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for cervical cancer based on
immune cell signatures
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Chaojun Yang1, Jingwen Fan1, Ani Dong1, Guowei Zheng1,
Jiaxin Ma3, Xuezhong Shi1* and Yongli Yang1*

1Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University,
Zhengzhou, Henan, China, 2Department of Pathology, Harbin Medical University Cancer Hospital,
Harbin, Heilongjiang, China, 3Department of Gynecology, Harbin Medical University Cancer
Hospital, Harbin, Heilongjiang, China
Background: Immunotherapy has changed the therapeutic landscape of

cervical cancer (CC), but has durable anti-tumor activity only in a subset of

patients. This study aims to comprehensively analyze the tumor immune

microenvironment (TIME) of CC and to mine biomarkers related to

immunotherapy and prognosis.

Methods: The Cancer Genome Atlas (TCGA) data was utilized to identify

heterogeneous immune subtypes based on survival-related immune cell

signatures (ICSs). ICSs prognostic model was constructed by Cox regression

analyses, and immunohistochemistry was conducted to verify the gene with

the largest weight coefficient in the model. Meanwhile, the tumor immune

infiltration landscape was comprehensively characterized by ESTIMATE,

CIBERSORT and MCPcounter algorithms. In addition, we also analyzed the

differences in immunotherapy-related biomarkers between high and low-risk

groups. IMvigor210 and two gynecologic tumor cohorts were used to validate

the reliability and scalability of the Risk score.

Results: A total of 291 TCGA-CC samples were divided into two ICSs clusters

with significant differences in immune infiltration landscape and prognosis.

ICSs prognostic model was constructed based on eight immune-related genes

(IRGs), which showed higher overall survival (OS) rate in the low-risk group (P<

0.001). In the total population, time-dependent receiver operating

characteristic (ROC) curves displayed area under the curve (AUC) of 0.870,

0.785 and 0.774 at 1-, 3- and 5-years. Immunohistochemical results showed

that the expression of the oncogene (FKBP10) was negatively correlated with

the degree of differentiation and positively correlated with tumor stage, while

the expression of tumor suppressor genes (S1PR4) was the opposite. In

addition, the low-risk group had more favorable immune activation

phenotype and higher enrichment of immunotherapy-related biomarkers.
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The Imvigor210 and two gynecologic tumor cohorts validated a better survival

advantage and immune efficacy in the low-risk group.

Conclusion: This study comprehensively assessed the TIME of CC and

constructed an ICSs prognostic model, which provides an effective tool for

predicting patient’s prognosis and accurate immunotherapy.
KEYWORDS

cervical cancer, immunotherapy, biomarkers, tumor immune microenvironment,
immunohistochemistry
Introduction

Cervical cancer (CC) is the fourth most commonly

diagnosed cancer and the leading cause of cancer deaths in

women (1). Persistent infection with high-risk human papilloma

virus (HPV) is a major causative factor in the progression of CC.

With the continuous improvement of HPV vaccination rate, the

growth trend of CC incidence has slowed down (2). However,

due to distant metastasis and local recurrence after treatment,

the prognosis of CC is not very ideal (3, 4).

Immunotherapy includes immune checkpoint blockade

(ICB), immune cell therapies, cancer vaccines, and lysing

viruses that target various types of immune cells and have

dramatically changed the treatment landscape of many solid

tumors (5). However, clinical trials have revealed that ICB could

only exhibit durable antitumor activity in some patients with CC

(6). Therefore, precise immunotherapy and accurate efficacy

prediction of patients by immunotherapy-related biomarkers

has manifested clinical research priorities.

Tumor immune microenvironment (TIME) in CC is

characterized by high levels of immunogenicity and immune

cells infiltration, suggesting that an in-depth study of TIME may

be critical for tumor prognosis and treatment (7). Wang et al. (8)

identified the PD-1 + DC density of the TIME might be a

diagnostic factor in predicting the best beneficiaries of PD-1/

PD-L1 blockade immunotherapy in CC. Furthermore, Walayat

Shah et al. (9) found that reversal of the CD4/CD8 ratio of

tumor-infiltrating lymphocytes and CD4 + FOXP3 + regulatory

T cells high ratio were significantly associated with clinical

prognosis in CC. Therefore, the use of computational methods

to quantify TIME may provide more advanced prognostic

biomarkers, which may reveal additional novel targets for

chemotherapy and immunotherapy in CC patients.

