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RNA is a unique bio-macromolecule that can both record genetic information and
perform biological functions in a variety of molecular processes, including transcription,
splicing, translation, and even regulating protein function. RNAs adopt specific three-
dimensional conformations to enable their functions. Experimental determination of
high-resolution RNA structures using x-ray crystallography is both laborious and
demands expertise, thus, hindering our comprehension of RNA structural biology. The
computational modeling of RNA structure was a milestone in the birth of bioinformatics.
Although computational modeling has been greatly improved over the last decade
showing many successful cases, the accuracy of such computational modeling is not
only length-dependent but also varies according to the complexity of the structure.
To increase credibility, various experimental data were integrated into computational
modeling. In this review, we summarize the experiments that can be integrated into
RNA structure modeling as well as the computational methods based on these
experimental data. We also demonstrate how computational modeling can help the
experimental determination of RNA structure. We highlight the recent advances in
computational modeling which can offer reliable structure models using high-throughput
experimental data.

Keywords: RNA structure, chemical probing, 3D shape, structure prediction, RNA-puzzles

THE PROBLEM OF RNA 3D STRUCTURE DETERMINATION
AND ITS HISTORY

Ribonucleic acids or RNAs play significant roles in a great variety of biological processes throughout
the central dogma (Sharp, 2009; Cech and Steitz, 2014; Strobel et al., 2016), ranging from
transcription regulation (Long et al., 2017), to RNA splicing (Buratti and Baralle, 2004; Luco
and Misteli, 2011), and protein synthesis (Valencia-Sanchez et al., 2006). A recent study revealed
the fact that RNA may act as a riboregulator of autophagy through the regulation of protein
polymerization (Horos et al., 2019), which indicates the function of the proteins are not only
regulated by transcription and translation but also by interaction with the RNA structure. The
functional diversity of RNA arises from its ability to form specific 3D structures that can function
in response to cellular signals (Al-Hashimi and Walter, 2008; Mustoe et al., 2014, 2018). An
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example in disease mechanism from recent research (Cammas
and Millevoi, 2017) shows RNA G-quadruplexes, folded into
a four-stranded conformation, revealing new mechanisms
in disease. According to these examples, determining and
modeling the RNA structure can substantially contribute to
our understanding of biological processes, disease mechanisms,
and RNA therapies.

As early as 1969, the first manually predicted tertiary structure
of tRNA (Levitt, 1969) was regarded as a milestone in the
emergence of bioinformatics. That structure was based on
available tRNA sequences and some scattered experimental
data [like the cross-link between positions 8 and 13 (Yaniv
et al., 1969)]. In 1989, the model of the core of group I
intron (Michel and Westhof, 1990) was based on extensive
sequence comparisons, clustering secondary structures into
distinct classes, and the published experimental data based
on mutagenesis. Since then, the RNA structure modeling
approaches, including secondary and tertiary structure
modeling, have been in intense development. A variety of
useful programs were produced in this period [for recent
reviews see (Miao and Westhof, 2017; Ponce-Salvatierra et al.,
2019)]. With the development of whole-genome sequencing
techniques and the availability of various metagenome
sequences, hundreds of RNA families have been discovered
(Weinberg et al., 2007, 2009, 2010) which greatly expanded
our knowledge of the RNA sequence space. Almost all of
these RNA sequence families have been described in the
database of Rfam (Kalvari et al., 2018). However, up to
January 2020, only 99 RNA families in the Rfam database
have experimentally determined structures available in
the Protein Data Bank (PDB) (Berman et al., 2000) or
the Nucleic Acids Database (NDB) (Berman et al., 1992;
Coimbatore Narayanan et al., 2014).

The experimental methods of RNA structure determination
can be classified as biophysical and biochemical methods.
Biophysical experiments such as x-ray crystallography (Suddala
and Zhang, 2019), small-angle scattering (SAS) (Hura et al.,
2009), and cryogenic electron microscopy (cryo-EM) (Zhang
et al., 2019) are uncovering the structural basis of RNA functions
at nanometer- or angstrom-level resolutions. Alternatively,
biochemical approaches [e.g., chemical probing (Peattie and
Herr, 1981)], have been used systematically to validate RNA
structures. The recent coupling of RNA structure probing
with high-throughput sequencing (Strobel et al., 2018) has
changed the estimation from the electrophoresis on denaturing
gels (Lucks et al., 2011) to the omics techniques, allowing
higher for throughput in RNA structure characterization. Instead
of the atomistic models, biochemical approaches promote
the experimental flexibility and throughput by sacrificing
the resolution. They determine RNA structure using the
computational approaches based on the restraints obtained
from experiments. Structure dynamics, folding, and in vivo
structure determination have become a new field known
as conformational ensembles, or structure ensembles. The
ensembles are the set of all dynamic structure conformations,
capturing the structure motions in a large range of energy
landscapes and timescales. Conformational ensembles are critical

in understanding the cellular function of RNAs (Ganser et al.,
2019) and computational methods with experimental data have
been developed (Salmon et al., 2014). And these methods have
been discussed in previous reviews (Salmon et al., 2014; Ganser
et al., 2019).

Together with the advances in experiments, computational
modeling or prediction methods of RNA secondary and tertiary
structure (Magnus et al., 2014; Ponce-Salvatierra et al., 2019)
are being developed and improved to help and complement
experimental efforts. Similar to the efforts in protein structure
prediction, RNA 3D structure modeling has used approaches
including homology modeling (Flores and Altman, 2010; Rother
et al., 2011b), fragment assembly (Das and Baker, 2007; Bida and
Maher, 2012; Popenda et al., 2012; Zhao et al., 2012; Xu et al.,
2019), and de novo prediction (Sharma et al., 2008; Jonikas et al.,
2009; Krokhotin et al., 2015; Boniecki et al., 2016). The direct
coupling analysis approach (De Leonardis et al., 2015; Weinreb
et al., 2016; Wang et al., 2017), which is based on the alignments
of metagenome sequence information, also shows its ability in
RNA structure prediction. Since 2011, RNA-Puzzles (Cruz et al.,
2012; Miao et al., 2015, 2017, 2020), which is a community
effort for evaluating these RNA 3D structure prediction methods,
has reported three rounds of predictions. It revealed existing
bottlenecks in RNA structure modeling, including the prediction
of non-Watson–Crick interactions, atomic clashes in the models,
and the challenges in ligand binding predictions.

