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Background: The coronary artery calcium score (CACS) has been shown to be an independent predictor 
of cardiovascular events. The traditional coronary artery calcium scoring algorithm has been optimized for 
electrocardiogram (ECG)-gated images, which are acquired with specific settings and timing. Therefore, if 
the artificial intelligence-based coronary artery calcium score (AI-CACS) could be calculated from a chest 
low-dose computed tomography (LDCT) examination, it could be valuable in assessing the risk of coronary 
artery disease (CAD) in advance, and it could potentially reduce the occurrence of cardiovascular events in 
patients. This study aimed to assess the performance of an AI-CACS algorithm in non-gated chest scans with 
three different slice thicknesses (1, 3, and 5 mm).
Methods: A total of 135 patients who underwent both LDCT of the chest and ECG-gated non-contrast 
enhanced cardiac CT were prospectively included in this study. The Agatston scores were automatically 
derived from chest CT images reconstructed at slice thicknesses of 1, 3, and 5 mm using the AI-CACS 
software. These scores were then compared to those obtained from the ECG-gated cardiac CT data using 
a conventional semi-automatic method that served as the reference. The correlations between the AI-
CACS and electrocardiogram-gated coronary artery calcium score (ECG-CACS) were analyzed, and Bland-
Altman plots were used to assess agreement. Risk stratification was based on the calculated CACS, and the 
concordance rate was determined.
Results: A total of 112 patients were included in the final analysis. The correlations between the AI-CACS 
at three different thicknesses (1, 3, and 5 mm) and the ECG-CACS were 0.973, 0.941, and 0.834 (all P<0.01), 
respectively. The Bland-Altman plots showed mean differences in the AI-CACS for the three thicknesses of 
−6.5, 15.4, and 53.1, respectively. The risk category agreement for the three AI-CACS groups was 0.868, 0.772, 
and 0.412 (all P<0.01), respectively. While the concordance rates were 91%, 84.8%, and 62.5%, respectively.
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Introduction

Cardiovascular diseases are the leading cause of death 
globally, ranking first in the global disease burden (1). 
Among cardiovascular diseases, coronary artery disease 
(CAD) is the “number one killer” (2,3). Coronary artery 
atherosclerosis is the fundamental pathological basis of 
CAD and coronary artery calcium (CAC) is an early sign of 
coronary atherosclerosis and is closely associated with the 
incidence rate of CAD (3,4).

The coronary artery calcium score (CACS) is a 
quantitative index of CAC. The CACS has been shown 
to be an independent predictor of cardiovascular events, 
particularly in asymptomatic middle-risk populations (5). 
The early and accurate assessment of CAC is crucial for 
mitigating increased risk of CAD (6). The Agatston score, 
which was originally proposed by Agatston et al. (7) and is 
obtained from electrocardiogram (ECG)-gated computed 
tomography (CT), remains the most widely used method 
for measuring the CACS. The categorization of patients 
into CAD risk categories based on the CACS can be used to 
guide treatment (8).

Public awareness of health examinations is increasing and 
non-gated low-dose computed tomography (LDCT) of the 
chest has become a widely used screening method for lung 
diseases (9,10); however, ECG-gated CT is not typically 
included as part of routine health examinations. Due to the 
presence of cardiac motion artifacts, traditional methods 
for calculating the CACS of non-gated chest CT may not 
be accurate (11). The traditional CACS algorithm has been 
optimized for ECG-gated images, which are acquired with 
specific settings and timing. However, some studies have 
reported a high correlation between ECG-gated CT and 
non-gated LDCT scans of the chest in the Agatston score 
(12-14). Therefore, if the CACS could be calculated from 
a LDCT examination of the chest, it could be valuable 
in assessing the risk of CAD in advance, and it could 

potentially reduce the occurrence of cardiovascular events 
in patients.

With continued advances in science and technology, 
artificial intelligence (AI) has been applied to an increasing 
number of medical fields. Through the use of deep-learning 
algorithms on computers, AI has the potential to significantly 
enhance work efficiency while substantially reducing the 
workload of humans (6,14-17). The integration of AI 
technology has the potential to appropriately mitigate 
the impact of cardiac motion artifacts on the calculation 
of the CACS from non-gated chest CT scans. Artificial 
intelligence-based coronary artery calcium score (AI-
CACS) algorithms on ECG-gated cardiac CT (18,19) and 
non-gated chest CT (13,20-24) have been both developed, 
enabling the rapid evaluation of the CACS for a large 
number of patients.