This study explored the TIME of CC based on immune cell

signatures (ICSs) and mined eight immune-related genes (IRGs).

Biologica l funct ion, immune cel l infi l t rat ion, and

immunotherapy-related biomarkers were mined to identify

ideal immunotherapeutic subgroups for CC. The highlighted
02
results provided methodological and technical support to

achieve precision immunotherapy for CC.
Materials and methods

Data acquisition and processing

Fragments per kilobase million (FPKM) data of CC (N =

307) including gene expression profiles, somatic alteration data,

and clinical data were downloaded from the Cancer Genome

Atlas (TCGA) Genomic Data Commons (GDC) data portal

(https://portal.gdc.cancer.gov/). The TCGA database is based

on tissue specimens for high-throughput sequencing. The FPKM

data were translated into transcripts per kilobase million (TPM).

Duplicate recorded samples and overall survival (OS) time or

survival status unavailable were excluded. Ultimately, 291 CC

patients from the TCGA cohort were enrolled in the analyses,

including 241 squamous cell carcinomas, 46 adenocarcinomas,

and 4 adenosquamous carcinomas. Specific clinical information

on CC patients was supplemented in Data Files S1.

These 184 ICSs were based on the aggregation of databases

such as ImmPort, CIBERSORT, and ImSig (10). Detailed

information was listed in Data Files S2. The normalized

enrichment score (NES) generated by single sample gene set

enrichment analysis (ssGSEA) with the R package “GSVA”

(version 1.42.0) was considered as the infiltrate level of each

ICS (11). In this study, only 183 ICSs were evaluated for follow-

up analyses due to lack of some marker genes in the

transcriptome atlas.

Meanwhile, the IMvigor210 cohort (http://research-pub.

gene.com/IMvigor210CoreBiologies/) (N = 348) were also

enrolled to validate our findings using the R package

“IMvigor210CoreBiologies”, which are patients with metastatic

urothelial cancer (mUC) receiving PD-L1 inhibitor (12). Raw

count was also translated to TPM to represent gene expression in

the IMvigor210 cohort. In addition, to expand our findings in

gynecologic tumors, ovarian cancer (OC) and endometrial
frontiersin.org
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cancer (EC) data were downloaded and processed from the

TCGA database. Finally, 374 OC patients and 539 EC patients

were included. The flow of this study was shown in Figure 1.
Unsupervised consensus clustering for
survival-related ICSs

The univariate Cox regression was applied to obtain

survival-related ICSs (P< 0.050). Subsequently, according to

the infiltrate levels of survival-related ICSs, hierarchical

agglomerative cluster of CC patients was performed using R

package “ConsensusClusterPlus”. This algorithm was repeated

1,000 times to obtain stable classification. The differentially

expressed genes (DEGs) between ICSs clusters were analyzed

with false discovery rate (FDR)< 0.050 and absolute fold-change

> 2, which was implemented by employing the R package

“limma”. To identify the genomes and pathways enriched by

DEGs, the Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway functional enrichment

analyses were performed using the R package “clusterProfiler”

(version 4.2.2).
Frontiers in Immunology 03
ICSs prognostic model construction and
validation

In the TCGA cohort, the univariate Cox regression was

applied to obtain survival-related genes from DEGs (P< 0.050).

