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Abstract
Background: Grayscale image attributes of computed tomography (CT) of
pulmonary scans contain valuable information relating to patients with
respiratory ailments. These attributes are used to evaluate the severity of lung
conditions of patients confirmed to be with and without COVID‐19.
Method: Five hundred thirteen CT images relating to 57 patients (49 with
COVID‐19; 8 free of COVID‐19) were collected at Namazi Medical Centre
(Shiraz, Iran) in 2020 and 2021. Five visual scores (VS: 0, 1, 2, 3, or 4) are
clinically assigned to these images with the score increasing with the severity
of COVID‐19‐related lung conditions. Eleven deep learning and machine
learning techniques (DL/ML) are used to distinguish the VS class based on 12
grayscale image attributes.
Results: The convolutional neural network achieves 96.49% VS accuracy (18
errors from 513 images) successfully distinguishing VS Classes 0 and 1,
outperforming clinicians’ visual inspections. An algorithmic score (AS),
involving just five grayscale image attributes, is developed independently of
clinicians’ assessments (99.81% AS accuracy; 1 error from 513 images).
Conclusion: Grayscale CT image attributes can be successfully used to
distinguish the severity of COVID‐19 lung damage. The AS technique
developed provides a suitable basis for an automated system using ML/DL
methods and 12 image attributes.
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Highlights

• Grayscale image statistics of CT scans can effectively classify lung
abnormalities

• Graphical trends of grayscale statistics distinguish visual assessments
COVID‐19 classes

• Machine/deep learning algorithms predict severity from image grayscale
attributes

• Algorithmic class systems can be established using just five grayscale
attributes

• Confusion matrices provide detailed insight to algorithm prediction
capabilities
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1 | INTRODUCTION

The COVID‐19 virus continues to have devastating
impacts worldwide involving millions of lives lost,
repeated nationwide lockdowns, and substantial dam-
age to the global economy. Methods that can quickly
and accurately classify the severity of patient lung
damage caused by COVID‐19 offer the potential to
assist in establishing and rapidly implementing appro-
priate treatment plans. Most pulmonary examinations
now include computed tomography (CT) scanning as
they can be executed rapidly and painlessly. Analysis of
CT is crucial in establishing the degree to which lung
functionality is impacted by various diseases, including
cancers, various forms of pneumonia and, since early
2020, COVID‐19.1,2 Radiological image analysis, both
X‐ray and CT, help to diagnose COVID‐19 and provide
more details of patient conditions combined with
virus' nucleic acid by real‐time reverse transcription‐
polymerase chain reaction (rRT‐PCR) tests.3 Moreover,
CT scan analysis can achieve up to 98% sensitivity in
diagnosing COVID‐19.4 Lung CT‐scan‐slice analysis also
provide useful insight by identifying and/or confirming
the nature of pulmonary impacts caused by COVID‐19.5
However, it takes time for radiological/medical assess-
ments of CT scans to be conducted, making automated
classification techniques desirable.6

Thoracic CT images taken from COVID‐19 patients
are typically used to support the diagnosis of the
condition, establishing prognoses and treatments for
patients.7 They are also used to monitor symptom
progression and patient responses during treatment.8

The CT images tend not to be routinely used to quantify
the severity of lung impacts caused by COVID‐19,
although some studies have focused on that objective.9

Attempts to achieve this aided by deep‐ and/or
machine‐learning (DL/ML) have to overcome a number
of challenges.10,11

Pulmonary‐CT‐scan images display a range of
distinguishing features in some COVID‐19 sufferers,
that vary according to the conditions severity. Granu-
larly opaque image areas, chaotic arrangements of
lineations, agglomerated masses, opaque alveoli, inverse
halo and/or atoll features, thick‐polygonal forms with
variable and indistinct linear opacities are some of the
common features observed.12 Lung features observed in
radiological images are likely to be affected by some pre‐
existing abnormalities in some patients acting to
confuse COVID‐19 CT‐scan interpretations.13 Never-
theless, linking characteristic features observed in CT
scan images has the potential to be exploited for
systematically classifying the severity of lung conditions
in COVID‐19 sufferers.14 In particular, DL/ML tech-
niques can be exploited to identify the common lung
features associated with COVID‐19 with some degree of
accuracy.15–17 Some DL methods have applied convolu-
tional neural networks (CNN) combined with

automated feature‐extraction routines applied directly
to the CT images to achieve this.18,19 Such approaches
require effective image‐segmentation processing.16,20,21

Customizing effective and rapid CT‐scan‐image
analysis offers the potential to accelerate COVID‐19
patient diagnosis, and treatment plan implementation
and improve patients’ long‐term prognoses. CNN
coupled with effective feature‐extraction algorithms
offers one route for such analysis.10 However, such
approaches often ignore the underlying relationships
between the various grayscale‐image attributes associ-
ated with the distinctive CT image features typically
observed in COVID‐19 patients.

Many DL studies using X‐ray and CT‐scan images
are focused on the early diagnosis of COVID‐19.22,23
This involves a binary assessment assigning a negative
or positive result.24,25 The novelty of this study is that
it considers in detail the grayscale image attributes of
lung CT images from patients with and without
COVID‐19. Moreover, it links the combinations of
those grayscale statistical attributes to the severity of
the pulmonary effects impacting those patients with
COVID‐19.

The research objective of this study was to automate
the interpretation of thoracic CT‐scan images using
grayscale image statistical attributes to provide a reliable
classification of the severity of lung conditions afflicting
COVID‐19 sufferers. It does this applying CNN and
several ML algorithms and comparing their perform-
ance. The analysis initially focuses on predicting a
clinicians’ visual assessments of the CT scan images. It
does this in terms of a binary distinction between
patients with and without COVID‐19 and classifying the
degree of severity of the lung impacts. The study
additionally develops an effective algorithmic classifica-
tion of the severity of lung impacts of COVID‐19 based
on CT‐scan image grayscale statistics. It assesses how
that novel classification system could be adapted to
provide an effective and rapid automated expert system
for classifying the severity of lung impacts from
pulmonary CT images. DL and ML models are applied
to predict that algorithmic classification. The study
evaluates the prediction accuracy of a combination of
the proposed algorithmic classification of lung condi-
tions with DL/ML prediction models. It also compares
the results of the visual and algorithmic classification
analysis of the CT images.