The recent improvements about static structure
determination, achieved by coupling high-throughput
experimental data with computational modeling (Cheng
et al., 2015, 2017; Kappel et al., 2019), have demonstrated great
potential in RNA 3D structure characterization. In this review,
we provide a concise overview of the existing experimental data
in RNA structure determination and the structure modeling
approaches. In particular, we highlight the recent achievements
in experimental data-driven RNA structure modeling, which
may revolutionize RNA structural biology in a high-throughput
way in the near future.

RNA STRUCTURE CHARACTERIZATION
EXPERIMENTS

Both biophysical and biochemical approaches (Figure 1A) have
been conceived to determine RNA structures, dynamics, and
interactions with other biomolecules. Biophysical experiments
are normally used to generate 3D structural information in the
form of shapes to describe the molecular structure, ranging
from the angstrom-level methods of x-ray crystallography (Shi,
2014) and cryo-EM (Zhang et al., 2019) to the nanometer-
level methods like SAS (Hura et al., 2009) and AFM (Pallesen
et al., 2009). Biochemical approaches probe the RNA structures
by generating the local structural features or restraints (Kubota
et al., 2015) in computational modeling from early on (Westhof
et al., 1989). Normally, biophysical experiments determine
the structure of one RNA each time at the angstrom-level
resolution, while biochemical can probe RNA structures in
a high-throughput way by sacrificing the resolution. The
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FIGURE 1 | Graphical illustration of the experimental data that can be used in RNA structure modeling. (A) A graphical summary shows how structural information
derived from biophysical and biochemical experiments can be used for structure modeling. Different experiments indicate different types of structural information: the
three-dimensional shape of a molecule can be given by x-ray crystallography, cryo-EM, or SAS; pairwise interactions, including base-pair interactions and atomic
contacts, are indicated from NMR or mutate-and-map; and features of a single nucleotide are inferred from chemical probing. (B) A scheme shows that the
next-generation sequencing technique can be applied to the cDNA sets generated from the biochemical probing experiments in order to increase the throughput of
the experiments. Chemical probing reagents modify the exposed nucleotides and result in adducts (orange hexagons). Adducts interrupt the reverse transcription
known as RT-stop, while RT-mutate means that reverse transcription introduces a mismatched nucleotide (black dots) at the position of the adduct under special
conditions. The sequencing results of the cDNA sets from RT-stop/RT-mutate can be transformed back to structural restraints.
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well-established biophysical and biochemical approaches for
RNA are introduced in the section below.

Biophysics Approaches to Characterize
RNA Structures
X-Ray Crystallography and Cryogenic Electron
Microscopy (Cryo-EM)
X-ray crystallography and cryogenic electron microscopy (cryo-
EM) approaches characterize RNA structures by 3D maps/density
maps, which describe the shape of the molecule. In x-ray
crystallography, crystalized samples are irradiated by x-ray from
different angles to generate a group of diffraction data, which
are interpreted into electron density maps after solving the
phase problem by an inverse Fourier transform (Cate and
Doudna, 2000). The phase problem in crystallography is normally
solved by molecular replacement (Evans and McCoy, 2008),
isomorphous replacement, anomalous dispersion (McCoy and
Read, 2010), or their combination. The quality of a density
map depends on the resolution of the structure as well as
the thermodynamic mobility of the molecule. It is known that
structural regions of high-temperature factors (B factors) may
not have a clear electron density to infer the atomic coordinates
(Magnus et al., 2020). Thus, computational modeling may
optimize the crystal structures using structure knowledge learned
from already solved structures (Terayama et al., 2018). Along
with the recent advances in detector technology and software
algorithms (Doerr, 2017), cryo-EM can be applied on purified
macromolecule samples cooled to cryogenic temperatures and
embedded in an environment of vitreous water, without the
step of crystallization (Liao et al., 2013; Murata and Wolf,
2018; Vinayagam et al., 2018). Each image from cryo-EM shows
a view of the macromolecule from a certain angle, while a
massive number of particle images are used to reduce the
noise and restructure the 3D shape of the molecule at an
atomic resolution (Merk et al., 2016). In spite of the expensive
equipment and the challenge in working with liquid samples,
cryo-EM is now capable of solving a wide range of RNA
structures with atomistic models. The determination of SAM-
IV riboswitch demonstrates the capability of cryo-EM in solving
RNA structures smaller than 40 kDa (Zhang et al., 2019), which
is a breakthrough in solving small RNA molecules. Recent
advances suggest that the combination of cryo-EM and x-ray
crystallography can both solve the phase problem and determine
the structure at high resolution (Wang and Wang, 2017). For
both x-ray crystallography and cryo-EM, computational models
are used to position the atoms into the experimentally obtained
electron density.

Small-Angle Scattering (SAS) and Atomic Force
Microscopy (AFM)
Small-angle scattering (SAS) and atomic force microscopy (AFM)
are low-resolution techniques. SAS, consisting of the small-angle
scattering of x-rays (SAXS) and neutrons (SANS), is capable of
delivering structural information in the resolution range between
1 and 25 nm. Such information is similar to low-resolution
cryo-EM data. SAS samples are dissolved in solution and are

exposed to a beam of x-rays or neutrons. Subsequently, scattering
data is collected from the detector. SAXS and SANS differ
in their scattering particles: SAXS shows the electron density
map while SANS shows the distribution of the nuclei of atoms
(Byron and Gilbert, 2000; Koch et al., 2003; Svergun and Koch,
2003), both of which are used to determine the size and shape
of particles (Schnablegger and Singh, 2011). Considering the
resolution of SAS, it is only possible to capture the global shape
of a macromolecule rather than structural details (Skou et al.,
2014; Plumridge et al., 2018). In AFM experiments, samples
are immobilized on a solid base and raster-scanned by an
ultrasharp tip. The tip reacts with the sample in tapping or
contact mode, causing the movement of the Piezo element. The
movement-resulted laser reflection change can be detected by
a photodetector. And the detected signal is then transformed
into surface information (Sahin et al., 2007). The 3D surface
images produced by AFM can reach a nanometer scale resolution
(Shahin and Barrera, 2008), while computation is required to
process these images to construct 3D structure models. Possible
ways to improve AFM accuracy are better sample fixation and
using a sharper tip (Schön, 2018). Successful examples of AFM
determined RNA structures have been reported (Husale et al.,
2009; Pallesen et al., 2009; Gilmore et al., 2014, 2017), while more
details have been reviewed by Schön (2018).

