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Isothiocyanates (ITCs) are abundantly found in cruciferous vegetables. Epidemiological studies suggest that chronic consumption
of cruciferous vegetables can lower the overall risk of cancer. Natural ITCs are key chemopreventive ingredients of cruciferous
vegetables, and one of the prime chemopreventive mechanisms of natural isothiocyanates is the induction of Nrf2/ARE-dependent
gene expression that plays a critical role in cellular defense against electrophiles and reactive oxygen species. In the present review,
we first discuss the underlying mechanisms how natural ITCs affect the intracellular signaling kinase cascades to regulate the
Keap1/Nrf2 activities, thereby inducing phase II cytoprotective and detoxifying enzymes. We also discuss the potential cellular
protein targets to which natural ITCs are directly conjugated and how these events aid in the chemopreventive effects of natural
ITCs. Finally, we discuss the posttranslational modifications of Keap1 and nucleocytoplasmic trafficking of Nrf2 in response to
electrophiles and oxidants.

1. Regulation of Nrf2-Dependent Gene
Expression by Natural Isothiocyanates

Natural Isothiocyanates (ITCs) are abundantly found in
cruciferous vegetables such as broccoli, watercress, Brussels
sprouts, cabbage, and cauliflower [1]. Epidemiological studies
have shown that consumption of cruciferous vegetables is
inversely associated with the risk of many types of cancer [2].
Anticarcinogenic properties of cruciferous vegetables might
be attributed to their high content of glucosinolates and the
composition of the glucosinolates among cruciferous vegeta-
bles differs, depending on the plant species, climates, and
other agricultural conditions [3]. Glucosinolates in crucifer-
ous vegetables exist as N-hydroxysulfate with sulfur-linked
𝛽-glucose together with various side chains [4]. Naturally
occurring glucosinolates are converted into isothiocyanates
(ITCs) with a physical stress, such as chopping or chewing of
cruciferous vegetables, which in turn leads the plant cell wall
to rupture and release the plant-specific enzyme myrosinase,
converting the natural glucosinolates into ITCs [5]. Naturally

occurring ITCs, including phenethyl ITC (PEITC), allyl ITC
(AITC), benzyl ITC (BITC), and sulforaphane are effective
cancer chemopreventive compounds in humans (Figure 1)
[6]. While many dietary chemopreventive compounds (e.g.,
curcumin, resveratrol, and epigallocatechin gallate (EGCG))
possess polyphenolic moiety, chemopreventive ITCs are
structurally distinct in that they are characterized by –N=C=S
functional group [7].

The anticarcinogenic mechanisms of ITCs include a
variety of biochemical mechanisms, such as cell cycle arrest,
apoptosis induction, activation of anti-inflammatory pro-
grams, inhibition of cytochrome P450s for carcinogen acti-
vation, and modulation of the activities of various transcrip-
tional factors, including NF-E2-related factor 2 (Nrf2) [8].
Nrf2 is a member of cap“n”collar (CNC) family of basic
leucine zipper (bZIP) transcription factor that allows cells
to mediate a collective activation of phase II cytoprotective
and detoxifying enzymes [9]. Phase II cytoprotective and
detoxifying enzymes are implicated in the generation of
cellular reduced glutathione (GSH), detoxification of reactive
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Figure 1: Chemical structure of selected natural isothiocyanates (ITCs).
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Figure 2: Nrf2 and Keap1 protein domains.

oxygen species (ROS), and drug metabolism in response to
environmental electrophiles and oxidants [10]. Under normal
condition, Nrf2 is constantly polyubiquitinated and degraded
by proteasome throughCullin-3- (Cul3-) dependent E3 ubiq-
uitin ligase enzyme. Exposure of electrophiles and oxidants
inactivates Cul3-dependent E3 ubiquitin ligase enzyme in the
cytosol by poorly characterized biochemicalmechanisms and
stabilizes Nrf2 protein, leading to its nuclear translocation
and transcriptional activation by binding to the antioxidant
response element (ARE), a cis-acting enhancer sequence
TGA(G/C)NNNGC in the genome through heterodimeriz-
ing with small Maf proteins [11]. Nrf2 activity is tightly reg-
ulated in the cytosol by Kelch-like ECH associating protein 1
(Keap1) as a scaffolding protein for Nrf2 as well as an adaptor
protein for Cul3-dependent E3 ubiquitin ligase enzyme [12].
Analysis of Keap1-deficient mice has proven that Keap1 plays
a central role in the repression of Nrf2 activity in vivo [13]. In
addition, loss ofKeap1 activity as a result of somaticmutations
has been reported in a significant proportion of cancer
patients, implying that constitutive activation of Nrf2 may
have an important role in the elevated cytoprotective activity
of human malignancy [14].