2 | METHOD

2.1 | Overview of proposed CT‐image
analysis

Grayscale statistics extracted from CT pulmonary‐
parenchyma images can be exploited to provide valu-
able insight into the lung's alveolar tissue employed in
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respiratory processes, and this study focuses on that
information. CT‐image slices are rapidly analyzed to
yield values for a range of grayscale statistical attributes.
Interpretations considering combinations of these
statistics with graphic representations identify distribu-
tions related to the severity of lung impacts related to
COVID‐19 that, to some extent, overlap with each other.
However, DL/ML methods can be applied to combina-
tions of these overlapping, grayscale‐attribute distribu-
tions to accurately the severity of lung abnormalities of
each CT‐image slice assessed.

2.2 | Ethical approval

The CT analyses of human patients used in this study
were performed in accordance with the relevant guide-
lines and regulations of Namazi Medical Centre and the
Medical School of Shiraz University of Medical Sciences
(Shiraz, Iran). In particular, the consent for analysis was
obtained from each patient and their anonymity
was guaranteed. Consequently, the confidentiality of
the biographical information pertaining to each patient
has been maintained at all times. All CT analytical
protocols applied were approved by the Medical School
of Shiraz University of Medical Sciences.

2.3 | CT‐scan slice procurement

The suites of lung CT images were obtained from a
representative set of patients. Most of them were
shown by laboratory testing to be afflicted with
COVID‐19. However, images from several patients
with negative COVID‐19 tests were included in the
suite of images compiled. These patients were all
under treatment at the Namazi Medical Centre,
Shiraz, Iran. The Philips Ingenuity CT‐scanning
equipment (Philips) located at that medical center
provided suites of CT‐scan‐slice images (0.625 mm
thickness) for all patients assessed. Such multislice‐
CT‐scan equipment is now widely used to rapidly
deliver high‐resolution images.26

CT images considered are all noncontrasted, which
are typical of those widely used to assess various lung
conditions in addition to those caused by coronaviruses.
The CT‐scan‐slice images utilized are derived from 49
COVID‐positive patients displaying a substantial range
of visible features known to be commonly associated
with COVID‐19. Additionally, multiple CT‐scan‐slice
images associated with eight COVID‐negative patients
are also assessed for comparative purposes. The
COVID‐negative patients consisted of four women with
ages ranging from 18 to 68 years, together with four
men with ages varying from 24 to 71 years. These
images were compared with those from 23 female
COVID‐positive patients with ages ranging from 22 to 74

years, together with 26, COVID‐positive, male patients
with ages ranging from 32 to 86 years. These patients’
images were selected to provide well‐balanced distribu-
tions of patients’ genders and ages.

2.4 | CT‐scan‐slice image assessment

2.4.1 | Classifications involving visual
assessment by clinicians

The suites of CT‐slice images from each patient were
assessed by a clinician (visual inspection). That assess-
ment resulted in each image being assigned a number
from 0 to 4 (five classes in total) to distinguish the
degree of severity of visible, abnormal lung features
they exhibited. Those five classes are defined as follows:
Class 0, COVID‐19‐negative test lacking visual traces of
abnormal lung features; Classes 1–4, apply to all patients
with COVID‐19‐positive tests; Class 1, none, or trace,
indications visible of abnormal lung features; Class 2,
minimal but visible indications of abnormal lung
features; Class 3, sporadic but pervasive visible signs of
abnormal lung features; Class 4, extensive visible signs
of severe abnormal lung features.

This visual‐scoring (VS) classification scheme is
considered as the initial objective function for predictive
DL/ML algorithms assessed using grayscale‐image
attribute statistics.

Example CT‐scan‐slice images with associated recti-
linear extract images for VS Classes 0 and 1 (minimal or
no visual sign of lung abnormalities) are displayed in
Supporting Information: Figure S1. Rectangular‐extract
segments from the images displayed in Supporting
Information: Figure S1 are representative of those used
for grayscale—statistical analysis are shown in Support-
ing Information: Figure S2.

2.4.2 | Rectangular‐extract‐image segment
analysis

A total of 392 rectilinear image extracts were compiled
from the 49 COVID‐19‐positive individuals (approxi-
mately eight extracts/person). Additionally, 121 recti-
linear image extracts were compiled from the eight
COVID‐19‐negative individuals (approximately 15
extracts/person).

The dimensions of the 513 rectilinear images range
from 2000 to 80,000 pixels, with average dimensions
of approximately 25,000 pixels. This range occurs
because the CT‐image extracts are positioned to
sample just the parenchyma portion of each lung.
The rectilinear extracts are also positioned to avoid the
pleura, diaphragm, or mediastinum portions of the lung.
Consequently, areal extent in each CT image extract
varies.
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Every pixel in a monochromatic CT image possesses
one grayscale value varying from 0 (black) to 255
(white). Values on that scale from 1 to 254 represent
progressively lighter shades of gray. The pixel values
are expressed in an 8‐bit‐integer digital format. This
simple grayscale‐image intensity scale means that the
collective sets of pixels making up an image form
grayscale distributions. Those distributions can be
assessed with statistical confidence as thousands of
pixels are involved in each image extract. OpenCV
functions coded in Python are employed in this study to
conduct a comprehensive grayscale statistical analysis of
each image extract.27 These are (1) the number of pixels
present in an image; (2) average pixel grayscale value
(a number between 0 and 255 on the grayscale); (3) the
number of pixels in an image possessing its
average pixel grayscale value; (4) percent of pixels in
an image possessing its average pixel grayscale value;
(5) variance of all pixel grayscale values in an image (a
number between 0 and 255 on the grayscale); (6) ratio of
pixel variance to pixel average pixel in an image;
(7) standard deviation of all pixel grayscale values in
an image (a number between 0 and 255 on the
grayscale); (8) standard error of the mean of all pixel
grayscale values in an image; (9) minimum grayscale
value of all pixels in an image; (10) tenth percentile
(P10) of the grayscale values of all pixels in an image;
(11) fiftieth percentile (P50) of the grayscale values of all
pixels in an image; (12) ninetieth percentile (P90) of the
grayscale values of all pixels in an image; (13) maximum
grayscale value of all pixels in an image.