Nuclear Magnetic Resonance (NMR) Spectroscopy
Nuclear magnetic resonance (NMR) spectroscopy, which covers
∼36% of the pure RNA structure solved in PDB, obtains
RNA structural information from the chemical shift of the
resonance frequencies of the nuclear spins in the sample.
NMR is based on the physical observation that nuclei in a
strong constant magnetic field, when perturbed by a weak
oscillating magnetic field, produce an electromagnetic signal with
a frequency characteristic of the magnetic field at the nucleus.
Two-dimensional NMR methods (Chaloner, 1990) are used to
detect couplings or connectivities between nuclei that are close
to each other in space. Some local structural information can
be inferred from the chemical shift spectra. Furthermore, long-
range structural information can be probed by residual dipolar
couplings caused by the presence of an aligning medium that
interferes with the isotropic tumbling of a molecule (Marion,
2013). However, it is necessary to use structural assumptions and
computational models to supplement local information when
solving large structures. One significant advantage of NMR in
solving RNA molecules is its ability in exploring non-canonical
geometries, such as non-Watson–Crick base pairs (Hermann
and Westhof, 1999), coaxial stacking (Lescoute, 2006), stem-
loops, and pseudoknots (Westhof and Jaeger, 1992) which are
key in RNA structure modeling. In addition, NMR may probe the
ligand, such as proteins or drugs, binding to RNA by seeing which
resonances are shifted upon the binding of the ligand (Wemmer,
1996). With the development of NMR technology, solid-state
NMR and solution NMR become important tools to solve RNA
structure. Solution-state NMR is reported to characterize RNA
dynamics with atomic models, but the sample is limited in size
(Bothe et al., 2011). Later, solid-state NMR has also been reported
to be used in RNA structure determination in high resolution
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together with matched experimental methods. Moreover, there is
no limitation in size of RNA and crystallization is not necessary
(Marchanka et al., 2015). Some successful examples have been
reported in both solution NMR (Davis et al., 2004; Latham et al.,
2005; Keane et al., 2015; Orlovsky et al., 2020) and solid-state
NMR (Marchanka et al., 2015, 2018; Huang et al., 2017; Yang and
Wang, 2018).

Fluorescence Resonance Energy Transfer (FRET)
Fluorescence resonance energy transfer (FRET) is used when
neither crystal nor solution samples are available. In FRET
experiments, the fluorescent donor and the acceptor are attached
to the samples, while the evaluated energy transmission by
intermolecular dipole–dipole coupling stimulates fluorescent
signals. The intensity is related to the distance between the donor
and the acceptor (Tuschl et al., 1994; Stephenson et al., 2016).
So, FRET is capable of determining long-range contact ranging
from 10 to 80 Å (Millar, 1996; Sekar and Periasamy, 2003).
Compared to FRET, single-molecule FRET (smFRET) can obtain
detailed information of individual molecules, which can be used
to understand the folding dynamics and conformation changes
(Karunatilaka and Rueda, 2009; Holmstrom and Nesbitt, 2016;
Stephenson et al., 2016; Manz et al., 2017). Recently, smFRET
was used to probe DNA hairpin changes under different pressures
and temperatures, which indicates that we may understand
structure changes in different surroundings with smFRET (Sung
and Nesbitt, 2020). A brief comparison among the biophysics
methods is shown in Table 1.

Biochemical Approaches to Probe RNA
Structures
Unlike biophysical approaches, biochemical approaches establish
biochemical probing as a quantitative measurement of the
RNA conformation, in particular, the base pair interactions,
the base exposure, and the structural flexibility. Both secondary
structure information and tertiary contact information can be
obtained through biochemical approaches. Such information
can be transformed into structural restraints to direct structure
modeling. Experiments related to chemical probing are listed
below:

Chemical Probing for Secondary Structure
Chemical probing
Chemical probing, which dates back to the 1980s (Peattie
and Herr, 1981), detects structural information by introducing
chemical modifications and changes to RNA using chemicals
(Figure 1B) (Weeks, 2010; Kubota et al., 2015), whose reactivity
depends on local RNA structure. These chemical reagents
include dimethyl sulfate (DMS) (Tijerina et al., 2007; Homan
et al., 2014a), silyl derivative N,N-(dimethylamino) dimethyl
chlorosilane (DMAS-Cl) (Mortimer et al., 2009), carbodiimides
(CMCT), kethoxal (Ehresmann et al., 1987), and glyoxal and its
derivatives (Mitchell et al., 2018). Different reagents can react
with specific sites or structures to form covalent adducts (Busan
et al., 2019) at the modification sites, while unpaired nucleotides
are more exposed and more inclined to be modified.

After the reaction between the probing reagents and the
structured RNA, two methods can detect the modification
of the RNA. For the first method, RNA is labeled before
the modification can be further treated after the modification
to form a strand scission, which can be directly detected
by electrophoresis (Ehresmann et al., 1987). In another way,
the RNA is reverse transcribed using a reverse transcriptase
into a DNA copy. Reverse transcription with stop (RT-stop)
or mutation (RT-mutate) is a common method to detect
modifications. RT-stop (Figure 1B) (Brunel and Romby, 2000;
Merino et al., 2005) is based on the reverse transcription
interruption by the adducts, while RT-mutate (Figure 1B)
is based on the fact that reverse transcription introduces a
mismatched nucleotide at the position of the adduct under
special conditions (Siegfried et al., 2014). RT-stop results
in a pool of DNA truncations of different lengths, whose
frequencies reflect the RNA structure profile and can be
assayed on a gel, while RT-mutate results in a pool of cDNAs
of different sequences which need to be profiled by high-
throughput sequencing (HTS). Besides local structure blocking,
nucleotide positions can also be protected by a binding protein
(Smola et al., 2015a).

Several other recently proposed chemical probing techniques
are introduced below. (1) Using bifunctional reagents to
probe long-range contacts (Weeks, 2010); (2) Using mutational
profiling (MaP) to reveal the dynamic states and reactive sites
of an RNA (Homan et al., 2014a; Krokhotin et al., 2017); (3)
Using 2′-Hydroxyl molecular interference (HMX) to identify
tertiary interactions in the highly packed regions (Homan et al.,
2014b); and (4) Using hydroxyl radical probing (HRP) to study
RNA folding and direct structure refinement (Ding et al., 2012;
Costa and Monachello, 2014). Simultaneously, computational
methods are being developed to cooperate with the experimental
developments, e.g., discrete molecular dynamics simulations
(DMD) were used to produce 3D models using HMX data
(Homan et al., 2014b).