Thus, this study sought to assess the consistency of the 
CACS calculated from ECG-gated and non-gated CT 
scans from routine health examinations and to evaluate 
the feasibility of assessing CAD risk using the CACS 
from LDCT with an AI-CACS algorithm. We present 
this article in accordance with the STROBE reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-24-247/rc).

Methods

Patients

This prospective study was approved by the Institutional 
Ethics Committee of the Drum Tower Hospital, Medical 
School of Nanjing University (No. 2022-547-01), and 
informed consent was obtained from all the patients. The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). From July 2022 to March 
2023, patients suspected of CAD were enrolled in this study. 
These patients underwent sequential non-gated LDCT of 

Conclusions: The AI-based algorithm successfully calculated the CACS from LDCT scans of the chest, 
demonstrating its utility in risk categorization. Furthermore, the CACS derived from images with a slice 
thickness of 1 mm was more accurate than those obtained from images with slice thicknesses of 3 and 5 mm. 
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the chest and ECG-gated non-enhanced cardiac CT scans. 
Patients were excluded from the study if they met any of the 
following exclusion criteria: (I) had a history of transluminal 
percutaneous coronary intervention, coronary artery bypass 
grafting, or insertion of other metal implants; and/or (II) 
their images from the non-gated chest CT scans had serious 
artifacts due to cardiac motions. For more details about 
patient selection, see Figure 1.

CT scanning and CACS calculations

All the CT datasets were acquired using a third-generation 
dual-source CT system (SOMATOM Force, Siemens 
Healthineers, Forchheim, Germany). Participants underwent 
three types of scans; that is, a non-gated LDCT of the chest, 
followed by an ECG-gated non-contrast cardiac CT, and 
coronary computed tomography angiography (CTA). For 
details of scan parameters, see Table 1.

The volume computed tomography dose index (CTDIvol) 
and dose length product (DLP) of chest CT and ECG-
gated non-contrast cardiac CT scans were recorded. The 
effective dose (ED) was calculated using the following 
formula: ED (mSv) = DLP × k, where k was the chest (heart) 
ED conversion factor, with k = 0.014 mSv∙mGy−1∙cm−1 (25).

Following the Agatston convention, the CACS was 

calculated when the CT value was ≥130 Hounsfield 
units (HU) and the area was >1 mm2

 (7,26). The ECG-
gated non-enhanced cardiac images were transferred to 
an advanced workstation (Intellispace Portal V9; Philips 
Healthcare, Best, The Netherlands) for the semi-automated 
CACS calculation. The coronary calcification analysis was 
performed by an experienced radiologist with 5 years of 
experience in cardiac CT imaging. The calculated CACS 
for each patient was considered as the reference in this 
study.

AI-CACS software (CACScoreDoc version 6.11, 
ShuKun Technology, Beijing, China) was developed and 
implemented to automatically calculate the CACS based on 
the chest CT images. In our process, the three-dimensional 
Retina-Unet deep convolutional neural network was used to 
segment the calcified lesions in the coronary area. Similar 
to other segmentation networks, the main structure was 
a fully convolutional feature pyramid network. Next, a 
detection branch and a segmentation branch were applied 
as the whole supervision function (Figure 2). A description 
of the AI-CACS model is provided in the Appendix 1. The 
non-gated chest CT images were uploaded to the AI-CACS 
software for CACS calculation with slice thicknesses of 1, 3, 
and 5 mm, respectively.

Risk category performance of the AI-CACS software

The correlations between the CACS (1-mm AI-CACS, 
3-mm AI-CACS, 5-mm AI-CACS, and ECG-CT AI-
CACS) obtained by the AI-CACS software and the ECG-
CT CACS were studied, respectively. Based on the CACS, 
the patients were stratified into the following four different 
risk categories: CACS 0, very low risk of CAD; CACS 
1–100, low risk of CAD; CACS 101–400, moderate risk of 
CAD; and CACS >400, high risk of CAD (22).

