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Abstract

Purpose of Review We aim to summarize the sleep disorders reported in patients affected by primary mitochondrial dysfunctions
and describe the association with their clinical and molecular characteristics.

Recent Findings Sleep complaints are prevalent in mitochondrial disorders. Sleep-disordered breathing is the main sleep disorder
reported in mitochondrial diseases. OSA and CSA are, respectively, more frequently associated with patients characterized by the
prevalent involvement of the skeletal muscle and the predominant involvement of the central nervous system. Other sleep
disorders, such as restless legs syndrome, have been rarely described.

Summary Sleep disorders are frequently associated with primary mitochondrial disorders, and the clinical phenotypes affect the
type of sleep disturbance associated with the mitochondrial dysfunction. A polysomnographic study should be performed in
every subject with this neurogenetic disorder both at diagnosis and during follow-up for the numerous adverse clinical outcomes
associated with sleep disorders and the frailty of mitochondrial patients.
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Introduction

Mitochondrial medicine, a term coined by Rolf Luft in 1994
[1], is currently a recognized field in translational medical
research with important clinical implications. As one of the
branches of medicine in extremely rapid evolution, the role of
mitochondria dysfunction in different human conditions is
deeply explored in rare and common conditions, such as pri-
mary mitochondrial diseases, neurodegenerative diseases, car-
diovascular diseases, aging, and cancer [2—4, 5¢]. In particular
regard to primary genetic mitochondrial disorders, numerous
medical subspecialties have helped to further understand the
pleiotropic manifestations of mitochondrial diseases (MDs),
involving branches like endocrinology, cardiology,
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gastroenterology, and ophthalmology [6—8]. Among the
commonest forms of genetic human disorders with mutations
in more than 350 genes of the mitochondrial and nuclear ge-
nomes, MDs are characterized by a primary defect in oxida-
tive phosphorylation, the main source of cellular adenosine
triphosphate (ATP). With an age of onset ranging from
infancy to adulthood, the patients affected by primary mi-
tochondrial dysfunction experience a single organ in-
volvement or more frequently a multisystem syndrome
with the most energy-dependent tissues commonly affect-
ed, such as the brain and skeletal muscle [9¢, 10]. The
broad clinical spectrum of MDs, including specific phe-
notypes characterized by the predominant involvement of
the skeletal muscle defined primary mitochondrial myop-
athies (PMM) [11ee], justifies the variety of sleep disor-
ders documented in these genetic diseases [12¢] and the
emerging role of mitochondrial sleep medicine.

In this review, we aim to summarize the sleep disor-
ders reported in patients affected by primary mitochon-
drial dysfunctions and describe the association with
clinical and molecular characteristics of mitochondrial
patients. Finally, we briefly discuss the main pathophys-
iological mechanisms that document the key role of the
mitochondria in the sleep physiology and pathology.
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Sleep Disorders in Mitochondrial Diseases:
Clinical Implications

The burden of sleep disorders in MDs has been poorly docu-
mented. To date, most of the literature on this topic is mainly
based on case reports or case series and few retrospective or
cross-sectional studies with a significant number of patients
investigated [13—16, 17¢, 18, 19e¢, 20, 21°]. For a detailed
review of the current literature, see Table 1.

Sleep-Disordered Breathing

The most frequent sleep disorders described in the context of
MDs belong to the sleep-disordered breathing (SDB) group.
SDB includes a constellation of disturbances classified in four
major categories: obstructive sleep apnea (OSA), central sleep
apnea (CSA) syndrome, sleep-related hypoxemia disorders,
and sleep-related hypoventilation disorders [22]. Each of these
disorders has been associated with MDs.