In-line probing and enzymatic probing
In-line probing and enzymatic probing have similar principles
to chemical probing but differ in their reactions. Enzymatic
probing (Wan et al., 2013) is based on the fact that RNase
enzymes, which are local structure-specific enzymes, cut different
regions of an RNA molecule. Thus, the RNA structure can
be probed using the enzyme cut truncations. In-line probing
utilizes the feature that the 2′-hydroxyl reacts with the
backbone phosphate group in some conditions (the 2′-hydroxyl
and the phosphate group form an angle of 180 degrees,
i.e., a ‘line’ structure required) to break the backbone. As
flexible RNA nucleotides are more inclined to fulfill such a
condition, in-line probing tests the local structure flexibility
(Regulski and Breaker, 2008).

Chemical Probing for Secondary and Tertiary
Information
Many chemical probing experiments are used to measure
secondary structure information, while some reagents
and methods may infer tertiary structure information.
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TABLE 1 | A comparison of biophysics approaches.

Biophysics methods Advantages Limitations

X-ray crystallography Atomic resolution structure (Shi, 2014) Difficulty in crystal preparation;

Phasing problem

Cryo-EM Near atomic resolution structure (Murata and Wolf, 2018); Expensive equipment;

Capable of solving macromolecule structures; Difficulty in dealing with liquid sample

Shows a cluster of conformations

SAS Easy to perform experiment; Nanometer-level resolution (Svergun and Koch, 2003;

Capable of dealing with large molecules; Rambo and Tainer, 2013);

Time efficient Sample aggregation

AFM Easy to perform experiment; Nanometer- to molecular resolution result (Schön, 2018)

Surface information

NMR Sample in solution condition; Sample aggregation;

Possible to probe the structural dynamics or invisible states; Limited size of the structure

Atomistic structure models (Bothe et al., 2011)

FRET Easy to perform experiment; Can get limited structure information;

Angstrom-level resolution (Sekar and Periasamy, 2003) Limited to small RNA structures;

The signal-to-noise ratio

Experiments using bifunctional reagents (Weeks, 2010) and
M2-seq (Cheng et al., 2017) were reported to reveal long-
range contacts (Weeks, 2010). Moreover, HMX (Homan
et al., 2014b), MOHCA (Das et al., 2008), RING-MaP
(Krokhotin et al., 2017) experiments, and comparing
SHAPE results achieved by different reagents (Steen
et al., 2012) were also used to measure proximal tertiary
interactions. Those examples show great potential in probing
tertiary structure.

A widely used and further explored chemical probing method,
selective hydroxyl acylation analyzed by primer extension
(SHAPE) (Wilkinson et al., 2006; Spitale et al., 2013; Siegfried
et al., 2014; McGinnis et al., 2015; Smola et al., 2015b; Lee et al.,
2017; Mustoe et al., 2018; Smola and Weeks, 2018; Busan et al.,
2019), is based on the acrylate reaction between electrophilic
reagents and active RNA 2’-hydroxyl groups which always appear
in the single-strand region (Wilkinson et al., 2006). It reports
on RNA structure at a single nucleotide resolution, thus is
used to generate highly accurate secondary structure models
(Deigan et al., 2009). It can be combined with high-throughput
sequencing by barcode based multiplexing (Lucks et al., 2011)
and can use a combination of chemical probing reagents and
experimental data (Kladwang et al., 2011b). SHAPE has been
used to analyze large RNA structures, including the SARS-CoV-
2 genome (Manfredonia et al., 2020) and the HIV-1 genome
(Watts et al., 2009).

Recent advances in chemical probing lie in the enlarged
throughput (Kwok et al., 2015) (probing many RNAs
simultaneously) and the in vivo probing of RNA molecules
in their cellular environment (Kubota et al., 2015; Nguyen et al.,
2016). As for modification detection methods, some studies show
that combining RT-mutate and RT-stop can mitigate bias and
have a better insight into the structure since they can provide
complementary information (Novoa et al., 2017; Sexton et al.,
2017). A more recent study of mutational profiling (MaP) shows
the advantages of RT-mutate in several aspects: RT-mutate is
simpler and faster (Busan et al., 2019), while it works on long and

complex RNAs (Siegfried et al., 2014; Smola et al., 2015b; Busan
and Weeks, 2018). Additionally, RT-mutate provides relative
adduct frequencies inferred from read-depth, which measures
the reactivities of different segments in the same experiment
(Mustoe et al., 2018).

Progress has also been made in regents exploration and
the assessments of the SHAPE method (Lee et al., 2017;
Busan et al., 2019). Five regents 1M7 (1-methyl-7-nitroisatoic
anhydride), 1M6 (1-methyl-6-nitroisatoic anhydride), NMIA
(N-methylisatoic anhydride), NAI (2-methylnicotinic acid
imidazolide), and 5NIA (5-nitroisatoic anhydride) have been
assessed and recommended to use in experiments of different
conditions [94]. Moreover, to explore the correlation between
RNA structure and its SHAPE result, a computational model
named 3D structure-SHAPE relationship (3DSSR) was developed
to generate the SHAPE profile for a given RNA structure. This
model can also indicate the inconsistency between the structure
model and the SHAPE data and thus exclude the unreasonable
structure models [152].

Chemical Probing Coupled With Mutagenesis
Chemical probing (or also known as chemical mapping)
and related methods generally probe the features, e.g., the
pair/unpair state, of a single nucleotide. To understand the
base-pair connection between nucleotides, chemical mapping
is coupled with mutagenesis. If a base-pair forming nucleotide
is mutated, its partner may become unpaired, and thus tends
to become more exposed and more detectable by chemical
mapping (Kladwang and Das, 2010; Kladwang et al., 2011a;
Cordero and Das, 2015). Early examples have been shown
from the group I intron (Duncan and Weeks, 2008) and
tetrahymena ribozyme (Pyle et al., 1992) studies. Of course,
some mutations may lead to significant perturbations to the
structure, even the unfolding of an entire helix. In general,
the method of coupling chemical mapping and mutagenesis,
known as mutate-and-map or M2, achieves a highly accurate
detection of the canonical base pairs (Kladwang et al., 2011a;
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Cheng et al., 2017), with ∼2% error rate in the helix region
(Kladwang et al., 2011a).