Statistical analysis

The statistical analysis was performed with SPSS software 
(version 27, IBM, Armonk, NY, USA) and MedCalc 
software (version 22.013, Ostend, Belgium). The continuous 
data are presented as the mean ± standard deviation, and 
the categorical variables are presented as the frequency 
and percentage. Because not all data adheres to a normal 
distribution or exhibits squared deviations, Wilcoxon tests 
were employed to compare the CACSs obtained by the AI-
CACS software (1-mm AI-CACS, 3-mm AI-CACS, 5-mm 

Patients underwent chest CT and 
cardiac CT at the same time (n=135)

n=120

A history of PCI or CABG
(n=15)

Images for which AI could 
not calculate the CACS 

(n=2)

n=118

Images of non-gated chest 
CT are seriously affected 

by cardiac motion artifacts 
(n=6)

n=112

Figure 1 Flow chart of patient selection. CT, computed 
tomography; CACS, coronary artery calcium score; PCI, 
percutaneous coronary intervention; CABG, coronary artery 
bypass grafting; AI, artificial intelligence.
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AI-CACS) and the ECG-CT CACSs. A Bland-Altman 
analysis and Spearman correlation coefficients were used 
to evaluate agreement and correlation. The consistency of 
risk stratification was assessed with Kappa tests. A Kappa 
value (κ) of <0.4, 0.4–0.6, 0.6–0.8, and >0.8, indicated poor, 
moderate, good, and excellent agreement, respectively. A P 
value <0.05 was considered statistically significant.

Results

General information

A total of 112 patients were included in the study, of whom 
74 were male and 38 were female. The patients had a mean 
age of 58.49±9.52 years (range, 37–78 years). Table 2 shows 
the radiation dose of the three types of CT scans.

Table 1 Three types of scan parameters

Scan type Chest CT Non-contrast cardiac CT Coronary CTA

Scan range From the apex of the lungs to the lung 
bases

From the carina to the apex of the 
heart

From the carina to the apex of 
the heart

Tube voltage Modulated tube voltage  
(70–120 kV) 

120 kVp Modulated tube voltage  
(80–120 kV) 

Tube current Modulated tube current with a reference 
value of 80 mAs

Modulated tube current with a 
reference value of 85 mAs

Modulated tube current  
(300–700 mAs)

Collimation (mm) 2×192×0.6 2×192×0.6 2×192×0.6

Gantry rotation time (s) 0.25 0.25 0.25

Field of view (mm) 350 155 155

Matrix 512×512 512×512 512×512

Slice width (mm) 1/3/5 3 0.75

Increment (mm) 1/3/5 1.5 0.5

CT, computed tomography; CTA, computed tomography artery.
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P1

P0
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bb

Feature pyramid network 

Coarse features for detection

Semantic seg. features 

Semantic seg. signals

Classification 

Box-Regression

Figure 2 In our process, the three-dimensional Retina-Unet deep convolutional neural network was used to segment calcified lesions in the 
coronary area. Similar to other segmentation networks, the main structure was a fully convolutional feature pyramid network. ThNexten, a 
detection branch and a segmentation branch were applied as the whole supervision function.
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CACS

There were no statistically significant differences between 
the 1-mm AI-CACS and ECG-CT CACS (107.24±205.46 
vs. 100.40±200.95, P=0.085). Conversely, both the 3-mm AI-
CACS and 5-mm AI-CACS were significantly lower than 
the reference ECG-CT CACS (85.33±174.73, 47.57±113.64; 
both P<0.001). For further details, see Figure 3 and Table 3.

The correlations between the 1-mm AI-CACS, 3-mm 
AI-CACS, and 5-mm AI-CACS with ECG-CT CACS 
were strong (ρ=0.973 ,0.941, and 0.834; all P<0.001). The 
Bland-Altman plot revealed that the difference between 
the 1-mm AI-CACS and ECG-CT CACS was small [mean 
difference: −6.5, 95% confidence interval (CI): −95.0 to 
81.9]. However, the difference between the 3-mm AI-CACS 
and ECG-CT CACS, as well as that between the 5-mm AI-
CACS and ECG-CT CACS, were 15.4 (95% CI: −96.6 to 
127.4), and 53.1 (95% CI: −187.8 to 294.0), respectively 
(Figure 4).