Clearly, the number of pixels in an image extract
that possesses the average pixel grayscale value
(attribute#3), and the standard error of the mean
(attribute#8), are statistics that are dependent on
the image extract size. Attribute#8 is calculated as the

grayscale standard deviation divided by the square
root of the number of pixels in the image extract.
Apart from the two mentioned, all other grayscale
attribute statistics listed are not dependent of
image size.

The standard error of the mean values are an
indicator of the degree of uncertainty associated with
the average (mean) grayscale value of each image. The
standard error of the mean values is all <0.7 for the
images analyzed. Compared to the grayscale range of
0–255, a standard error of the mean of <0.7 confirms that
there is a very limited uncertainty range associated with
the average (mean) grayscale value of all the image
extracts.

2.4.3 | Deep/machine learning (DL/ML)
models configured to exploit grayscale
statistics

Twelve of the grayscale attribute statistics determined
for each image extract are used as input variables for the
DL/ML analysis to predict the five VS Classes (0–4) as a
dependent variable. The number of pixels in each image
is not used as an input variable as it is dependent on
image size. Each DL/ML classifier is configured and
executed in Python. The objective function minimized
by the DL/ML algorithms is the mean squared error
(MSE) for between the actual (clinician determined) VS
class (VSact) and the predicted VS class (VSpred) taking
into account the full suite of 500 and 13 image extracts.

The 10 ML methods and 1 DL method employed are
described in Table 1.

These algorithms are well known and extensively
applied for many industrial and academic purposes,
including image analysis and classification. Published

TABLE 1 Description of deep learning/machine learning (DL/ML) algorithms applied to evaluating CT‐scan‐extract images based on
grayscale attribute input variables.28–45

Algorithm name Abbreviation Description

Adaptive Boosting “Adaboost” ADA Boosted decision tree28,29

Convolutional Neural Network CNN DL neural network18,19

Decision Tree DT A single tree configuration30–32

Extreme Learning Machine ELM Single‐layer feed‐forward neural network33–35

Gaussian Process Classification GPC Gaussian probability applying Laplace approximation36,37

K‐nearest Neighbor KNN Data matching algorithm15,38

Multilayer perceptron MLP Classic neural network39

Naïve Bayes Classifier NBC Simple Bayes’ theorem classifier15,40

Random Forest RF Tree‐based ensemble method using bagging41,42

Quadratic Discriminant Analysis QDA Nonlinear classifier43

Support Vector Classifier SVC Non‐probabilistic classifier44,45
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examples of their specific applications to classify image
datasets are cited in Table 1. Distinct mathematical,
statistical, and logical concepts are associated with these
algorithms. Most of these algorithms derive and build
their predictions upon hidden regression relationships,
driven by correlations between the input variables and
dependent variables. The K‐nearest Neighbor (KNN)
algorithm is an exception in that it uses data‐record
matching to establish its predictions rather than
correlations.

Each of the DL/ML algorithms requires its hyper-
parameters to be optimized. These algorithm control
values were established using trial and error and grid
search techniques (SciKit‐Learn).46 The configurations
of each algorithms, expressed in terms of their
optimized hyperparameters, are listed in Supporting
Information: Table S1.

Trial‐and‐error and K‐fold cross‐validation analysis
was used to determine the optimum allocation of data
records between the training subset and testing subset
evaluated by each of the DL/ML methods. That analysis
indicated that a random 80% allocation of data records
to the training subset with the remaining 20% of data
records assigned to the testing subset worked effectively
with the CT‐scan‐extract image data set.

2.4.4 | Statistical metrics used to assess the
classification accuracy of DL/ML models

The following statistical measures of classification
accuracy are used in this study to determine the VS
classification performance achieved by each DL/ML
method applied.
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R between variables Xi and Yi is expressed on a scale
between −1 and +1.

Coefficient of determination = R2, which is expressed
on scale between 0 and 1.

2.4.5 | Workflow of the methodology
applied to assess CT images

Figure 1 summarizes the workflow applied in this study
to assess and classify thoracic CT images in terms of
their COVID‐19 impacts.

3 | RESULTS

3.1 | Grayscale image statistics

The grayscale statistical‐attribute distributions of the
CT‐extract images evaluated are described in Supporting
Information: Table S2. Figure 2 displays and compares
box and whisker plots for selected CT‐extract‐
image grayscale attribute distributions relating to the
121 COVID‐19‐negative individuals and the 392
COVID‐19‐positive individuals.

Pixel P50, pixel average, and pixel P90 grayscale
statistics display some the most obvious distinctions
between distributions for COVID‐19‐negative and
COVID‐19‐positive individuals (Figure 2). It is these
more obvious differences, plus the more subtle differ-
ences associated with other grayscale attribute statistics
that the DL/ML models use in their VS class predictions.
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Some of the grayscale statistics relating to the
CT‐extract images also display strong correlations with
their VS classification (Table 2). The Pearson's correla-
tion coefficient (R) values are highly positive for VS
versus grayscale, P50, P90, average, variance, and
standard deviation. R values for VS versus P10, standard
error, and variance/average ratio are moderately posi-
tive. On the other hand, the R value for VS versus the
percentage of pixels at the average grayscale value is
highly negative. The dispersion of the grayscale‐attribute
distributions, and their correlations with VS, are

indicative of systematic variations occurring in these
attributes that are spread across the VS classes
throughout the CT‐extract‐image data set.

Spearman's rank correlation coefficient (p) is also
calculated for VS versus the grayscale statistical
attributes and displayed in Table 2. A feature of the
R statistic is that an assumption is made that the
two‐variable distributions compared both conform to
normal distributions, that is, they display parametric
behavior. The nonparametric p statistic avoids that
assumption as it is calculated based on the ranked

F IGURE 1 Workflow diagram describing the procedures applied in the multiclass lung‐condition‐severity prediction analysis of computed
tomograph images using grayscale statistics.
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position of each data record in the respective
distributions instead of their absolute values. For VS
versus the grayscale attributes the p and R values are
in relatively close agreement (Supporting Information:
Figure S3). This implies that the grayscale attribute
distributions are relatively symmetrical and not highly
skewed.