M2-seq (Cheng et al., 2017), which is an advanced version
of mutate-and-map (Figure 2), uses error-prone PCR to
introduce mutations and couple DMS modification with
HTS (high-throughput sequencing) based on the RT-mutate
mechanism. M2-net is the algorithm to normalize M2-seq
data and get secondary structure information (Cheng et al.,
2017). MOHCA (Das et al., 2008) is an experiment that can
map the positions of nucleotides that are close together in
the three-dimensional structure. Highly reactive chemicals
[2′-NH2-2′-dATP and isothio cyanobenzyl-Fe(III)EDTA]
are attached to the nucleotides. And the Fenton reaction
damages other nucleotides nearby the reacting Fe-modified
nucleotide. It is possible to map the positions of these
reacting nucleotides by detecting the damaged nucleotides.
However, finding the damaged nucleotides is tedious and
requires specialized equipment. MOHCA-seq (Cheng et al.,
2015) is a new development of MOHCA (Figure 2), which
couples MOHCA with HTS based on RT-stop. MAPseeker
is the computational program used to analyze MOHCA-seq
data and infer proximal tertiary interactions. Both the base-
pair information from M2-seq and the tertiary interaction
information from MOHCA-seq are key restraints for RNA
structure modeling.

Besides in vitro structure probing, structure ensembles,
and structure dynamics in living cells (Ganser et al., 2019)
in vivo probing is being rapidly developed. Apart from in vitro
structure probing, methods like DMS, SHAPE, and HRP can
also be applied in vivo (Climie and Friesen, 1988; Moazed
et al., 1988; Kwok et al., 2013; Spitale et al., 2013, 2015;
Tyrrell et al., 2013; Ding et al., 2014; Smola et al., 2015a,
2016; Watters et al., 2016a; Lee et al., 2017; Feng et al.,
2018; Mitchell et al., 2018). DMS demonstrates the advantages
of its small size and short reaction time to capture some
transient changes in structure (Waldsich, 2002; Waldsich et al.,
2002; Tijerina et al., 2007). Reagent such as 1M7 (Tyrrell
et al., 2013; McGinnis and Weeks, 2014; McGinnis et al.,
2015) FAI, and NAI (Spitale et al., 2013) are developed to
be used for in vivo SHAPE probing, while NAI shows the
potential to reveal the structural differences between in vivo
and in vitro probing (Kwok et al., 2013; Hector et al.,
2014). Complementarily, HRP can probe RNA dynamics,
folding (Latham and Cech, 1989) and solvent accessibility
(Latham and Cech, 1989) in living cells (Kubota et al., 2015).
More detailed information about in vivo probing and its
challenges can be obtained from the review from Kubota
et al. (2015). A recent study presented by Tomezsko et al.
(2020) integrates DMS-MaPseq data with the DREEM (detection
of RNA folding ensembles using expectation-maximization)
algorithm to identify possible in vivo structures, suggesting a
systematic method for dynamic detection and captures transient
conformations in vivo. Another in vivo RNA–RNA interaction
and RNA structure detection method, MARIO, utilizes an RNA
linker to identify RNA–RNA interactome and finds secondary
single-stranded regions as well as tertiary proximal contacts
(Nguyen et al., 2016).

EXPERIMENTAL DATA-DRIVEN
COMPUTATIONAL MODELING OF RNA
3D STRUCTURES

Types of Data-Driven Restraints
Most experimental data alone, except x-ray crystallography
and high-resolution cryo-EM, is not enough to infer atomic-
resolution RNA structure. Hence computational modeling is
indispensable in interpreting the experimental data into an
atomic description of RNA 3D structure. Such computational
modeling can be based on existing structure determination
software, such as Phenix (Liebschner et al., 2019) for x-ray
crystallography and cryo-EM, or CANDID (Herrmann et al.,
2002) for NMR, or based on structure prediction programs, e.g.,
Rosetta (Das and Baker, 2007), Assemble2 (Jossinet et al., 2010;
Jossinet, 2015), or MC-sym (Parisien and Major, 2008). The type
of data used in structure modeling can be classified into five types:

(1) Sequence and sequence alignments are also determined
from sequencing experiments. Sequence alignments can
indicate certain co-evolution between base pairs. With the
human genome project (Bentley, 2000) and advances in
sequencing technologies (Schuster, 2008), a massive number
of metagenome sequences are being deposited in databases
(Sayers et al., 2011). Sequence covariation gives an alternative
to understanding base-pair interactions and even RNA-
protein interactions (Weinreb et al., 2016). The secondary
structures of many significant RNA structures, such as the
16S ribosomal RNA structure (Noller and Woese, 1981),
were derived from sequence covariations. Besides, sequence
covariation also predicts some long-range Watson–Crick
base-pairs in pseudoknots: a successful case was illustrated in
the group I intron structure (Lehnert et al., 1996). DIRECT
is a new algorithm reported to improve the prediction in
long-range contacts and captures more tertiary structural
information (Jian et al., 2019). A recent study demonstrated
some success in RNA secondary structure prediction through
the integration of sequence alignment based on direct coupling
analysis and minimum free energy (MFE) (He et al., 2020).
A machine learning approach was also reported to achieve
better secondary structure prediction through the integration
of direct coupling analysis and SHAPE data (Calonaci et al.,
2020). However, some functional long non-coding RNAs
may not necessarily have structures and may not have many
homologous sequences or some sequence alignments could
be too conserved to infer covariations. This severely limits
the prevalence of these covariation-based RNA structure
prediction methods. Details of covariation bases methods have
been discussed by Rivas et al. (2017, 2020), while the resulting
method has been used to curate Rfam RNA sequence families.

(2) The 3D shape of the molecule ranges from high-resolution
x-ray crystallography to SAS, which only describes the global
topology of a structure. In the case of x-ray crystallography
and high-resolution cryo-EM, atomic coordinates may
directly fit into the density maps. As for low-resolution
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FIGURE 2 | An example of structure modeling based on M2-seq (or MOHCA-seq). This scheme shows the workflow of M2-seq and MOHCA-seq experiments. Both
approaches are based on the assumption that the mutated nucleotide in a base-pair tends to become more exposed and more detectable by chemical mapping.
M2-seq uses DMS to probe the unpaired nucleotides introduced by error-prone PCR, while sequencing data can be analyzed by the M2-net algorithm based on the
RT-stop mechanism. MOHCA-seq uses 2′-NH2-2′-dATP and isothio cyanobenzyl-Fe(III)EDTA to introduce Fe adducts into the RNA. While the Fenton reaction
damages other nucleotides nearby the reacting Fe-modified nucleotide. Sequencing data analyzed by the MAPseeker algorithm highlights the proximally tertiary
structure interactions.
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density maps, computational modeling is required to generate
structural models to fit in the global topology, while additional
information (possibly the other three types of information,
elaborated in the integrative modeling section below) may
help the modeling.