Agreement of risk categorization

In comparison with the ECG-CT CACS, the agreement of 
risk categories was excellent for the 1-mm AI-CACS group 
(κ=0.868), good for the 3-mm AI-CACS group (κ=0.772), 
and moderate for the 5-mm AI-CACS group (κ=0.412) (all 
P<0.001). More specifically, 91%, 84.8%, and 62.5% of 
the patients in the 1-mm AI-CACS, 3-mm AI-CACS and 
5-mm AI-CACS groups were placed in the same category as 
they had been using the ECG-CT CACS, which served as 
the reference (Tables 4-6). Additionally, in comparison with 
the 1-mm AI-CACS, the agreement of risk categories was 
excellent for the 3-mm AI-CACS group (κ=0.769; P<0.001). 
Additionally, 85.6% of the patients in the 3-mm AI-CACS 
group were placed in the same category as they had been 
using the 1-mm AI-CACS (Table 7). In the three AI-CACS 
groups, the CACSs were more likely to be underestimated 
or overestimated when the patients were evaluated as low-risk 
[1–100] CAD patients (Figures 5,6). However, the CACSs of 
very few patients were overestimated in the 1 mm–AI-CACS 
groups (Figure 7).

Discussion

Numerous studies have suggested that CACS screening 

Table 2 CT radiation dose

Scan types CTDIvol (mGy) DLP (mGy·cm) ED (mSv)

Chest 2.8±0.9 105.3±28.6 1.5±0.4

Cardiac non-contrast 2.6±0.7 35.7±14.3 0.5±0.2

Coronary CTA 18.7±8.5 303.5±156.7 4.2±2.2

Data are presented as mean ± standard. CT, computed 
tomography; CTDIvol, volume computed tomography dose index; 
DLP, dose length product; ED, effective dose; CTA, computed 
tomography angiography.
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Figure 3 Box-and-Whisker plot showing the distribution of the 
coronary artery calcium scores of 1-mm AI-CACS, 3-mm AI-
CACS, 5-mm AI-CACS, and ECG-CT CACS (data with a CACS 
of 0 were removed from the ECG-CT CACS group). The points, 
squares, crosses, or asterisks in the figure represent the CACS of 
the corresponding group of patients. AI, artificial intelligence; 
CACS, coronary artery calcium score; CT, computed tomography; 
ECG, electrocardiogram.

Table 3 Coronary artery calcium score

Groups Coronary artery calcium score

1-mm AI-CACS 107.24±205.46

3-mm AI-CACS 85.33±174.73

5-mm AI-CACS 47.57±113.64

ECG-CT CACS 100.40±200.95

Data are presented as mean ± standard. AI-CACS, artificial 
intelligence-based coronary artery calcium score; ECG-
CT CACS, electrocardiogram-gated computed tomography 
coronary artery calcium score.
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Figure 4 Bland-Altman plots showing the bias and 95% limits of agreement of red area. (A) 1-mm AI-CACS vs. ECG-CT CACS; (B) 3-mm 
AI-CACS vs. ECG-CT CACS; (C) 5-mm AI-CACS vs. ECG-CT CACS. AI, artificial intelligence; CACS, coronary artery calcium score; 
CT, computed tomography; ECG, electrocardiogram.

Table 4 Confusion matrices of risk categories between the 1-mm AI-CACS group and ECG-CT CACS group

1-mm AI-CACS
ECG-CT CACS, n

Total, n
Underestimation,  

n (%)
Overestimation,  

n (%)
Concordance,  

n (%)0 1–100 101–400 >400

0 46 4 0 0 50 4 (8.0) – 46 (92.0)

1–100 1 29 0 0 30 0 1 (3.3) 29 (96.7)

101–400 0 3 21 1 25 1 (4.0) 3 (12.0) 21 (84.0)

>400 0 0 1 6 7 – 1 (14.3) 6 (85.7)

Total 47 36 22 7 112 5 (4.5) 5 (4.5) 102 (91.0)

Kappa analysis κ=0.868, P<0.001; expressed as Spearman’s correlation coefficient (ρ=0.973), P<0.001. AI-CACS, artificial intelligence-
based coronary artery calcium score; ECG-CT CACS, electrocardiogram-gated computed tomography coronary artery calcium score.