Nrf2 possesses 6 conserved Nrf2-ECH homology (Neh)
domains (Figure 2(a)). The Neh1 domain contains a basic
leucine-zipper (bZIP) structure, required forDNAbinding in
association with small Maf proteins in the nucleus. The Neh2
domain is located in the most N-terminal region and exerts
a negative effect on the ARE-dependent gene expression

by binding to Keap1 protein. The Neh4 and Neh5 domains
constitute transactivation domains that contribute to ARE-
dependent gene activation by binding to coactivators, such as
CBP and p300, and are essential for Nrf2 transactivation [15].
The Neh3 domain, located in the most C-terminal region,
is known to play a permissive role in Nrf2 transactiva-
tion for the Neh4 and Neh5 domains. The Neh6 domain,
located between the transactivation domain (the Neh4 and
Neh5 domains) and the DNA binding domain (the Neh1
domain), is known to be necessary for the degradation of
Nrf2 protein [16]. Keap1 is a negative regulator ofNrf2 protein
by binding to the Neh2 domain of Nrf2 and was initially
identified by a yeast two-hybrid assay [17]. Keap1 protein is
a cytosolic protein and comprises 5 different domains: an
amino-terminal region (NTR), a Broad complex, Tramtrack
and Bric a bric (BTB) domain, an intervening region (IVR),
six Kelch/double glycine repeats (DGRs), and a carboxy-
terminal region (CTR) (Figure 2(b)) [18]. Structural analysis
has shown that Keap1 proteins heterodimerize each other
through the BTB domain, and the overall heterodimers
resemble a “cherry-bob” structure [19]. Covalent modifica-
tion of cysteine residues in Keap1 protein is believed to con-
stitute a stress-sensing mechanism for electrophiles and
oxidants, and the covalent binding of several electrophiles
and thiol group(s) in Keap1 protein has been observed in
vitro, including sulforaphane [20]. Structural observations
and biophysical experiments have led to the conclusion that
(1) the ratio between Keap1 and Nrf2 binding is 2 : 1 and
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(2) the regulatory mechanism of Nrf2 and Keap1 system
conforms to the so-called “hinge and latch” model, in which
two distinct binding sites in the Neh2 domain of Nrf2 protein
mediates high-affinity (the ETGE motif) and low-affinity
(the DLG motif) interactions with a single Keap1 protein,
respectively [21].

2. Indirect and Direct Protein Targets of
Natural ITCs

Until now, the exact biochemical mechanisms by which ITCs
activate Nrf2-dependent gene expression are largely unclear.
However, there is an increasing number of evidence, showing
that ARE-dependent transcriptional gene activation by ITCs
is mediated, at least in part, by the activation of various intra-
cellular signaling cascades, including the mitogen-activated
protein kinase (MAPK) [22]. MAPK is one of the major
signaling systems, which transmits various extracellular sig-
nals into the nucleus through a cascade of serial intracellular
protein phosphorylation and is known to be responsible
for the activation of ARE-dependent gene expression [23].
MAPK consists of three familymembers: extracellular signal-
related kinase (ERK), c-jun N-terminal kinase (JNK), and
p38 MAPK. MAPK is phosphorylated and activated by
upstream signaling kinase modules, for example, MAPK
kinase (MAPKK orMEK) andMAPKK kinase (MAPKKK or
MEKK). Upon activation, MAPK is phosphorylated in both
threonine (T) and tyrosine (Y), existing in the TXY motif of
activation loop and the central amino acid (X) is a defining
amino acid motif for individual MAPKs: glutamic acid (E)
for ERK, proline (P) for JNK, and glycine (G) for p38 MAPK
[24]. Earlier studies have demonstrated that overexpression
of wild-type ERK2 and JNK1 significantly elicited ARE-
dependent luciferase activation and the addition of natural
ITCs, including PEITC and sulforaphane, could potentiate
the ARE-dependent gene expression, implying that upregula-
tion ofNrf2/ARE-dependent gene expression by natural ITCs
is mediated by MAPK pathway [25, 26]. While the positive
regulation of Nrf2/ARE-dependent gene expression by ERK
and JNK has been unequivocally supported by follow-up
studies [27, 28], the exact role of p38 MAPK pathway in
the ARE-dependent gene expression is still controversial,
although a direct binding and phosphorylation residue(s) of
Nrf2 protein by p38 MAPK has been demonstrated [29, 30].
In addition, the experimental evidence showing the direct
phosphorylation and the exact residue(s) of Nrf2 or Keap1
protein by activated MAPK is still lacking. Therefore, it
seems likely that the modulation of Nrf2/ARE-dependent
gene expression by MAPKs is indirect.