3.2 | CT‐extract image grayscale attribute
dispersions across VS classes

Figure 3 displays a ternary plot for three grayscale
attributes: average; variance; and, pixel% at the average

value. The scaling factors applied to the grayscale
attributes serve to centralize the spread of data points
on this ternary plot. In such plots, the actual values of
the three variables are normalized to sum to a constant
value (the value of 100 is used for Figure 3).

These normalized values cannot then vary in the
diagram independently of each other. Thus, if
the normalized values of two of the variables plotted are
known, the value of the third can be determined. This
configuration creates only two degrees of freedom in
the normalized system, allowing the three variables to be
displayed in the two‐dimensional ternary plots (Figure 3).

The three grayscale attributes (average; variance; pixel
% at the average) perform relatively good discrimination

F IGURE 2 Box‐and‐whisker plots of selected grayscale attributes: (A) distributions for 121 COVID‐19‐negative computed tomography
(CT) images; (B) distributions for 392 COVID‐19‐positive CT images. The boxes bracket the second and third quartiles of the distributions, the
crosses are the averages, the lines within the boxes are the medians, the ends of the whiskers are minimum and maximum values, and the dots are
considered as outlying values. P10, 10th percentile; P50, 15th percentile; P90, 19th percentile.

TABLE 2 Correlation coefficients for 513 CT‐scan‐extract images grayscale statistical attributes versus VS.

Image grayscale statistical attributes
Attribute
identifier

Pearson correlation
coefficient (R) with VS

Spearman correlation
coefficient (p) with VS

Number of Pixels in Extract 1 −0.0882 −0.1191

Grayscale Average 2 0.7834 0.8059

Number of Pixels at Grayscale Average 3 −0.5140 −0.5552

Percentage of Pixels at Grayscale Average 4 −0.7456 −0.7978

Grayscale Variance 5 0.6749 0.7184

Grayscale Variance/Average 6 0.3740 0.4117

Grayscale Standard Deviation 7 0.6911 0.7184

Grayscale Standard Error 8 0.4148 0.4539

Grayscale Minimum 9 0.1837 0.2373

Grayscale P10 10 0.5511 0.5640

Grayscale P50 11 0.7242 0.7534

Grayscale P90 12 0.8667 0.8776

Grayscale Maximum 13 0.3162 0.2236

Note: The Spearman correlation coefficient uses the same formula as the Pearson correlation coefficient (Equation 9) but uses rank positions in the distributions rather
than absolute values.

Abbreviations: CT, computed tomography; VS, visual scores.
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between the VS classes (Figure 3). There is an almost
continuous progression from VS = 0 (lower‐left in ternary
plot) to VS = 4 (middle‐right in ternary plot). VS Classes 0
and 3 appear in distinct regions on the ternary plot.
Nevertheless, overlaps are apparent among VS Classes 1,
2, and 4 and between those classes and VS Classes 0 and 3.
Lungs with little or no evidence of abnormal features tend
to be associated with relatively low average and variance
grayscale values. As abnormal features materialize in the
lung‐image extracts, grayscale average and variance values
progressively increase. At the stage where abnormal
features become extensive in the lung‐image extracts, the
percentage of image pixels at the average grayscale for the
image tends to decrease. This tendency forms a distinctive
characteristic in the VS Class 4 images.

The images displaying the severest abnormal lung
features plot towards the lower‐right portion of the ternary
plot (Figure 3). Such images show a prevalence of lighter‐
gray pixels. This causes the grayscale variance value to
decline and the grayscale average value to increase. From
VS = 0 to VS = 3 the image positions tend to move from
south‐west to north‐east position in Figure 3. Whereas,
from VS = 3 to VS = 4 the image positions tend to move in a
southerly direction in Figure 3.

Three‐variable plots (Figures S4 and S5) reveal
other progressive and distinctive trends that exist
involving grayscale percentage statistics. The
involvement of grayscale P90 in Supporting Informa-
tion: Figure S4 displays a continuous trend from the
base‐right portion (VS = 0) to top‐left left portion
(VS = 3 or 4) with substantial overlap between VS
Classes 3 and 4. By involving both grayscale P10 and
P90 with grayscale average (Figure S5) the overlap
between classes VS = 3 and VS = 4 is somewhat
reduced.

The distributions of grayscale statistics from CT‐
extract images (Supporting Information: Table S2,
Figures S4 and S5, and Figure 3) include substantial
dispersion and inter‐relationships. These can be
exploited graphically (and by DL/ML methods) to
classify the degree of abnormalities in lungs affected
by COVID‐19. The three‐statistical‐attribute combina-
tions displayed in Figures 3, Supporting Informa-
tion: S4 and S5 discriminate quite well between some
of the VS classes. However, overlapping positions,
particularly between VS Classes 0 and 1 and VS
Classes 3 and 4 make a graphical approach unsuited
to definitive VS classification. Involving DL/ML

F IGURE 3 Ternary plot of three grayscale statistical attributes displaying high correlation coefficients (R and p) with visual scores (VS) class
(Table 2). VS Class 0 = COVID‐negative; VS Classes 1–4 refer to increased lung abnormalities in COVID‐positive individuals.
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methods to consider multiple grayscale attributes as
input variables offers the potential to improve upon
the graphical approach.

3.3 | Feature selection for DL/ML analysis

Thirteen grayscale‐attribute statistics were extracted and
computed for each of the (513) CT‐extract images
(Supporting Information: Table S2). All of these attributes
could be employed as independent (input) variables with
VS class as the single dependent variable for DL/ML
model evaluation. However, as some of these attributes
show relatively low correlations with VS class (Table 2 and
Supporting Information: Figure S3) trial and error
sensitivity analysis was conducted to determine their
impact on the DL/ML prediction performance. The
following sensitivity tests were conducted:

Test #1: 9 input variables (pixel#, standard error,
minimum, variance/average ratio excluded)

Test #2: 10 input variables (pixel#, standard error,
variance/average ratio excluded)

Test #3: 11 input variables (pixel# and variance/
average ratio excluded)

Test #4: 12 input variables (pixel# excluded)
Test #5: 13 input variables

The results showed that Test #4 with 12‐input
variables included achieved the highest VS prediction
accuracy. This suggests that all 12 of those attributes can
provide useful input to the DL/ML models. Those 12
input features were, therefore, selected for detailed
DL/ML model analysis.

