activation than non-radiologists in a significant cluster centered on the

deep intraparietal sulcus (IPS), at the junction of the superior and inferior parietal lobules. The

IPS is implicated in a wide variety of functions. Like the superior parietal lobule, the IPS has

also been associated with manipulation of information in working memory, as well as direct-

ing visual attention and mediating saccades [32, 33]. More recently, it has been pinpointed as a

crucial component in response inhibition [34], a key executive function.

LG

The lingual gyrus has been shown to be involved in visual memory, during both the initial

encoding and subsequent recall of complex images [30]. Previous fMRI studies have also

shown that the lingual gyrus is associated with visual attention, including searching for a spe-

cific object in a crowded visual field [35]. While we found that the lingual gyrus was active in

the puzzle versus scramble condition in non-radiologists, there was no significant activation in

radiologists.

Pre-central and superior frontal gyri

There was also a difference in task-related activation in radiologists in areas not traditionally

associated with vision. One significant cluster covered parts of the right pre -central and

Fig 3. Mean activation during the puzzle phase was spatially similar in radiologists and non-radiologists, with non-radiologists showing bilateral

task-related activation and radiologists showing lower activation overall.

https://doi.org/10.1371/journal.pone.0231900.g003
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superior frontal gyri in a region most commonly associated with hand movement [36, 37].

However, since all subjects had the response buttons on their right hands, unilateral activation

differences in the right hemisphere are not likely caused by motor effects. The cluster overlaps

the anterior dorsolateral region of the right SFG, which is consistent with the supplementary

Table 2. Areas where radiologists had lower activation than non-radiologists.

Region System Z-Max MNI Coordinates Size (voxels) Max Z-Score

Occipital Pole (V2), Lingual Gyrus Visual 12, -96, 22 635 5.02

L. Superior Parietal Lobule -18, -66, 54 292 4.22

L. Inferior LOC -38, -58, 4 278 4.14

L. Intraparietal sulcus -26, -84, 14 268 4.73

R. Superior Frontal, R. Precentral Somatosensory 24, -10, 62 263 3.94

https://doi.org/10.1371/journal.pone.0231900.t002

Fig 4. Radiology experts had lower task-related activation in visual and spatial processing areas.

https://doi.org/10.1371/journal.pone.0231900.g004
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motor area (SMA) [30]. Recently it has been demonstrated that the SMA is not purely a motor

region: fMRI experiments have shown that it can be activated by working memory, language,

and sensory tasks [31, 32].

Volumetric and DTI results

There were no significant differences in cortical thickness between radiologists and non-radi-

ologists, either by vertexwise analysis or by regional averages using Freesurfer’s cortical atlas.

There were no significant differences between groups in total grey and white matter volumes.

There were no significant differences subcortical gray matter structures. Voxelwise analysis of

FA in the white matter tracts showed no difference between radiologists and non-radiologists.

Discussion

The most striking observation is that radiologists showed distinctly lower task-related brain

activations overall than non-radiologists. These findings are consistent with previous fMRI

studies of other expertise domains (music [38], golf [39], and race car driving [40]) which

found that practice reduces the extent of activation during tasks related to the expertise

domain. Glucose metabolism has also been found to be reduced in task-related areas of the

brain after training [41]. Thus the reduced fMRI activations in radiologists may be a result of

increased neural efficiency due to training.

There were no significant volumetric or fractional anisotropy differences in the brains of

radiologists and non-radiologists. This is somewhat unexpected, as training-induced changes

in brain morphology are well-established in other domains [42, 43]. Because of the heterogene-

ity of these parameters even within groups of healthy controls, it is possible such differences do

exist between our study populations, but were unable to reach significance due to our sample

size or relatively large age range.