Phosphatidylinositol 3-kinase (PI3K) is another intracel-
lular signaling kinase that is implicated in the regulation of
Nrf2/ARE-dependent gene expression. Earlier studies have
demonstrated that PI3K and its downstream Ser/Thr kinase,
Akt can positively regulate ARE-dependent gene expression.
While there was a lack of evidence whether PI3K and Akt can
directly phosphorylate Keap1 or Nrf2 protein and modulate
the activity of ARE-dependent gene expression, Cuadrado
and colleagues have demonstrated that active glycogen
synthase kinase-3𝛽 (GSK3𝛽) can directly phosphorylate and

suppress the activity of Nrf2 protein by causing its nuclear
exclusion [31]. GSK3𝛽, a direct downstream target of Akt, is
activated in response to growth factors and external oxidants
such as H

2
O
2
[32]. Because GSK3𝛽 activity is negatively

regulated by Akt-mediated phosphorylation at Ser-9, it
is possible to assume that PI3K-mediated Akt activation
might cause a phosphorylation and inactivation of GSK3𝛽,
thereby promoting Nrf2 nuclear translocation and activation
by relieving GSK3𝛽-mediated negative regulation of Nrf2
activity. In addition, a novel phosphodegron motif, existing
in the Neh6 domain of Nrf2 (DSGIS residues 334 to 338)
was identified in the subsequent study, in which Nrf2 protein
is destabilized as a consequence of its phosphorylation by
GSK3𝛽 and subsequent recognition and polyubiquitination
by Cul1/Skp1/𝛽-TrCP E3 ubiquitin ligase enzyme, but not
by Cul3/Keap1 E3 ubiquitin ligase enzyme [33]. In addition,
Jaiswal and colleagues have identified that Fyn kinase can
directly phosphorylate Nrf2 protein at Tyr-568 and promote
its nuclear exclusion and degradation, thereby contributing
to the suppression of ARE-mediated gene expression [34].
They also showed that GSK3𝛽 acts as an upstream kinase
of Fyn that contributes to phosphorylation of Nrf2 protein
at Tyr-568 [35]. Therefore, it seems likely that the PI3K-
Akt-GSK3𝛽 axis regulates Nrf2-mediated ARE-dependent
gene activation both in direct and indirect manners:
GSK3𝛽 directly phosphorylates the phosphodegron motif
existing in the Neh6 domain of Nrf2 protein and it leads
to Keap1-independent, but 𝛽-TrCP-dependent proteasomal
degradation of Nrf2 protein or GSK3𝛽 phosphorylates
and activates Fyn kinase, leading to phosphorylation and
an indirect nuclear exclusion of Nrf2 protein. At present,
whether and, if it is so, how natural ITCs modulate GSK3𝛽 or
Fyn kinases to Nrf2-dependent ARE activation is currently
unknown. In addition to MAPK and PI3K/Akt/GSK3𝛽/Fyn
cascades, protein kinase C (PKC) and PKR-like endoplasmic
reticulum kinase (PERK) are the other intracellular kinases
to directly phosphorylate Nrf2 protein and modulate ARE-
dependent gene expression. PKC directly phosphorylates
Nrf2 protein at Ser-40 [36] and upregulates the Nrf2-
mediated ARE activation by perturbing the interaction
between Nrf2 and Keap1 proteins [37]. PERK can directly
phosphorylate Nrf2 protein following the accumulation
of unfolded proteins of endoplasmic reticulum, although
the exact phosphorylation residue(s) were unidentified
[38]. While it is largely unclear how Nrf2 phosphorylation
contributes to ARE-dependent gene expression, Apopa et
al. have provided interesting results, showing that treatment
of tert-butylhydroquinone (tBHQ) elicited casein kinase 2-
(CK2-) mediated phosphorylation of Nrf2 protein, thereby
facilitating its nuclear translocation and activation of ARE-
dependent gene expression [39]. This fact implies that Nrf2
phosphorylation might be closely associated, at least in part,
with the nucleocytoplasmic trafficking of Nrf2 in cells.