Table 5 Confusion matrices of risk categories between the 3-mm AI-CACS group and ECG-CT CACS group

3-mm AI-CACS
ECG-CT CACS, n

Total, n
Underestimation,  

n (%)
Overestimation,  

n (%)
Concordance,  

n (%)0 1–100 101–400 >400

0 47 13 0 0 60 13 (21.7) – 47 (78.3)

1–100 0 22 2 0 24 2 (8.3) 0 22 (91.7)

101–400 0 1 20 1 22 1 (4.5) 1 (4.5) 20 (91.0)

>400 0 0 0 6 6 – 0 6 (100.0)

Total 47 36 22 7 112 16 (14.3) 1 (0.9) 95 (84.8)

Kappa analysis κ=0.772, P<0.001; expressed as Spearman’s correlation coefficient (ρ=0.941), P<0.001. AI-CACS, artificial intelligence-
based coronary artery calcium score; ECG-CT CACS, electrocardiogram-gated computed tomography coronary artery calcium score.

in asymptomatic populations could significantly reduce 
the incidence of adverse cardiovascular events (27-29). 
Our study showed the feasibility of calculating the CACS 
from chest CT scans of routine health examinations for 
individuals using an AI-based algorithm. The proposed 
deep-learning method in this study is feasible for the 

automatic quantification of the CACS in non-gated chest 
CT images of routine health examinations for individuals. 
The main findings from this study are as follows: (I) the 
automatic quantification of the CACS exhibited excellent 
correlation, consistency, and risk classification performance 
in non-gated chest CT images with slice thicknesses of 
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1.0 and 3.0 mm; (II) the CACS calculated from the 1-mm 
slice width images derived from chest CT scans exhibited 
better performance the those calculated with 3- or 5-mm 
slice width images; and (III) The CACSs in the non-gated 
chest CT images were more likely to be underestimated or 
overestimated when the patients were evaluated as low-risk 
[1–100] CAD patients.

The Agatston score, which has been the most widely used 
method for quantifying CAC for more than three decades, 
remains a valuable tool in cardiovascular risk assessment. 
It aids in the early detection, risk stratification, treatment 
decision making, and monitoring of CAD progression in 
the current clinical landscape (7,30,31). To calculate the 
Agatston score precisely, the ECG-gated non-contrast 
enhanced cardiac CT scan procedure was developed to 
acquire images of the coronary arteries synchronized with 
the patient’s heartbeat (32). However, our study showed 
that the CACS calculated from the chest CT scan using an 
AI-based algorithm had a good correlation with that of the 
standard ECG-gated cardiac CT scan, which supports the 
findings of previous studies (33,34). 

Some studies (24,35) have calculated the CACSs using 
non-gated chest CT, but the studies did not further 
subdivide the image slice thickness, and were retrospective 
in nature. One study (36) analyzed the CACSs of chest CT 
scans with thicknesses of 1 and 3 mm, and found that the 
chest CT scans with a slice thickness of 3 mm were slightly 
more accurate in CAC detection and risk classification, which 
is inconsistent with our findings; however, our Kappa values 
for the risk classification of chest CT scans with a thicknesses 
of 1 mm were higher. A previous study (37) analyzed the 
CACSs of different slice thicknesses of electrocardiographic-
gated cardiac CT scans. Unlike previous studies, the 
patients in our study were prospectively enrolled and 
underwent chest and ECG-gated CT scans sequentially. 
This approach allowed us to minimize the impact of factors 
introduced by variations in patients’ conditions on different 
dates. Our study revealed that the CACSs calculated from 
images with a slice thickness of 1.0 mm, derived from chest 
CT scans showed no statistically significant differences 
and had the highest correlation of 0.973 when compared 
to the reference CACSs. However, the CACSs calculated 

Table 6 Confusion matrices of risk categories between the 5-mm AI-CACS group and ECG-CT CACS group

5-mm AI-CACS
ECG-CT CACS, n

Total, n
Underestimation,  

n (%)
Overestimation,  

n (%)
Concordance,  

n (%)0 1–100 101–400 >400

0 47 28 0 0 75 28 (37.3) – 47 (62.7)