(3) Features of a single nucleotide, such as paired/unpaired
state and buried/exposed state, can be inferred from chemical
probing data. These features are normally used to validate
the secondary structure predicted by minimum free energy
(MFE), e.g., using SHAPE to probe RNA secondary structures
or to test probing profile change upon protein/ligand binding.
Some of these HTS-based experiments, including DMS-seq
(Rouskin et al., 2014) and SHAPE-seq (Loughrey et al., 2014;
Watters et al., 2016b), have been commercialized. Together
with these experiments, computational methods have been
developed to derive more accurate structural information. An
RNAsc method is proposed according to SHAPE data, which
includes pseudo-energy terms and base stacking positions,
making it more accurate to predict the secondary structure
(Zarringhalam et al., 2012). Another method also utilizes
pseudo-energy information obtained from chemical probing
and integrates with thermodynamic folding algorithms to
reach a good secondary structure prediction (Washietl et al.,
2012). The Kalman approach is used to filter SHAPE data
from noise (Vaziri et al., 2018) and the RING-MaP method
reveals diverse interactions at both secondary and tertiary
levels (Krokhotin et al., 2017). FoldAtlas was developed for
high-throughput chemical probing data processing (Norris
et al., 2017) and a statistical modeling was developed to
improve the sensitivity of high-throughput probing data
(Selega et al., 2017). An SNPfold algorithm was designed
to recognize SNP-induced conformational changes in
genome-wide analysis (Halvorsen et al., 2010). The above
mentioned DREEM algorithm can be used to characterize
different conformations from DMS-MaPseq data (Tomezsko
et al., 2020). These examples show that efforts made in data
processing modeling and methods may give us more useful
and accurate information.

(4) Base pair interaction cannot only be inferred from
sequence covariations (De Leonardis et al., 2015; Weinreb
et al., 2016) but can also be determined from biochemical
experiments (e.g., M2-seq) or secondary structure prediction
(Zuker, 2003). Considering the base-pairing nature of RNA
structures, this type of information has particular importance
in determining the structure. In terms of secondary structure
prediction, the MFE (minimum of free energy) structure
simplifies the RNA structure as Watson–Crick base-pair
interactions. Thus, it can be predicted by the combination of
a loop-based energy model and the dynamic programming
algorithm introduced by Zuker (2003). However, it ignores
the contribution of pseudoknots and non-Watson–Crick
interactions. When covariation or experimental evidence is
available, the Watson–Crick base pairs in pseudoknots can
still be correctly identified. It is most difficult to determine
non-Watson–Crick base-pairs. The best way besides x-ray

crystallography and cryo-EM is to use a combination of
chemical probing experiments and sequence covariation. And
some successful examples have been reported (Walczak et al.,
1996). As discussed above, MOHCA-seq has demonstrated its
ability in determining both Watson–Crick and non-Watson–
Crick long-range base-pairs. In 3D structure modeling,
the base-pair information is often used together with the
features of a single nucleotide. For example, M2-seq is coupled
with DMS to probe RNA structure and has been successful
(Cheng et al., 2017).

(5) Non-canonical interaction-based RNA modules are
RNA structural modules that are formed by non-canonical
interactions and can be predicted by module prediction
methods (Cruz and Westhof, 2011; Zirbel et al., 2015). Some
recent determined RNA structures have demonstrated the
importance of these non-canonical interactions (Butcher and
Pyle, 2011): the recently crystalized MALAT1_th11 RNA
(Ruszkowska et al., 2020) shows a UA-U-rich RNA triple helix
with 11 consecutive base triples (Figure 3A); the two trans-
sugar-Hoogsteen G:A base-pairs in the kink-turn module
(Huang et al., 2019a) enables its folding in 3D (Figure 3B);
and the triple interactions in the pseudoknot structure of
the glutamine-II riboswitch (Huang et al., 2019b) is known
to be crucial for ligand binding (Figure 3C). A structural
module in RNA is a set of ordered non-Watson–Crick base-
pairs embedded between Watson–Crick pairs, which are
recurrent in the RNA structure (Figure 4B). With a good
sequence alignment, such modules can often be predicted
because of their restricted sequence variations. Automatic
prediction programs based on this pragmatic approach have
been developed (Cruz and Westhof, 2011; Theis et al.,
2013). Without non-Watson–Crick interactions, the structural
description is still at the secondary structure level. According
to RNA-Puzzles, the prediction accuracy of non-Watson–Crick
base-pairs is less accurate than the prediction of Watson–Crick
base-pairs (Figure 4A), hindering the accurate RNA structure
prediction. RNA structural modules are important for the
folding of 3D RNA structures as well as for their functionality.
For example, the kink-turn module, known to bind to the
L7Ae protein (Turner et al., 2005), encodes a certain signature
in its sequence (Figure 4C) and folds into a fixed structural
fold (Figure 4B). Such a signature can be summarized by
a probabilistic model (Cruz and Westhof, 2011; Sarrazin-
Gendron et al., 2019), such as the Basepairing program
(Figure 4D), or by machine learning (Zirbel et al., 2015).

Types of Structure Prediction
Approaches
All of these five types of structural information complement
each other. Therefore, the integration of several types of
the available information may improve the prediction of
RNA structures. When neither a crystalline structure nor
high-resolution cryo-EM data is available, the modeling of RNA
structure in 3D may rely on RNA 3D structure prediction, which
uses some existing knowledge about RNA structure derived from
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FIGURE 3 | Examples of non-canonical interactions. (A) The UA-U-rich RNA triple helix in MALAT1_th11 RNA, PDB id 6SVS. (B) The simple k-turn with two
trans-sugar-Hoogsteen G:A base pairs, PDB id 6HCT. (C) The structure of the G18 > G2:C39 triple interaction in glutamine-II riboswitch, PDB id 6QN3.

FIGURE 4 | The prediction of non-canonical base-pairs. (A) The comparison between Watson–Crick and non-Watson–Crick base-pairs prediction in terms of
interaction network fidelity (INF; Parisien et al., 2009) in RNA-Puzzles. (B) The superimposition of recurrent kink-turn modules. (C) The graphical abstraction of the
kink-turn module. (D) The module abstraction in the Basepairing program.
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the existing databases. RNA 3D structure prediction has used
some computational approaches, such as comparative modeling,
fragment assembly, and de novo modeling (Figure 5) details can
be referred to in the review paper by Rother et al. (2011a).

Comparative modeling is based on the assumption that
homologous RNA molecules present similar structures in the
relatively conservative regions. An RNA can be predicted
using the known homologous structure in the database as a
template. A prediction may either use the pairwise sequence
alignment to model based on the template structure (Rother
et al., 2011b) (ModeRNA) or translate the template structure
into structural restraints in prediction (Flores et al., 2010)
(RNABuilder). However, comparative modeling highly depends
on the availability of a homologous template, thus it cannot be
applied to explore a novel RNA structure.