Then, the TCGA-CC samples were randomly divided into

training (n = 204) and validation (n = 87) sets at 7:3. Least

absolute shrinkage and selection operator (LASSO) and

multivariate Cox regression analyses were used to construct an

ICSs prognostic model in the training set. The calculation

formula of Risk score was as follows:

Risk score =obi � ExpGenei

In the formula, bi was defined as the coefficient of genes

correlated with survival and ExpGenei was the expression value

of the corresponding gene in each sample. The cut-off value was

determined by the “surv_cutpoint” function of the R package

“survminer”, which calculates statistics based on maximally

selected rank statistics. The principle of this function to

determine the optimal cutoff value is to obtain the two groups

with the most statistically significant difference in survival rates

through multiple simulations.
FIGURE 1

Flow chart of the study.
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Immunohistochemistry

Tumor tissues from a total of 23 CC patients were obtained

from the Harbin Medical University Cancer Hospital. These

samples were obtained from patients who underwent radical

surgery, and all patients were untreated prior to radical

resection. Specific clinical information is supplemented in Data

Files S3. All specimens were collected in accordance with the

e th i ca l s t andard s o f the Commi t t e e fo r Human

Experimentation. The expressions of S1PR4 and FKBP10 on

the CC tissue were performed by immunohistochemistry (IHC)

staining. Tissue sections were incubated with a primary antibody

against S1PR4 or FKBP10 at 4°C overnight and then incubated

with horseradish peroxidase combined with goat anti-rabbit

antibody (PV-6001, ZSGB) at room temperature for 30 mins.

Tissue sections were stained using DAB and counterstained with

hematoxylin. The results of the experiment were analyzed by two

doctors and two pathologists. The rules are as follows:

Immunoreactive score (IRS) = SI (staining intensity) × PP

(percentage of positive cells). SI was assigned as: 0 = negative;

1 = weak; 2 = moderate; 3 = strong. PP was defined as 0 = 0%; 1 =

0–24.9%; 2 = 25–49.9%; 3 = 50–74.9%; 4 = 75–100%. All of the

included patients were dichotomized into two groups based on

the median score.
Immune infiltration landscape evaluation

To further explore the immune infiltration landscape in two

prognostic subgroups, multiple immune-related algorithms were

utilized, such as the ESTIMATE, CIBERSORT, and MCPcounter

algorithms (13–15). In addition, we also analyzed the

distribution of immune subtypes in high and low-risk groups,

which were categorized in previous studies (16, 17). To further

reveal the underlying mechanisms of CC, gene set variation

analysis (GSVA) was performed using the R package “GSVA”

(adjusted P< 0.050). The gene set “c2.cp.kegg.v7.4.symbols” was

downloaded from Molecular Signatures Database (MSigDB,

http://www.broad.mit.edu/gsea/msigdb/).
Immunotherapy-related biomarkers
analyses

The main biomarkers for the prediction of immune efficacy

included immune mark genes, immune function characteristics,

tumor mutational burden (TMB), histocompatibility complex

(MHC) molecules, chemokines, cytolytic activity (CYT), and

stimulator of interferon genes (STING) (18–20). Therefore, we

further explored the differences in these immunotherapy-related

biomarkers between high and low-risk groups.
Frontiers in Immunology 04
Immunotherapeutic response prediction

We downloaded the immunophenoscore (IPS) from the

cancer immunome atlas (TCIA) (https://tcia.at/home) to

predict responses to ICB (21). IPS was calculated based on the

expression of MHC molecules, immunomodulators, effector

cells (ECs) and suppressor cells (SCs). It included four types of

scores, ips_ctla4_pos_pd1_pos, ips_ctla4_pos_pd1_neg,

ips_ctla4_neg_pd1_pos, and ips_ctla4_neg_pd1_neg, to better

predict the efficacy of anti-CTLA-4 and anti-PD-1 antibodies.

IMvigor210 cohort and two gynecologic tumor (TCGA-OC and

TCGA-EC) cohorts were also used to validate the predictive

value of Risk score for immunotherapy.
Statistical analyses

All statistical analyses were performed with R software

(version 4.1.3). The Kaplan–Meier plotter was employed to

depict survival curves. The Wilcoxon test was carried out to

compare the difference between two groups, and the correlation

coefficient was computed using the Spearman analyses. Two-

tailed P< 0.050 was deemed statistical significance.
Results

Survival and immunological
characterization between ICSs clusters

The TCGA cohort was divided into two clusters based on

survival-related ICSs by using hierarchical agglomerative cluster

(Figure 2A; Figures S1A, B). The accuracy of the clustering was

verified using principal component analysis (PCA) (Figure 2B).