3.4 | K‐fold cross‐validation analysis

K‐fold cross‐validation is applied to evaluate, select and
justify the percentage splits of the data records between
training and testing subsets to be applied in ML/DL
analysis. Four specific folds or cases are evaluated for five
algorithms. Those cases are: fourfold (75% training: 25%
testing), fivefold (80% training: 20% testing), 10‐fold (90%
training: 10% testing), and 15‐fold (93% training: 7%
testing). Three runs are executed for each k‐fold analysis
case, thereby generating meaningful statistics for each
case. Twelve distinct splits are evaluated for fourfold case
(3 times 4). The number of splits evaluated increases to
45 for the 15‐fold analysis (3 times 15). The mean MAE
and the standard deviation MAE are recorded for all the
splits evaluated for each fold (Table 3).

All four K‐folds evaluated generate credible prediction
results for the VS and algorithmic scale (AS) classifications
(low MAE means and low MAE standard deviations).
However, the fivefold (80%:20%) split is selected as this
generates the lowest mean MAE and a lower standard

deviation than the 10‐ and 15‐fold analysis. Also, the
80%:20% split involves a substantial number (103) of
randomly selected images in each testing subset.

3.5 | DL/ML model VS class prediction
performance

Table 4 shows the VS class prediction accuracy (VSpred vs.
VSact) for the 11 DL/ML models developed. The results
refer to the trained and validated models applied to the
entire data set. The number and percentages of mis-
classified data records is also listed in Table 4. The
algorithms are ranked, with the best performing shown as
rank 1, and the worst‐performing shown as rank 11. The
rankings are made based on RMSE and classification error
numbers (Table 4). The CNN model is ranked 1 in the VS
classification task incurring only 18 misclassifications from
the 513 images (96.49% accuracy). Moreover, the CNN
model achieved RMSE = 0.19 (with reference to the VS
scale of 0–4) and R2= 0.98. The RF model was ranked
second in its VS classifications (26 misclassifications;
RMSE = 0.26; R2= 0.96; 94.93% accuracy). Also, the ADA,
DT, ELM, and KNN models performed well in classifying
VS. On the other hand, the MLP, NBC, and QDA did not
perform well in classifying VS. The percentage accuracies
achieved for this multiclass VS scale prediction analysis
compare favorably with the percentage accuracies
achieved by recent deep learning studies published for
the binary (COVID negative vs. COVID positive) predic-
tions from CT and X‐ray scans. For instance, Arora et al.6

analyzed 812 CT images and achieved a binary prediction
accuracy of 98%; Polsinelli et al.24 analyzed 100 images
using CNN and achieved a binary prediction accuracy of
85%; Dansana et al.23 analyzed 360 CT images using CNN
and achieved a binary prediction accuracy of 91%; and
Bharati et al.22 analyzed 3411 CT images using DL models
and achieved a binary prediction accuracy of 82.42%. On
the other hand, Bharati et al.25 analyzed 5606 X‐ray images
and achieved a binary prediction accuracy of 73%.

Table 4 reveals that certain ML models achieve
different rankings based on RMSE compared to rankings
based on error numbers. For example, the ELMmodel has
an RMSE‐rank of 4 but error rank of 6, whereas ADA has
RMSE‐rank of 5 but error rank of 4 (Table 4). This is a
consequence of the nature of the misclassification errors
involved. Misclassifications involving adjacent VS classes
have a smaller impact on RMSE than misclassifications
that are more than one class away from the correct class.

3.6 | Confusion matrix assessment of VS
classification

Classification errors made by the DL/ML models may
increase, while for the same analysis, RMSE values might
decrease (Table 4). Confusion matrices deliver a detailed
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assessment of multiclass misclassifications on a VS class
by class basis. Confusion matrices reveal VS classes
predicted with most and least accuracy. The three models
considered (CNN; KNN; ADA; Figure S6) perform quite
distinctly. CNN (Figure S6A) performs best for VS Class 0
(just 1 misclassification) and, in percentage error terms
worst for VS Class 1, although it misclassifies the most data
records (6 out of 129) associated with VS Class 3, CNN
predicts VS Classes 0, 1, and 2 more convincingly than VS
classes 3 and 4. CNN misclassifications only involve
erroneous predictions involving adjacent VS classes.
Confusion matrices for KNN (Figure S6B) and ADA
(Figure S6C) reveal that both models result in 28
misclassifications associated with the 513 CT‐extract
images evaluated. Nevertheless, the distribution of these
misclassifications differs considerably for those two
models. KNN has five misclassifications that are beyond
the adjacent VS classes, whereas ADA results in eight such
extreme misclassifications. Consequently, KNN (RMSE =
0.2887) outperforms ADA (RMSE = 0.3175) overall in its VS

class prediction. KNN and ADA struggle most to correctly
classify VS Class 2 (11 misclassifications; about 40% of total
misclassifications). KNN performs best in classifying VS
Classes 0 and 1 (better than CNN). ADA does not deal as
well with VS Class 0 as the CNN and KNN models but
performs almost as well as the CNN model in its
classification of VS Classes 3 and 4.

Analysis of confusion matrices provides a comple-
mentary perspective on the RMSE/error count analysis
of each model in assessing their overall multiclass
classification prediction strengths and weaknesses.

4 | DISCUSSION

4.1 | Formulaic/algorithmic scoring
approach to classifying CT‐extract images

The relatively good discriminatory performances among
the VS classes of the graphical relationships (Figure 3,

TABLE 3 K‐fold cross‐validation results highlighting the visual scale (VS) and algorithmic scale (AS) prediction performances of five
algorithms for training and testing splits varying from 75%: 25% to 93%: 7%, respectively.