The physiological changes that occur during sleep make
this a critical time for the process of breathing. First, the effect
of gravity in the supine position determinates a reduction of
the total lung capacity and a narrowing of the velopharynx
[23], both contributing to the increased upper airway resis-
tance, as well as the reduced tonic drive of pharyngeal dilator
muscles [24]. Furthermore, physiological modifications ob-
served in breathing during sleep include a reduction of respi-
ratory rate [25], a diminished sensitivity of chemoreceptor of
the respiratory center [26], and the absence of stimulus of
wakefulness drive to respiration [27]. Finally, the reduction
of the muscular tone involving the accessory respiratory mus-
cles is associated with normal diaphragmatic activity in order
to guarantee an adequate ventilation. This aspect is particular-
ly important for REM sleep characterized by a complete mus-
cular atonia and, therefore, represents the most critical sleep
stage for respiration [28]. On these bases, it is expected that
patients affected by neuromuscular disorders are particularly
vulnerable to develop SDB [29]. OSA is the most common
subtype of SDB, and it is characterized by intermittent and
repetitive episodes of partial (hypopnea) or complete (apnea)
obstruction of the upper airways causing falls in blood oxygen
hemoglobin saturation and disruption of sleep. Daytime
symptoms include excessive daytime sleepiness (EDS), fa-
tigue, morning headache, and cognitive or mood alterations
(e.g., memory loss, irritability, and depression). In our previ-
ous paper, we described a large population of adult patients
affected by MDs investigated by a polysomnographic study
[19e¢], revealing a high prevalence of OSA (35/103, 34%).
Particularly, the prevalence of this specific SDB was signifi-
cantly higher in the phenotypes of MDs associated with the
higher grade of muscular involvement. Interestingly, the clas-
sical risk factors for OSA described in general population,
such as obesity, were not significantly associated with OSA
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in our MD patients. Pfihodova and colleagues observed a high
prevalence of OSA (22%) in patients affected by Leber hered-
itary optic neuropathy (LHON) and dominant optic atrophy
(DOA). Interestingly, the prevalence of OSA in these patients
did not differ between symptomatic and asymptomatic groups
[21ee]. At the same time, the burden of OSA in MDs has been
also revealed in pediatric populations. In particular,
Jeyakumar et al. [15] observed a higher prevalence of OSA
(9.8%) in pediatric patients affected by MDs when compared
with that described in the general pediatric population (2%).
These findings were further confirmed by Mosquera and col-
leagues [17¢¢], reporting a pediatric group of patients affected
by MDs by means of video-polysomnography. In their study,
the authors revealed a high incidence of SDB (10/18, 56%)
with a clear prevalence of OSA (6/18, 33.3%). Interestingly,
the prevalence of SDB was prominent in patients with an
abnormal muscular tone, while the classical risk factors of
OSA, such as adenotonsillar hypertrophy, allergic rhinitis his-
tory, and post-tonsillectomy status, were not associated with
SDB, suggesting that the genetic neuromuscular disease con-
tributes to sleep respiratory disturbances. These data seem to
confirm the results reported in our research paper,
documenting the key role of skeletal muscle involvement in
the occurrence of specific SDB [19¢¢]. Moreover, the presence
of SBD in pediatric MD population suggests that respiratory
sleep disorders are an early manifestation of disease, and
therefore, polysomnography should be performed as promptly
as possible in these fragile patients.

Conversely, Smits et al. [20+¢] found a low prevalence of
OSA (1/20, 5%) in a population of 20 adult patients with
chronic progressive external ophthalmoplegia (PEO), with
slightly increased AHI. On the other hand, in this population,
CSA was the prominent SDB (4/20, 20%). A possible expla-
nation for the discrepancy of data between the two studies is
probably to be found in the different phenotypes associated
with mutations in POLG gene. In our recent published article
[19+], the patients associated with pathological variants in
POLG presented a PMM with PEO phenotype, while Smits
and colleagues investigated the presence of SDB in subjects
with POLG mutations and ataxia neuropathy spectrum (ANS)
phenotype. In light of these considerations, it is possible to
hypothesize that patients with pathogenic variants in the same
gene present OSA or CSA depending on a phenotype with
predominant muscular or nervous system involvement.
Another possible explanation of this conflicting findings is
that, at least in part, some of the observed respiratory events
could be classified as “pseudo-central” [30]. These events
appear mainly during REM sleep characterized by a reduction
of the oro-nasal flow due the diminished intercostal muscle
activity and, in turn, to a reduction of the excursion of the rib
cage. However, OSA has been described in association with
other phenotypes of MDs, such as Leigh syndrome (LS) [17¢e,
31-33], Kearns—Sayre syndrome (KSS) [34], and neuropathy,
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the latter case, a peculiar pattern of crescendo/decrescendo
ventilatory pattern is observed, mostly during NREM sleep,
and defined as Cheyne—Stokes breathing (CSB). MDs encom-
pass a large variety of phenotypes with different grades of
muscular, neurological, and cardiac involvement. On these
bases, it is reasonable to presume that they are widely associ-
ated to CSA, and therefore, the clinical suspicion of disor-
dered breathing of central origin should be raised in those
patients with genetic mitochondrial dysfunction who manifest
cardiomyopathy, as observed in a LHON patient with a severe
cardiac involvement [21¢] or the involvement of the CNS. In
fact, most of the cases described in literature of CSA in MDs
are related to clinical phenotypes such as LS [33, 46], NARP
[35], and KSS [34]. CSA and a diminished ventilatory re-
sponse to inhaled CO2 have been described by Manni and
colleagues [16] in a cohort of patients affected by PEO, with-
out molecular characterization but defined as
“ophthalmoplegia plus” for the involvement of the central
and/or peripheral nervous system. Similarly, Smits et al.
[20e¢] revealed high prevalence of CSA (4/20; 20%) in PEO
patients associated with POLG mutations and ANS pheno-
type. Although the absence of genetic data in the article of
Manni et al. does not allow us to draw definitive conclusions,
it is possible to speculate that a combined mechanism of im-
paired CNS control of respiration and respiratory muscle
weakness concur to determinate sleep-disordered breathing
of central origin.