As mentioned earlier, the chemopreventive mechanisms
of ITCs are diverse and it is likely due to the fact that ITCs
readily react with the nucleophilic amino acid residues. Based
on this conjecture, Chung and colleagues have attempted
to find out whether ITCs can directly react with cellular
DNA, RNA, and proteins. To this end, they have exposed
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14C-PEITC and 14C-sulforaphane in cultured cells and puri-
fied nucleotides or target proteins, using phenol/chloroform
extraction or two-dimensional electrophoresis (2D-GE) fol-
lowed by matrix-assisted laser desorption-ionization mass-
spectrometry (MALDI-MS) [40]. As a result, they found that
no discernable DNA or RNA was bound to radiolabeled
ITCs, suggesting that nucleotides are unlikely direct targets
for ITCs [41]. In contrast, several putative protein targets
to which ITCs can be directly conjugated were identified.
They include cellular reduced glutathione (GSH), tubulin,
transient receptor potential channel, phosphatases (M3/6 and
cdc25c), MEKK1 kinase, and transcriptional factors, such as
activator protein-1 (AP-1), signal transducer and activator
of transcription factor 3 (STAT3), and mutant p53 [42].
It is known that ITCs can be directly conjugated to thiol
group-containing cysteine, amine group-containing lysines,
arginines, proline, serines, threonine, and tyrosine. Among
them are cysteines wich are the most likely binding sites for
ITCs and cysteine residues in the above-mentioned proteins
are the possible conjugation candidates [43]. In addition,
finding out the direct binding proteins for ITCs has been
attempted in an alternative manner by taking advantage of
affinity chromatography technique. To this end, HeLa cell
lysates were incubated with biotin-labeled ITCs, separated
with streptavidin-sepharose beads, and sent for mass spec-
trometry analysis. This approach was useful in revealing
the direct conjugation of ITCs with a number of novel
proteins, includingmacrophage-inhibitory factor (MIF) [44].
However, this approach has its weakness in that ITCs are
strong electrophiles, and a false-positive binding of ITCs with
nontarget protein(s) might likely occur.

3. Direct or Indirect Modulation of
Keap1/Nrf2 Proteins by ITCs

ITCs are strong chemical inducers of ARE-dependent gene
expression.Therefore, it is possible to assume that ITCsmight
be able to induce ARE-dependent gene expression by altering
the interaction between Keap1 and Nrf2 proteins through a
direct conjugation with cysteine residues in Keap1 or Nrf2
protein. In particular, Keap1 is a cysteine-rich protein (27
for human and 25 for mouse) with 4.3% of all residues
being cysteines that exceed the average percentage of cysteine
residues in proteins [45]. Because cysteines generally consti-
tute the functional and redox-sensitive domains of proteins
in response to the changes in the local environment [46],
cysteine residues in Keap1 protein were proposed to be the
prime mechanism, by which they selectively respond to a
variety of electrophiles and oxidants. This hypothesis was
supported by the observation that universal ARE inducers
can react with cysteine sulfhydryl groups of Keap1 at rates
that correlated with their potency of ARE-dependent gene
activation, irrespective of their chemical structures [47]. It
was shown that reactive cysteines were mostly located in
the linker region, located between the BTB domain and the
Kelch-repeats in Keap1 protein. The selective modification
of cysteine residues in Keap1 protein by structurally simi-
lar Nrf2 chemical inducers led to the so-called hypothesis
“cysteine code” or “multiple-sensor mechanism” [48]. Unlike