Fragment assembly first decomposes the known RNA
structures into fragments and makes a fragment library, and
predicts an RNA structure by searching fragments that are
similar to the target sequence and assembling them together.
Several approaches in this type use secondary structure as a
predefined restraint [e.g., RNAComposer (Popenda et al., 2012),
3dRNA (Zhao et al., 2012), and VfoldLA (Xu et al., 2019)],
while experimental data may help in the determination of the
secondary structure.

de novo modeling is a collective name for those predictions
without templates. de novo modeling is normally based on force-
field simulation and searches for the ideal structure by sampling
the conformational space [e.g., NAST (Jonikas et al., 2009),
iFoldRNA (Sharma et al., 2008) (Krokhotin et al., 2015), and
SimRNA (Boniecki et al., 2016)]. As the whole conformational
space can be too large to explore, using predefined restraints
such as the secondary structure to narrow down the search space
may effectively reduce the unnecessary search and achieve a
better prediction.

Integrative Modeling
When no homologous template is available, fragment assembly
and de novo modeling may integrate various types of information
to help with the prediction. A widely-used approach is to
predict the secondary structure first and predict the 3D structure
according to the secondary structure. One simple case is
the RNAComposer: one can use RNAfold from ViennaRNA
(Lorenz et al., 2011) to predict the secondary structure and
use RNAComposer to assemble the 3D modeling according to
the predicted secondary structure using the fragment library
RNA FRABASE (Popenda et al., 2010). A more complicated
version could use DMS-seq and M2-seq to constrain the
secondary structure, while use MOHCA-seq to probe the
tertiary interactions. Then, use fragment assembly to build
an initial 3D model and optimize it through conformational
search using Rosetta or other force-field based methods.
One may even use covariations from the multiple sequence
alignment to confirm the base-pairs/interactions, and use module
prediction methods to assign the non-canonical base-pairs. Such
modeling integrates several types of information (features of
a single nucleotide, base-pair interaction, and non-canonical
interactions) in several prediction methods (fragment assembly

and de novo modeling). Normally, integrative modeling is
defined as modeling that uses more than one modeling
approach. To extend, it may also integrate different types of
information in different types of prediction methods to achieve
a high-quality prediction. As experiments, especially the HTS
based techniques, are becoming better established and cheaper,
integrative modeling using experimental data is becoming easier
and makes modeling more reliable.

Various integrative approaches have been reported in recent
years: A fully computational workflow, EvoClustRNA (Magnus
et al., 2019), effectively integrates de novo modeling and
fragment assembly and statistical potential to achieve accurate
predictions. EvoClustRNA first selects a set of sequences
homologous to the target sequence to be modeled and uses
both FARFAR (fragment assembly) and SimRNA (de novo
modeling) to model all the sequences. The conserved regions
of all these sequences are extracted and clustered. And the
predicted structure is selected from the most commonly
preserved structural arrangements of the homologous structures
based on a statistical potential. Although EvoClustRNA is a
fully computational workflow, it demonstrates good predictions
in several targets of RNA-Puzzles. The integrative modeling
platform (Russel et al., 2012) is a computational platform to
integrate SAS, EM, x-ray crystallography, or NMR data by
comparative modeling. It was designed for protein structures
but may also extend to other macromolecules like RNA.
Another example is PLUMED-ISDB, which is based on the
molecular dynamics library PLUMED (Tribello et al., 2014).
It may integrate experimental data from NMR, FRET, SAXS,
or cryo-EM to model the structure and dynamics of RNA
as well as other biomacromolecules (Bonomi and Camilloni,
2017). Apart from the above mentioned approaches, there
are also other computational modeling methods, such as
molecular dynamics (MD) and quantum mechanics (QM).
Discussion about those methods have been introduced in other
reviews (Dawson and Bujnicki, 2016; Miao and Westhof, 2017;
Schlick and Pyle, 2017).

However, not all experimental data are accurate and
informative enough. Integrating noisy or bad data into structure
modeling may result in a worse prediction. A recent study
(Wang et al., 2019) performing structure prediction with
excessive restraints from experimental data demonstrated this
conclusion. Therefore, more strict assessment and calibration of
the experimental data for modeling is needed and the related
computational methods need to be developed.

RECENT SUCCESSES IN
COMPUTATION-AIDED RNA
STRUCTURE DETERMINATION

Massive progress is being made through the integration of
different methods, both computational and experimental. Not
only experimental data can be used as restraints to help
computational modeling, but also computational approaches
benefit experimental research.
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FIGURE 5 | The approaches of RNA 3D structure modeling. Comparative modeling, fragment assembly, and de novo modeling are the basic approaches in
predicting RNA structures. Comparative modeling is based on the availability of one or more homologous structures, while fragment assembly uses known structural
fragments to assemble the structure. De novo modeling searches for the best conformation in the space considering the physical or empirical force-fields.
Experimental data generates different types of restraints in structure modeling and can be applied in different modeling approaches. Details of the restraints and the
related modeling approaches are explained in the main text.

One such advance was to use the de novo predicted structure
to determine the x-ray crystal phase (Huang et al., 2019b). Huang
et al. (2019b) reported de novo predictions, which are within 3 Å
root mean square deviation (RMSD) from the crystal structure
of glutamine-II riboswitch. And two of the predicted models
were able to achieve the molecular replacement to determine the
phase of the crystal. This work reports a useful potential that
computational modeling may take up a more important role in
interpreting experimental data.

With the rapid development of cryo-EM technology,
computational studies are accentuated to help in structure
determination. Deep learning models have been proposed
to address the laborious particle picking problem (Norousi
et al., 2013; Wang et al., 2016; Al-Azzawi et al., 2019; Yao
et al., 2019). For high-resolution cryo-EM density maps,
a fully automatic computational method, map_to_model
(Terwilliger et al., 2018) from Phenix (Liebschner et al.,
2019), is capable of yielding high-accuracy initial models.
However, it is still not easy to deal with low-resolution data.
And more efforts are being made. DRRAFTER (Kappel et al.,
2018) allows for the tracing of RNA atomic coordinates
in the biologically important but low-resolution regions
using de novo computational modeling. cryo-EM maps
offer the information of the 3D shape of a molecule, while

computational modeling infers the atomic coordinates from
this information.