As designed, the diagnosis task in this study evoked markedly different activation patterns

than object recognition tasks from previous studies. Melo et al. compared lesion location to

object recognition explicitly, showing that fast visual recognition of lesions in chest x-rays acti-

vated the same brain regions as an object-naming task. The finding suggests that the first step

in a radiologists forming a diagnosis is akin to a visual recognition task rather than one involv-

ing higher cognitive functions [13]. In general, our fMRI diagnosis tasks activated the same

regions as Melo et al, although it is less extensive in the visual areas and activation in the infe-

rior frontal gyrus was limited to the left hemisphere. In addition, we found activation in areas

that are not engaged by the object-recognition task of Melo et al., including the precentral

gyrus and the middle frontal gyrus (Fig 3). These differences are likely because Melo et al.

focused on the radiologist’s immediate reaction to the stimulus, and did not present ambigu-

ous images that required careful consideration. We believe our differential-diagnosis paradigm

engaged areas of the brain critical to radiology expertise that are not involved in simpler

object-recognition cases.

As expected with visual experts, visuospatial areas had significantly different task-related

activation between radiologists and non-radiologists. Radiologists had lower activation in the

lateral occipital cortices, the occipital pole in the area of V2, the left superior parietal lobule

and IPS, and the lingual gyrus. The result in the LOC replicates the result of a lung-nodule rec-

ognition study by Harley et al., which also compared activations between first and fourth year

radiology residents [11]. Harley et al. also found increased activation in the fusiform face area

(FFA) of fourth year residents. While our study replicated the finding in the lateral occipital

cortex, elsewhere our activation patterns were more extensive than those of Harley et al. This

is likely due to differences in task paradigms.
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The SPL and IPS are spatial processing regions, which have a key function in common:

manipulation of visual information in working memory. Manipulation of working memory is

a common operation in cognitive expertise domains and is frequently cited as an important

aspect of how experts are able to process large amounts of information quickly [44, 45]. The

IPS is responsible for some executive functions as well, including inhibition and visual atten-

tion [46]. These executive functions may play a role in the group differences detected with our

diagnosis task, but a more specific task-based study would be needed to confirm.

Lower task-based activation in the SPL and IPS may be due in part to the relative ease and

speed with which radiologists direct their attention to the relevant areas of a medical image,

and how quickly they are able to analyze the visual data they find there. The group difference

in the activation of the lingual gyrus supports this claim. The LG is activated in non-radiolo-

gists, but not significantly activated by the task in radiologists. This could be due to the LG’s

role in visual search and locating objects in a crowded visual field [35]. Eye-tracking studies

have shown that radiologists do not perform a visual search in the same sense that non-radiol-

ogists do; radiologists are able to quickly direct their attention to the abnormal area of an

image, ignoring the irrelevant anatomy [12]. This enhanced perceptive ability may be the rea-

son that the lingual gyrus is not activated by the diagnosis task in experts.

Trained radiologists had lower activation in the lateral SFG in the area of the SMA, which,

in addition to motor activity, is associated with working memory and language. More relevant

to radiology expertise, the SMA and lateral SFG in general have been shown to be activated by

visuospatial working memory tasks [47]. The common theme of lowered activation in radiolo-

gists in regions associated with working memory while viewing medical images suggests that

working memory is either more efficient in radiologists, or is simply less important to their

image analysis than it is to non-radiologists. Either way, it denotes a crucial component of

radiology expertise.

One possible limitation of this study is the sample size, which may explain the lack of statis-

tically significant differences in FA and cortical thickness which have been reported in other

studies of expertise. In addition, our fMRI task was designed to simulate the clinical diagnosis

process for radiologists. This allowed us to observe widespread functional differences in the

brains of radiologists and non-radiologists. However, this has left more focused analysis of the

individual aspects of radiology expertise (working memory, attention, integration of informa-

tion) up to future studies. Another limitation is the lack of a task-free fMRI acquisition, or

“resting state” fMRI. Such data would provide connectivity information between the different

brain regions implicated in this study, and would enable for the correction of the task-based

fMRI due to low-frequency fluctuations [48], which have been shown to be altered in some

domains of expertise [49].

In conclusion, these findings suggest that radiology expertise acquisition involves a large,

widespread and integrated functional network This work will further our understanding of the

underlying executive functions, spatial processing of working memory, and problem solving

associated with radiology expertise. Improved understanding of the brain circuitry involved in

acquisition of expertise might be used to design optimal training paradigms and to evaluate

acquisition of expertise.
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