K‐fold cross‐validation results Visual scoring Algorithmic scoring

Model K‐fold
Training: testing
percentage splits

Splits evaluated
in each run

Distinct cases for
three repeated runs

MAE
mean

MAE standard
deviation

MAE
mean

MAE standard
deviation

ADA 4‐fold 75:25 4 12 0.3841 0.0597 0.0286 0.0151

5‐fold 80:20 5 15 0.3248 0.0709 0.0256 0.0281

10‐fold 90:10 10 30 0.3588 0.0845 0.0287 0.0230

15‐fold 93:7 15 45 0.3607 0.0946 0.0338 0.0339

DT 4‐fold 75:25 4 12 0.3613 0.0459 0.0176 0.0132

5‐fold 80:20 5 15 0.3346 0.0475 0.0135 0.0172

10‐fold 90:10 10 30 0.3527 0.0898 0.0150 0.0192

15‐fold 93:7 15 45 0.3470 0.0872 0.0150 0.0267

KNN 4‐fold 75:25 4 12 0.3191 0.0372 0.0721 0.0197

5‐fold 80:20 5 15 0.2985 0.0512 0.0608 0.0216

10‐fold 90:10 10 30 0.3112 0.0819 0.0663 0.0235

15‐fold 93:7 15 45 0.3193 0.0988 0.0677 0.0377

RF 4‐fold 75:25 4 12 0.2743 0.0322 0.0240 0.0098

5‐fold 80:20 5 15 0.2582 0.0479 0.0222 0.0173

10‐fold 90:10 10 30 0.2652 0.0846 0.0231 0.0200

15‐fold 93:7 15 45 0.2614 0.0893 0.0234 0.0267

SVM 4‐fold 75:25 4 12 0.5563 0.0954 0.1170 0.0257

5‐fold 80:20 5 15 0.4532 0.0709 0.1063 0.0276

10‐fold 90:10 10 30 0.5392 0.1038 0.1092 0.0482

15‐fold 93:7 15 45 0.5361 0.1153 0.1040 0.0535

Note: Model abbreviations are listed in Table 1.

Abbreviations: ADA, Adaptive Boosting “Adaboost”; AS, algorithmic scale; DT,Decision Tree; KNN, K‐nearest Neighbor; MAE, mean absolute error; RF, Random Forest;
SVM, support vector machine.
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Supporting Information: Figures S4 and S5), involving
just grayscale attributes, makes them exploitable for
automated formulaic classification. Such an algorith-
mic/formulaic scoring system (AS) has the potential to
provisionally classify the extent of abnormal lung
features in CT‐extract images before inspection by a
clinician and/or DL/ML analysis. AS scores can com-
plement the VS score assigned by a clinician (i.e., VS
based on clinician's expert evaluation; AS based on a
defined algorithm). Automating CT‐extract‐image as-
sessments has the attraction of speed and objectivity.
This can provide provisional guidance for a subsequent
more detailed expert visual assessment.

An example AS approach involves just five grayscale
attributes (P10, average, P90, variance and pixel% at the
average value; attributes 10, 2, 12, 5, and 4 in Table 2
and Supporting Information: Figure S3, respectively)
corresponding to those used in Figure 3, Supporting
Information: Figure S4 and S5 for VS analysis.

AS distinguishes only four classes of lung abnormal-
ity. Class 1 corresponds to the least abnormality whereas
Class 4 refers to the most extreme abnormality. There is
no Class 0, which is included in the VS system to
distinguish individuals with COVID‐19‐negative test
results. The more generic AS is defined to address the
extent of abnormal lung features, irrespective of the
cause. The CT‐extract images classified as either VS
Class 0 or 1 tend to be classified as AS Class 1.

1. The AS formulas involve just four groups of rules:
AS = 4 (extensive presence of abnormal lung features)

is established for those images that satisfy three
grayscale attribute levels: P10 grayscale ≥ 100; average
grayscale ≥ 150; P90 grayscale ≥ 200.

2. AS = 1 (few if any abnormal lung features) is
then established (after AS = 4 images have been
allocated and removed from the selection) for
those remaining images that satisfy four grayscale
attribute levels: P10 grayscale < 80; P90 grayscale
<125; variance <1000; Pixel% at the average value
> 1.5%.

3. AS = 2 (minor abnormal lung features) is then
established (after AS = 4 and AS = 1 images have
been allocated and removed from the selection) for
those remaining images that satisfy two grayscale
attribute levels: Average grayscale < 125; P90
grayscale < 150.

4. AS = 3 (substantial abnormal lung features) is then
established (after AS = 4, AS = 1, and AS = 2 images
have been allocated and removed from the selection)
with all remaining CT‐extract images not assigned to
other groups.

Table 5 and Supporting Information: Figure S7
displays the Pearson and Spearman correlation coeffi-
cients between the grayscale attribute variables and the
AS classes for all CT‐extract images. As should be
expected, the R and p values are slightly higher than
those for correlations between the same variables and
the VS classes (Table 2). This is particularly the case for
those grayscale variables involved in the formulaic
definition of the AS classes.

TABLE 4 VS Classification results for trained and validated deep learning/machine learning (DL/ML) models using 12‐input‐variable
grayscale statistical attributes applied 513 CT‐extract images.

Prediction accuracy visual score (VS: 0–4) using 12 grayscale input variables
ML/DL
Model

RMSE
(VS) MAE (VS) APD (%) AAPD (%) Sdev (VS) R2

Number
of errors % correct

Rank by
RMSE

Rank by
errors

ADA 0.3175 0.0698 −0.6686 3.0459 0.3186 0.9445 28 94.54 5 4

CNN 0.1868 0.0349 0.3165 1.2209 0.1869 0.9805 18 96.49 1 1

DT 0.3294 0.0775 −0.3424 2.9199 0.3305 0.9404 32 93.76 6 5

ELM 0.3144 0.0872 −1.3372 3.7984 0.3156 0.9453 42 91.81 4 6

GPC 0.4176 0.1589 0.2778 4.8643 0.4175 0.9041 78 84.80 7 8

KNN 0.2887 0.0640 0.3230 2.1641 0.2890 0.9542 28 94.35 3 4

MLP 0.9139 0.5291 12.9167 18.7629 0.8225 0.6949 196 61.79 11 11

NBC 0.7587 0.4205 −9.3346 21.8992 0.7609 0.7024 177 65.50 10 10

QDA 0.5171 0.2054 −5.1583 9.8934 0.5184 0.8524 90 82.46 9 9

RF 0.2604 0.0562 −0.6944 2.3094 0.2614 0.9620 26 94.93 2 2

SVM 0.4313 0.1202 0.7526 4.6932 0.4285 0.9005 46 91.03 8 7

Note: VS system involves classes 0 to 4 assigned by a clinician.