Subjective Sleep Disturbances

Subjective nocturnal sleep dysfunction, evaluated by the
Pittsburgh sleep quality index (PSQI), has been reported in
about 75% of patients with MDs [20+°] and in 70% of patients
with mitochondrial optic neuropathies [21¢¢]. Similarly, EDS,
evaluated by means of Epworth sleepiness scale (ESS), has
been described in adult patients affected by primary mitochon-
drial disorders with a prevalence ranging from 27 [14] to 33%
[18] and up to 66% in pediatric population [17¢]. In both
studies, the prevalence of EDS appears significantly higher
than in general population. EDS appears to be prevalent
(4/36, 11.1%) also in mitochondrial optic neuropathies, re-
gardless of the presence of ocular symptoms [21¢¢]. A single
study by Guilleminault and colleagues [47] objectively eval-
uated EDS by means of multiple sleep latency test (MSLT) in
patients with neuromuscular disorders, including two patients
with MDs. Both subjects presented subjective EDS (ESS >
10) objectively confirmed by a mean sleep latency of about
8 min at MSLT. Interestingly, after correcting the underlying
sleep respiratory disorder, these patients presented a normali-
zation of both subjective and objective EDS. Other experi-
ences indicate that a treatment of an underlying sleep disorder
could ameliorate daytime symptoms correlated to a chronic
sleep deprivation promoted by sleep disruption [31, 35, 43].

Conversely, subjective sleep complaints were not present in a
study group of patients with concomitant sleep apnea and
REM-related hypoventilation [16]. Moreover, in large cross-
sectional studies the prevalence of perceived sleep dysfunc-
tion [20e°] and EDS [17¢, 20¢¢] is higher than the prevalence
of a concomitant sleep disorder or abnormal findings on
polysomnography. Similarly, in LHON and DOA [21¢¢], no
significant correlation was observed between polysomno-
graphic parameters and poor subjective sleep quality.
Therefore, it is difficult to establish whereby EDS and subjec-
tive sleep dysfunction are a reflection of underlying sleep
disorder or a direct manifestation of MDs.