Keap1, however, Nrf2 protein was excluded as a sensor for
electrophiles or oxidant in this model because it contained
no cysteines in the Neh2 domain. Nonetheless, it should be
noted that observing a direct binding between Nrf2 chemical
inducers and Keap1 protein was made in the test tube, using a
recombinant protein. In addition, the experimental evidence
that natural ITCs could be directly conjugated to any of
cysteine residues in cellular Keap1 and Nrf2 proteins is still
lacking. In this sense, Takaya et al. have recently observed that
a point mutation of cysteine 151 resulted in a reduced Nrf2
activation in response to several Nrf2 inducers, including
sulforaphane, but not to other inducers such as CDDO-Im
and cadmium chloride [49]. This fact suggests a potential
role for cysteine 151 of Nrf2 protein in sulforaphane-mediated
ARE activation, although it is unclear yet whether this residue
serves as a direct binding site for sulforaphane.

By now, significant attention has been focused on the
modification of cysteine residues in Keap1. However, it is
also possible to envisage that Nrf2 cysteine modification can
serve as another potential mechanism for ARE-dependent
gene regulation. To this end, He and Ma have demonstrated
that selected evolutionary conserved cysteine residues in
Nrf2 can be directly modified by arsenic or phenylarsine
oxide (PAO), and these residues are important for its binding
to ARE-dependent gene expression. This raises an inter-
esting possibility that direct modification of Nrf2 amino
acid residue(s) by ARE inducers constitutes an alternative
mechanism for ARE activation [50]. In another study, Li et
al. have identified a potential nuclear export sequence (NES)
motif in the Neh5 transactivation domain of Nrf2 protein
and observed that mutating cysteine residue at 183 position
into alanine (C183A) abrogated the NES function of Nrf2,
rendering a nuclear accumulation of Nrf2 [51]. In addition,
several potential NES sequence motifs together with putative
nuclear localization sequence (NLS) motifs were identified
in the Nrf2 protein sequence [52]. Interestingly, Li et al.
showed that EGFP-tagged Nrf2 segment (amino acids 162–
295), in which a putative NES exists exhibited a cytosolic
pattern and that an exposure of oxidants or electrophiles,
including sulforaphane could alter subcellular localization
of EGFP-tagged Nrf2 segment. This result suggests that
this NES sequence is redox sensitive [51]. In contrast, they
have conducted analogous experiments and demonstrated
that some NES/NLS motifs might be redox insensitive; the
subcellular localization of these NES/NLS is unaltered by
treatment of many electrophiles and oxidants [53]. Collec-
tively, these studies show that multiple NES/NLS motifs play
an important role in the nucleocytoplasmic localization of
Nrf2 protein and suggest that Nrf2 protein by itself might
be able to behave as a Keap1-independent sensor. However,
it is still uncertain whether these residues are direct targets
of natural ITCs. Therefore, whether these cellular cysteine
residues in Keap1 and/or Nrf2 serve as direct targets of
ITCs requires experimental validations. More importantly,
whether and, if so, how cysteine modifications of Keap1
and Nrf2 by ITCs are linked to phosphorylation-mediated
regulation of Keap1 and/or Nrf2 activities needs to be further
clarified.
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4. Concluding Remark

To adapt to their aerobic lifestyle, mammals have developed
an elaborate in vivo defense andmetabolizing enzyme system.
As mentioned earlier, Keap1/Nrf2-regulated gene expres-
sion of phase II cytoprotective and detoxifying enzymes is
one of such prime cytoprotective mechanisms, and we are
already aware that natural ITCs exploit this pathway to exert
chemopreventive effects in humans. In addition, we have
provided an overview of current knowledge regarding the
direct and/or indirect cellular targets for ITCs. As mentioned
earlier, whether cellular Nrf2 and/or Keap1 proteins are direct
targets of ITCs is currently unknown, and there is a great
deal of research conducted to fill this knowledge gaps, to the
best of our knowledge. Recent analysis of Nrf2 interactome
and regulome also highlights an enormous array of potential
targets of natural ITCs and suggests that chemopreventive
mechanisms, exerted by chemopreventive ITCs, might be
much more complex than initially imagined [54].
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