Abbreviations: AAPD, absolute average percentage deviation; ADA, Adaptive Boosting “Adaboost”; APD, average percentage deviation; CNN, Convolutional Neural
Network; DT, Decision Tree; ELM, Extreme Learning Machine; KNN, K‐nearest Neighbor; MAE, mean absolute error; RMSE, root mean squared error; Sdev, standard
deviation; SVM, support vector machine. Model abbreviations are listed in Table 1.
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The 513 CT‐extract images assigned to AS classes
are shown in Figure 4. An increased degree of
segregation of the AS classes is discernible in
Figure 4 compared to that achieved for the VS classes
in Figure 3. This outcome confirms that the value of
AS is a preliminary, automated, objective CT‐extract
image assessment. The five‐attribute AS classification
system can be further improved upon by applying
DL/ML algorithms to consider all the available
attributes.

Table 6 summarizes AS classification prediction
accuracy determined by DL/ML models using the same
12 input variables (grayscale attributes) recorded for
each of 513 CT‐extract images. The results confirm that
the DL/ML methods find it easy (fewer misclassifica-
tions and much lower RMSE/MAE values) to classify the
CT‐extract images using the AS classes than the VS
classes.

Two of the ML algorithms, RF and DT, make only
one classification error (out of 513 CT‐extract assign-
ments) in the AS classification exercise. Those two
models achieved 99.81% accuracy in classifying
AS correctly. That level of classification accuracy is
better than that achieved for the VS scale
(Section 3.5). It also compares very favorably with
the accuracy achieved by published DL studies of CT
scans focused on the binary (COVID negative vs.
COVID positive) classifications,6,22–25 as already
mentioned in Section 3.5.

The CNN (DL model) ranks 6 out of 11 for its AS
classification performance. CNN is outperformed by
the RF, DT, ADA, GPC, and KNN models for AS
classification (Table 6). Nevertheless, the CNN model

still achieves and AS classification accuracy of >98%.
The confusion matrix analysis (not shown) reveals
that DT misclassifies just one CT‐extract image of
AS = 2 as belonging to Class 1, with RF misclassifying a
CT‐extract image of AS = 4 as belonging to Class 3.

Alternative combinations of grayscale attributes
(distinct from the five attributes used to define AS),
and/or alternative classification scales including more
or less than four classes, could also be explored. It is
possible that such alternative algorithmic systems could
also provide useful algorithmic segregation of the CT‐
extract images in terms of their severity of lung
abnormalities. Further research is justified to evaluate
such possibilities. Notwithstanding possible alternative
algorithmic approaches, the AS system, as defined, is
considered to provide a viable algorithmic CT‐extract
image classification system based on easy‐to‐measure
grayscale attributes.

4.2 | Value of DL/ML models in
predicting VS and AS classification systems

VS class definitions benefit from the input of a
clinician's expertise, potentially taking account of a
wider set of information than just image grayscale
attributes. However, human judgement, irrespective
of the expertise involved, makes VS class assignments
by visual inspection somewhat subjective. This means
that classifications are likely to vary, in detail, among
clinicians. The magnitude of abnormal lung features
associated with COVID‐19 clearly varies over a broad
range, as reflected by the grayscale attribute

TABLE 5 Correlation coefficients for 513 CT‐scan‐extract images grayscale statistical attributes versus AS.

Image grayscale statistical attributes Attribute identifier
Pearson correlation coefficient (R)
with algorithmic score (AS)

Spearman correlation
coefficient (p) with AS

Number of Pixels in Extract 1 −0.0980 −0.1344

Grayscale Average 2 0.8202 0.8531

Number of Pixels at Grayscale Average 3 −0.5560 −0.5682

Percentage of Pixels at Grayscale Average 4 −0.7786 −0.7876

Grayscale Variance 5 0.6559 0.7340

Grayscale Variance/Average 6 0.3661 0.4144

Grayscale Standard Deviation 7 0.6988 0.7340

Grayscale Standard Error 8 0.4364 0.4871

Grayscale Minimum 9 0.2656 0.3304

Grayscale P10 10 0.6338 0.6516

Grayscale P50 11 0.7459 0.7897

Grayscale P90 12 0.9015 0.9174

Grayscale Maximum 13 0.3821 0.2892
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dispersions recorded (Figures 3, Supporting Informa-
tion: Figures S4 and S5). Unfortunately, the measured
grayscale attributes do not crisply segregate into
clusters (e.g., to facilitate simple COVID‐19‐negative
vs. COVID‐19‐positive classification). This makes the
distinction of arbitrarily imposed visual‐inspection
classes unreliable.

In summary, the potential disadvantages of the VS
method are (1) the risk of inconsistency and subjectivity
in the VS class assignments of different clinicians; and (2)
the slightly overlapping nature of the grayscale attribute
clusters relating to the VS groups. Nevertheless, the
classification performance of the CNN DL method
applied to the prediction of VS classes is extremely good
(just 18 misclassifications out of 513 CT‐extract images
evaluated; 96.49% accuracy). Based on that performance,
evaluations with larger datasets may be able to further
improve VS classification accuracy. However, it would be
difficult to consistently achieve zero VS misclassifications
due to the element of subjectivity involved the visual
assessment process. By removing that subjectivity and
applying a formulaic grayscale assessment, such as the

AS system defined and evaluated, more reliable image
classification can be reached (Table 6 and Figure 4),
achieving up to 99.81% accuracy by DT and RF models.
Although the AS method overcomes the disadvantages of
the VS method, a remaining disadvantage of the
technique is that the extraction of the grayscale image
slices from the CT scans currently lacks automation.
Future developments planned for the technique are to
automate the image slice extraction process.