1–100 0 8 10 0 18 10 (55.6) 0 8 (44.4)

101–400 0 0 12 4 16 4 (25.0) 0 12 (75.0)

>400 0 0 0 3 3 – 0 3 (100.0)

Total 47 36 22 7 112 28 (25.0) 14 (12.5) 70 (62.5)

Kappa analysis κ=0.412, P<0.001; expressed as Spearman’s correlation coefficient (ρ=0.834), P<0.001. AI-CACS, artificial intelligence-
based coronary artery calcium score; ECG-CT CACS, electrocardiogram-gated computed tomography coronary artery calcium score.

Table 7 Confusion matrices of risk categories between the 1-mm AI-CACS group and 3-mm AI-CACS group

3-mm AI-CACS
1-mm AI-CACS, n

Total, n
Underestimation,  

n (%)
Overestimation,  

n (%)
Concordance,  

n (%)0 1–100 101–400 >400

0 50 10 0 0 60 10 (16.7) – 50 (83.3)

1–100 0 20 4 0 24 4 (16.7) 0 20 (83.3)

101–400 0 0 20 2 22 2 (9.1) 0 20 (90.9)

>400 0 0 1 5 6 – 1 (16.7) 5 (83.3)

Total 50 30 25 7 112 16 (14.3) 1 (0.9) 95 (84.8)

Kappa analysis κ=0.769, P<0.001; expressed as Spearman’s correlation coefficient (ρ=0.916), P<0.001. AI-CACS, artificial intelligence-
based coronary artery calcium score; ECG-CT CACS, electrocardiogram-gated computed tomography coronary artery calcium score.
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Figure 5 The CACS of a 59-year-old male. The ECG-CT CACS (D) was 4.03 with a low risk of CAD, and all the AI-CACSs of the chest 
CT scans with three different thicknesses (A: 1-mm AI-CACS, B: 3-mm AI-CACS, C: 5-mm AI-CACS) were 0 with a very low risk of CAD. 
(D) The red area of bone is not recorded in the CACS. CACS, coronary artery calcium score; ECG, electrocardiogram; CT, computed 
tomography; CAD, coronary artery disease; AI, artificial intelligence.

Figure 6 The CACS of a 61-year-old male. The ECG-CT CACS (D,H) was 20.25 and the 1-mm AI-CACS (A,E) was 48.91 with a low risk 
of CAD. However, the 3-mm AI-CACS (B,F) and 5-mm AI-CACS (C,G) were 0 with a very low risk of CAD. (D,H) The red area of bone 
is not recorded in the CACS. CACS, coronary artery calcium score; ECG, electrocardiogram; CT, computed tomography; CAD, coronary 
artery disease; AI, artificial intelligence.
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A B C D
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A B C

D E F

Figure 7 The CACS of a 54-year-old male. The ECG-CT CACS (B) was 0 with a very low risk of CAD, and the 1-mm AI-CACS (A) was 
10.91 with a low risk of CAD. The CACS of a 60-year-old male (C,D). The ECG-CT CACS (D) was 68.02 with a low risk of CAD, and 
the 1-mm AI-CACS (C) was 137.13 with a moderate risk of CAD. The CACS of a 54-year-old male (E,F). The ECG-CT CACS (F) was 
230.81 with a moderate risk of CAD, and the 1-mm AI-CACS (E) was 404.26 with a high risk of CAD. (B,D,F) The red area of bone is not 
recorded in the CACS. CACS, coronary artery calcium score; ECG, electrocardiogram; CT, computed tomography; CAD, coronary artery 
disease; AI, artificial intelligence.

from the other two slice thicknesses (3.0 and 5.0 mm) had 
significantly lower values.

The ECG-gated CT scan allowed us to acquire data 
during the diastolic phase of the cardiac cycle, which 
enabled us to measure calcium plaque accurately. However, 
the chest CT scan was not synchronized with ECG, which 
could potentially introduce calculation bias caused by 
cardiac motion. Further, the images with the thicker slice 
widths might be more affected by the volume effect, as 
a threshold of 130 HU was applied during the Agatston 
score calculation. Therefore, the 1.0-mm slice width 
images performed better for CACS measurements than 
the 3.0- and 5.0-mm slice width images, all of which were 
reconstructed from the same chest CT scan.