Other Sleep Disorders

Other sleep disorders, in addition to those belonging to the
SDB category, have been rarely described in association with
MDs. Sleep-onset and maintenance insomnia have been re-
ported in a high prevalence of patients (15/36, 41.7%) with
mitochondrial optic neuropathies [21¢°]. Smits et al. [20¢°]
reported a high prevalence (7/20, 35%) of restless legs syn-
drome (RLS) in PEO patients: two carrying POLG mutations,
whereas the other five are associated with single mtDNA de-
letion or other mutations. Surprisingly, the presence of RLS
was not associated to increased sleep latency neither to worst
subjective sleep quality. Regarding polysomnographic find-
ings, they found a high prevalence of periodic limb move-
ments (PLM) in their population (mean PLM index 25.5
events/h), and in nine cases (45%), the PLM index was higher
than 15 events/h which is considered the pathological cut-off
[48]. PLM were more common in those patients who
complained poor subjective nocturnal sleep quality, suggest-
ing a high prevalence of periodic limb movement disorder
(PLMD) in their cohort of patients affected by genetic mito-
chondrial dysfunction. RLS and nocturnal leg cramps seems
to be prevalent (4/36, 11.1%) in patients affected by LHON
and DOA, while PLM detected on PSG were present in few
patients of the same cohort (2/36, 5.6%) [21°¢]. A case of RLS
in a patient affected by PEO with a POLG pathological vari-
ants has been reported by Aitken et al. [49]. In this case, the
patient presented an asymmetric uptake of tracer in the puta-
men at DaTscan, suggesting a dysfunction of the dopaminer-
gic system, as usually observed in Parkinson disease and idi-
opathic RLS [50]. Interestingly, Haschka et al. [51] reported
an association between RLS and the mitochondrial iron defi-
ciency in peripheral monocytes, suggesting that mitochondrial
dysfunction can concur to aggravate RLS symptoms.
Increased PLM index (pediatric cut-off > 5 events/h) has been
described also by Mosquera et al. [17¢¢] in two pediatric pa-
tients, without subjective sleep movement complaints.
Finally, a peculiar sleep-related movement disorder defined
as excessive fragmentary hypnic myoclonus has been reported
by Pincherle and colleges [52]. In this case report, the authors
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describe a patient with brainstem lesions on MRI, who
underwent to V-PSG, presenting sub-continuous and arrhyth-
mic myoclonic jerks occurring during both NREM and REM
sleep and associated to sleep-onset insomnia, reduced sleep
efficiency, and increased wake after sleep onset (WASO).
Finally, a delayed sleep—wake phase disorder, a circadian
rhythm sleep disorder (CRSD), has been described in a family
of diabetes mellitus associated with m.3243A>G mutation
[53]. Interestingly, the circadian rhythm disorder dramatically
improved after the administration of coenzyme Q10, suggest-
ing that circadian rhythm disorder can be a direct manifesta-
tion of MD, as indicated by recent evidence of a crosstalk
between the mitochondria and the circadian clock [54].
Conversely, no CRSD have been observed in a large cohort
of patients with mitochondrial optic neuropathies [21¢¢], rein-
forcing the hypothesis that the retinohypothalamic tract, es-
sential for light-dependent regulation of the circadian rhythm,
is sufficiently preserved in these pathologies.

Approaches to Treatment

SDB are a frequent comorbidity of MDs, and an early recog-
nition is crucial in order to prevent further clinical deteriora-
tion of these fragile patients. Data from the literature support
that mechanical ventilation is effective to improve nocturnal
breathing, to restore a normal sleep architecture [35] and to
ameliorate daytime symptoms [31, 47]. Particularly, in cases
associated with severe central nocturnal hypoventilation [32,
41, 44, 46], treatment is lifesaving, because this condition can
lead to sudden death during sleep. An early recognition and
treatment could reduce the risk of further respiratory deterio-
ration and the need for invasive mechanical ventilation or
tracheotomy [32, 34, 35, 41, 46]. Moreover, a pharmacologi-
cal treatment has been proposed [39, 40] to treat
hypoventilation in these patients with drugs that stimulate
hypoxic ventilatory response (e.g., aminophylline, theophyl-
line, almitrine) with inconsistent results. The treatment of the
underlying metabolic disorder associated with MD could also
concur to ameliorate the SDB [31, 42, 43]. For pediatric pop-
ulation, adenotonsillectomy has been proposed for the treat-
ment of OSA, in the absence of sufficient data to support this
approach [15]. Therefore, a combined treatment with ventila-
tory support and pharmacological therapy appears desirable to
treat SDB in MDs.

Sleep Structure

Few data are available regarding sleep structure in patients
with MDs. Sporadic and not recent articles reported the alter-
ation of sleep macrostructure in these patients, and it seems to
depend on the degree of the involvement of CNS [42, 55, 56]
or on the presence and the severity of an overlapping sleep
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disorder [16, 44, 52]. In our previous study [19e¢], we ob-
served an increase of wake after sleep onset (WASO) in the
study group, whereas a reduction of slow-wave sleep (SWS)
was present only in patients who suffered from SDB. These
data indicated that the SDB worsen sleep quality and sleep
structure in primary mitochondrial disorders. Similarly, Smits
et al. [20e+] observed an unstructured sleep as a consequence
of SDB in a PEO population, reporting a diminished total
sleep, sleep efficiency, and REM sleep in patients with path-
ological AHI index. The treatment of underlying sleep disor-
der in some cases was associated with the amelioration of
sleep architecture [31, 35]. In LS [33] a decreased SWS and
absence of REM stage sleep have been reported in patients
who presented lower medullary lesions, regardless the pres-
ence of associated sleep disorder. In LHON and DOA, no
significant alterations of sleep architecture have been ob-
served, despite the presence of subjective sleep dysfunction,
excessive daytime sleepiness, or concomitant sleep disorders
[21ee]. Conversely, in patients affected by mitochondrial optic
neuropathies, the authors revealed the presence of REM sleep
without atonia (RSWA), speculating that it is a marker of
brainstem dysfunction.