However, as DRRAFTER was developed specifically for
modeling large RNA-protein complexes, which require initial
manual setup, it may not be effective and may include bias
when modeling smaller RNAs without protein partners. auto-
DRRAFTER was designed to address this problem in an
automatic way. auto-DRRAFTER constitutes the computational
part of Ribosolve (Kappel et al., 2020), which is a hybrid workflow
integrating moderate-resolution cryo-EM maps, chemical
mapping, and Rosetta (Das and Baker, 2007) computational
modeling. As shown in Figure 6, Ribosolve first uses native gel
to check for the formation of sharp bands in the RNA samples.
RNA secondary structures can be determined by M2-seq, while
the 3D shape of the RNA global architecture can be obtained
from cryo-EM. In addition, mutate-map-rescue experiments can
confirm or refine novel secondary structure rearrangements.
Based on these two types of information, auto-DRRAFTER
is able to build all-atom models. Model accuracy is predicted
from the overall modeling convergence, while uncertain regions
are identified by comparing the per-residue-convergence and
real-space correlation between the map and model. As a result,
Ribosolve dramatically captures the structure of full-length
tetrahymena ribozyme and builds 13 RNA structures without
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FIGURE 6 | Using chemical mapping-based structure modeling to model
low-resolution cryo-EM data (Ribosolve). The Ribosolve approach is a recent
example of integrative modeling using moderate-resolution cryo-EM maps,
chemical mapping, and Rosetta computational modeling. M2-seq probes the
base-pair interactions, while cryo-EM restrains the three-dimensional shape of
the structure topology. Force-field-based modeling optimizes the structure
based on the learned knowledge of the force-field derived from known RNA
structures. The generated models are assessed by modeling convergence,
while mutate-map-rescue provides an alternative to optimize the secondary
structure information and improve the modeling.

protein binding ranging from 119 to 338 nt. Moreover, the
structure of several other important RNA, like hc16 ligase and
full-length Vibrio cholerae and Fusobacterium nucleatum glycine
riboswitch aptamers, are determined. The SAM-IV riboswitch
structure illustrates Ribosolve’s ability in solving small RNA
structures within 40 kDa (Zhang et al., 2019). These results from
Ribosolve demonstrate a rapid and routine determination of
RNA-only 3D structures.

There are also other successful examples in both
computational-aided structure determination and in new
computational modeling methods. Zhang et al. (2018) integrated
NMR and cryo-EM data using MD simulation to solve the

30 kDa HIV-1 RNA. NMR data and SAXS data were used
jointly to determine the HIV-1 intron splicing silencer structure
(Jain et al., 2016). Ab initio 3D structure modeling helped in
determining the HIV-1 Rev response element using SAXS data
(Fang et al., 2013). The RS3D method can utilize secondary
structure information, SAXS data, and any tertiary contacts
information to determine the RNA structure topology (Bhandari
et al., 2017). FARFAR (Das et al., 2010; Yesselman and Das, 2016)
and FARFAR2 (Watkins et al., 2020) were developed to model
non-canonical RNA structure at near-atomic accuracy. Swellix
explores RNA conformational space when integrating data from
crystallography, cryo-EM, or in vivo crosslinking and chemical
probing methods (Sloat et al., 2017). Statistical modeling helped
to construct RNA structure landscapes from structure profiling
data, which can facilitate the studies of RNA dynamics and
function (Li and Aviran, 2018).

CHALLENGES AND PERSPECTIVES

In spite of the good number of RNA structures being determined,
it is still urgent to probe the structural basis of RNA functions.
For example, with the break out of virus infection [2015–
2016 Zika virus (Akiyama et al., 2016), 2019 coronavirus
(Huang et al., 2020)], rapid determination of the structures
of functional elements in virus RNA may provide invaluable
insights into human health. Computational modeling is playing
a more critical role in biological studies (Markowetz, 2017),
while RNA structure determination is a particular field where
computational modeling can exert its potential. Although RNA
structure determination is now becoming rapid and routine,
there exist several major challenges.

A major challenge is to improve experimental accuracy for
high-throughput biochemical experiments. For this purpose, it
is necessary to systematically benchmark these high-throughput
techniques with high-resolution RNA structures. However,
when high-resolution RNA structures are not available,
such benchmarking of experimental accuracy is indirect and
confounded with computational modeling. Thanks to the
increasing throughput of experimental data being generated,
a more realistic evaluation of experimental noise will become
possible. Considering that the high-throughput sequencing
data tends to reflect a mixture of the structural conformations,
computational modeling methods are expected to deconvolve
this structural information and dissect the conformations.
High-throughput experiments will also help in determining
more unknown structures in Rfam families.

Another significant challenge lies in probing RNA structures
in vivo to understand the structural dynamics. Although
DMS, SHAPE, HRP as well as other recent methods, such as
DMS-MaPseq, provide good tools for structure ensembles and
dynamics detection, the folding process to the functional state
remains unsolved. Compared to biochemical experiments, x-ray
crystallography and cryo-EM normally need to prepare RNA
samples in extreme conditions which are relatively difficult. And
high resolution methods with easier sample preparation may
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be developed in the future (Stagno et al., 2017). Computational
modeling is the interface between experimental data and the RNA
structure coordinates. It is always a central problem to improve
computational modeling according to the experiments and also
help to correct experimental biases.

In terms of structure modeling, it is known that the
prediction of non-canonical interactions (non-Watson–Crick
base-pairs) is still difficult. A good description of these non-
canonical interactions both benefit the RNA structure modeling
and the comprehension of functional RNA modules. To
improve the RNA structure prediction methods, optimizing
non-canonical interaction is still inevitable. As non-Watson–
Crick base-pairs could include additional chemical probing
information, e.g., the N7G methylation by DMS, new
computational methods dealing with these different chemical
probing datasets may effectively improve the determination of
non-Watson–Crick interactions and achieve better structure
predictions. Automatic modeling workflow is another challenge
in RNA modeling. Most currently available automatic web
servers depend on the sole input of the RNA sequence
and optionally the secondary structure information. And
the structure modeling accuracy is not ideal because of
the lack of experimental data. However, it will be key to
transform various experiment data into structural restraints
in a standard manner. Automatic web servers should also
promote the input of experimental data as restraints to improve
prediction accuracy.

With the increasing number of RNA structures being solved,
our knowledge of RNA structure will be enlarged. More new RNA
folds will be determined, and more structural modules will be
explored. Even more structural rules, such as the coaxial rule,
will be discovered. Gaining more knowledge about RNA structure
will allow for better force-fields, better structure modeling, and
a better understanding of the RNA functions. The increasing
number of experimentally determined structures in the PDB
database will expand the knowledge of existing RNA structure
fold databases, e.g., MC-fold (Parisien and Major, 2008) and
RNA FRABASE (Popenda et al., 2010), and improve the structure
prediction and modeling.
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