A comparison of VS Class 0 (COVID‐19‐negative
individuals) and VS Class 1 (COVID‐19‐positive indivi-
duals displaying minimal visual signs in terms of
abnormal lung features) classification performance by
DL/ML models is worth reflecting upon. CNN and KNN
12‐variable models are able to distinguish between these
classes with very few errors (Supporting Information:
Figure S6). On the other hand, clinicians can only do
this, in most cases, with the aid of a rRT‐PCR COVID‐19
test. This outcome highlights the power of the DL/ML
models to use the CT‐extract grayscale attributes to
achieve valuable distinctions between the most difficult‐
to‐separate VS classes based on visual assessment alone.

F IGURE 4 Ternary plot of computed tomography (CT)‐extract image grayscale average, variance, and pixel% at average grayscale with four
algorithmic score (AS) classes distinguished. To be compared with Figure 3 highlighting that the AS classes can be more easily separated using
these attributes than the classes related to the visual scores scale.
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There is clearly valuable grayscale attribute information
available in the CT‐scan images. The DL/ML methods
offer a rapid and highly effective way of extracting that
information in a way that could be used positively to
better assess lung damage severity in COVID‐19 patients
and improve early decision‐making on the most suitable
care and treatment to administer. Although the use of
DL methods for CT‐image analysis and pattern
recognition is expanding, ML methods should not be
discounted as shown by the results of the DT and RF
models with the AS data set described.

5 | CONCLUSIONS

Based upon grayscale attribute analysis of 513 CT‐scan‐
extract images taken from 57 hospitalized individuals
(49 with positive COVID‐19 tests; 8 with negative
COVID‐19 tests) the following conclusions can be
drawn: (1) Grayscale attributes can be used to classify,
with reasonable accuracy using graphical methods,
based a clinician's VS scale of VS = 0 (COVID‐19‐
negative) to VS = 4 (COVID‐19‐positive with severe
lung abnormalities visible) involving five classes.
(2) Due to overlap among the VS classes, graphical
analysis of grayscale image attributes does not on its
own generate highly reliable VS classifications.
(3) Deep‐ and machine‐learning (DL/ML) methods
can achieve much better VS classifications based on 12
grayscale image attributes than graphical analysis.
(4) Of 11 DL/ML models evaluated, the CNN provided
the best VS classifications; just 18 misclassifications

from the 513‐image data set. This represents an
accuracy of 96.49%. That multiclass prediction accu-
racy compares favorably with the range of published
prediction accuracies (73%–98%) achieved for DL
models configured to address the binary classification
issue (COVID negative vs. COVID positive) using CT‐
scan and/or X‐ray images. (5) A simple formula/logic‐
based AS system, based on just five grayscale‐image
attributes is able to separate all the CT‐extract images
evaluated into four classes; AS = 1 (minimal abnormal
lung features) to AS = 4 (severe abnormal lung features)
involving four classes without considering COVID‐19
test information. (6) Applying DL/ML models with 12
grayscale attribute input variables to predict the AS
classes, decision tree (DT) and random forest (RF)
models outperformed the other models. Those two ML
models did so by classifying all but one of the images
into the correct AS classes. This represents a multiclass
classification accuracy of 99.81%. That multiclass
prediction accuracy exceeds the range of published
prediction accuracies (73%–98%) achieved for DL
models configured to address the binary classification
issue (COVID negative vs. COVID positive) using CT‐
scan and/or X‐ray images. (7) The CNN model
performed less well classifying using AS scale and
grayscale attributes than several of the ML methods
evaluated but still achieved 98.44% accuracy. (8) The
algorithmic approach, AS coupled with DL/ML models,
offers the potential of providing an accurate, auto-
mated expert system for classifying into multiple
classes the severity of lung abnormalities from CT‐
scan information based on grayscale image attributes.

TABLE 6 AS classification results for trained and validated deep learning/machine learning (DL/ML) models using 12‐input‐variable grayscale
statistical attributes applied 513 CT‐extract images.

Prediction accuracy algorithmic score (AS: 1–4) using 12 grayscale input variables
ML/DL
model RMSE (VS) MAE (VS) APD (%) AAPD (%) Sdev (VS) R2

Number of
errors % correct

Rank
by RMSE

Rank by
errors

ADA 0.0623 0.0039 0.1292 0.1292 0.0624 0.9955 2 99.61 3 3

CNN 0.1245 0.0155 0.1906 0.3844 0.1248 0.9821 8 98.44 6 6

DT 0.0440 0.0019 0.0646 0.0646 0.0442 0.9978 1 99.81 2 2

ELM 0.1460 0.0213 0.0258 0.6072 0.1465 0.9753 11 97.86 7 7

GPC 0.0984 0.0097 0.1421 0.2390 0.0986 0.9888 5 99.03 4 4

KNN 0.1165 0.0136 0.1098 0.3682 0.1168 0.9843 7 98.64 5 5

MLP 0.3294 0.1085 −0.2584 3.5853 0.3304 0.8760 56 89.08 11 11

NBC 0.3294 0.1085 −0.9496 3.7016 0.3306 0.8777 56 89.08 11 11

QDA 0.2567 0.0659 −0.6008 2.2416 0.2577 0.9243 34 93.37 9 9

RF 0.0440 0.0019 0.0388 0.0388 0.0442 0.9978 1 99.81 2 2

SVM 0.1761 0.0310 0.0032 1.0368 0.1766 0.9641 16 96.88 8 8

Note: AS system involves Classes 1–4 defined by formulaic/logical rules. Model abbreviations are listed in Table 1.

Abbreviations: AAPD, absolute average percentage deviation; APD, average percentage deviation; MAE, mean absolute error; RMSE, root mean squared error; Sdev,
standard deviation; SVM, support vector machine.
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Based on these findings, the methods proposed in
this study, and grayscale attributes of CT scans in
general, are worthy of further evaluation with larger
datasets of CT images.
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