To date, data regarding sleep architecture and its associa-
tion with clinical phenotype and concomitant sleep disorders
are inconsistent; therefore, further studies are needed to clarify
this point.

Pathophysiological Mechanisms

The mitochondrial function has a recognized pivotal role in
skeletal muscle physiology for the involvement of an extraor-
dinary number of critical processes in this high-energy-
dependent tissue, such as the generation of the ATP and the
regulation of energy-sensitive signaling pathways, calcium
homeostasis, modulation and production of reactive oxygen
species, apoptosis, and more generally cell metabolism [57].
Consequently, mitochondrial dysfunction is associated with a
plethora of pathological conditions affecting the skeletal mus-
cle, including mitochondrial myopathy [11e¢]. With this back-
ground, it is not surprising that patients affected by primary
mitochondrial disorders characterized by the involvement of
skeletal muscle (e.g., PEO and MERREF) [58, 59] presented
specific subgroups of SDB, such as OSA and REM-related
oxygen desaturations [19e¢]. Similarly, the central role of the
mitochondria in numerous mechanisms of the CNS [60] may
partly explain the coexistence in these patients of sleep disor-
ders such as CSA [20¢]. In addition to the data reported so far,
there are no experimental models that document the direct role
of mitochondria dysfunction in their genesis of sleep disorders
or that explain the association with MDs. On the contrary, in
recent years, a large number of research articles have docu-
mented the consequences of sleep disorders in mitochondrial
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functions. Rodrigues and colleagues demonstrated in a
Drosophila melanogaster sleep-disordered model that dysreg-
ulation of homeostatic sleep regulation resulted in mitochon-
drial bioenergetics function, as a consequence of mitochondri-
al OXPHOS system dysfunction and/or of an inhibition of the
mitochondrial complexes, and generation of reactive oxygen
species [61]. These data are reinforced by the evidence of
alterations in the antioxidant defense biomarkers in a mouse
model of chronic sleep deprivation [62] and by the results
reported by Trivedi and colleagues that showed oxida-
tive stress induction and ATP depletion in patients un-
dergoing sleep deprivation [63]. Furthermore, the imbal-
ance between reactive oxygen species production and
antioxidant defense mechanisms, resulting in an oxida-
tive stress condition, documented in patients affected by
OSA is reported in a multitude of studies, suggesting
also that it may contribute to increased cardiovascular
risk and neurocognitive impairment [64]. Wrede et al.
have provided a further contribution in understanding
the consequences of sleep disorders in the mitochondrial
function. They documented that the reduction of sleep
duration and sleep efficiency were associated with de-
creased mitochondrial DNA copy number, an indirect
manifestation of mitochondrial dysfunction [65].

Conclusions

In MDs, the involvement of organs and tissues with the
highest energy demands, such as the brain and skeletal mus-
cle, is reflected in the heterogeneity of sleep disorders associ-
ated with these metabolic diseases. There are currently few
published retrospective or cross-sectional studies on this topic.
Most of the knowledge regarding the association of sleep dis-
orders and MDs is the result of case reports or case series, in
which patients are poorly characterized clinically and
molecularly. Nevertheless, taken together, the literature
data suggest some interesting conclusions: sleep disor-
ders are frequently associated with primary mitochondri-
al disorders; the clinical phenotypes affect the type of
sleep disturbance associated with the mitochondrial dys-
function, as shown by the high prevalence of OSA in
patients with prevalent involvement of skeletal muscle
and CSA in patients in whom the central nervous sys-
tem is predominantly affected; for the numerous adverse
clinical outcomes associated with sleep disturbances and
the frailty of mitochondrial patients, a polysomnographic
study should be performed in every subject with this
genetic disorder both at diagnosis and during follow-up.

Prospective and multicenter studies are needed to docu-
ment the incidence of sleep disorders in primary mitochondri-
al disorders and their role in disease prognosis.
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