In a multi-center, multi-vendor retrospective study 
conducted by Xu et al., the AI-CACS method from chest 
CT was compared with the manual method from cardiac 
CT. The study reported excellent correlation (ρ=0.893) and 
good agreement in risk categorization with a concordance 

rate of 80.6% (19). However, it should be noted that the 
chest CT images in that study had different slice widths, 
ranging from 0.625 to 5.0 mm, and the impact of image 
slice width on CACS results was not investigated. Our 
study showed that the AI-based CACS algorithm could 
provide more accurate results from chest CT images 
with a slice width of 1.0 mm. This shows the feasibility 
of calculating the CACSs for patients undergoing lung 
screening CT scans to predict the risk of CAD. However, 
our study also raised a concern that the AI-based algorithm 
may underestimate the risk of CAD, particularly in cases 
involving thick-slice chest CT images.

In terms of Agatston score-based risk categorization, 
the 1-mm AI-CACS group showed the highest accuracy 
at 91.0%, followed by the 3-mm AI-CACS group, which 
achieved an accuracy of 84.8%, using the ECG-CT CACS 
group as the reference. However, in the 5-mm AI-CACS 
group, only 62.5% of patients were categorized in the same 
risk category as the reference. The 5-mm AI-CACS group 
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significantly underestimated the risk with 77.8% (28/36) of 
patients categorized in group 1–100 being reclassified into 
group 0, 45.5% (10/22) of patients from group 101–400 
being recategorized into group 1–100, and 57.1% (4/7) 
of patients in group >400 being reclassified into group  
101–400 (Table 6).

It is well known that while a CAC score of 0 is associated 
with a very low prevalence of obstructive epicardial 
CAD and low event rates, it can also create a false sense 
of reassurance; therefore, the risk of CAD should not 
be completely ruled out (38). Further, the estimations 
from the 5-mm AI-CACS group could yield more false-
negative results. The 3-mm AI-CACS group also exhibited 
this underestimation issue with 36.1% (13/36) of patients 
categorized in group 1–100 being reclassified into group 0.  
For the 1-mm AI-CACS group, only 11.1% (4/36) of the 
patients were reclassified into group 0. Our study also 
showed that 1-mm AI-CACS tended to overestimate the 
risk compared to the ECG-gated CACS group. Specifically, 
2.1% (1/47) of patients categorized in group 0 were 
reclassified into group 1–100, 8.3% (3/36) of patients 
categorized in group 1–100 were reclassified into group 
101–400, and 4.5% (1/22) of patients categorized in group 
101–400 were reclassified into group >400 (Figure 7). Our 
study revealed that AI-CACS calculated from chest CT 
images with thinner slice widths (1.0 and 3 mm) were higher 
than those calculated from images with a slice width of  
5 mm. Overall, the 1-mm AI-CACS group underestimated 
4.4% (5/112) of patients and overestimated 4.4% (5/112) 
of patients, which closely aligned with the reference ECG-
gated CACS group. Most of the underestimated cases 
belonged to the very low-risk group (CACS 0), while the 
overestimated cases were mainly distributed in the very low- 
to moderate-risk group (CACS 1–400). Of all the three AI-
CACS groups, an underestimation or overestimation was 
most likely to occur in the evaluation of low-risk (CACS 
1–100) CAD patients.

Our study had several limitations. First, the small sample 
size might have introduced selection bias. Second, we did 
not conduct separate statistical analyses on the CACSs of 
coronary artery branches. Third, all images were obtained 
from the same scanner at our hospital. Ultimately, we did 
not consider the potential impacts of varying tube voltages 
and patient heart rates on CACSs from non-gated chest 
CT scans. Therefore, we suggest that a larger multi-center, 
multi-vendor cohort study be conducted to address these 
limitations.

Conclusions

This prospective study showed the feasibility of using the 
proposed deep-learning method to automatically quantify 
the CACS from non-gated chest CT images. Our findings 
suggest that chest CT images with a slice width of 1 mm are 
suitable for CACS calculation and CAD risk stratification in 
patients undergoing lung screening.
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