Furthermore, Kaplan-Meier survival curves showed significant

survival difference between two ICSs clusters (P = 0.016;

Figure 2C). Differential correlation patterns of survival-related

ICSs between two clusters were visualized as heatmap (Figure

S1C). Enriched biological processes of ICSs clusters were

summarized by Figures S1D and S1E, with specific data in the

Data Files S4.

To furtherly clarify the intrinsic substrates leading to

different survival outcomes between two ICSs clusters, we

performed a series of immune correlation analyses.

CIBERSORT algorithm revealed that ICSs cluster A was

characterized by high naive B cells, M0 macrophages, activated

mast cells infiltration, which might be the cause of poor

prognosis. By contrast, ICSs cluster B was marked by high

CD8 T cells, memory activated CD4 T cells, follicular helper T

cells, and M1 macrophages infiltration (Figure 2D). The

heatmap of correlation coefficient was generated to visualize

the cellular interaction of the tumor-infiltrating immune cell
frontiersin.org
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types (Figure S1F). MCPcounter and ESTIMATE algorithms

similarly demonstrated a higher immune infiltration of ICSs

cluster B (Figure S1G; Figure S1H). In the subsequent analysis,

we compared the differential expression levels of 27 common

immune marker genes in two clusters (22, 23). The results

exhibited that most of the immune marker genes were

comprehensively elevated in the ICSs cluster B (Figure 2E).

Furthermore, ssGSEA of specific gene sets demonstrated that the

ICSs cluster B was highly active in multiple immune function

pathways (Figure 2F), consistent with the results of the above

immune correlation analyses. GSVA identified that the B cell

receptor, T cell receptor, and JAK/STAT pathways were
Frontiers in Immunology 05
significantly activated in the ICSs cluster B (Figure 2G). The

results were supplemented in the Data Files S5.
ICSs prognostic model construction and
validation

The 986 DEGs (FDR< 0.050 and absolute fold-change > 2)

were included in the univariate Cox regression model and 321

genes (P< 0.050) were found to be significant. Heatmap results

displayed that the gene expression levels in ICSs cluster B were

generally higher than that in ICSs cluster A (Figure 3A). All the
A B

D E

F

G

C

FIGURE 2

Determination of immune cell signatures (ICSs) subtypes. (A) Consensus matrix of the TCGA-CC cohort with appropriate k values (k = 2).
(B) PCA validation of clustering results. (C) Kaplan-Meier curves of OS for CC patients in both ICSs clusters (P = 0.016). (D) Violin plots of 22
tumor-infiltrating immune cell types of two ICSs clusters by CIBERSORT algorithm. (E) Differential analysis of 27 immune marker genes in two
ICSs clusters (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (F) Differences between two ICSs clusters in the degree of enrichment of
indicator signals for specific immune functions (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (G) Biological processes of two ICSs
clusters using GSVA analysis. Heatmap colors indicate ICSs infiltrate levels, with red indicating high infiltrate levels and blue indicating low
infiltrate levels. (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001).
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321 significant genes were incorporated into the LASSO

and multivariate Cox regression model (Figures 3B, C).

Finally, eight IRGs were contained in the ICSs prognostic

model. The comprehensive Risk score was calculated as

follows: Risk score = (0.13780 * CA9) + (0.29263 * FKBP10)

+ (-0.27821 * CKB) + (-0.40748 * GLIPR2) + (-0.42239 * ISG20)

+ (-0.42787 * S1PR4) + (-0.26784 * SDS) + (-0.20766 * VTCN1).

Patients with CC were divided into high and low-risk groups

using the cutoff value (1.27508) as the dividing line. The above

results were showed in the Data Files S6.

In the total population, training and validation sets, the

distribution curves and survival scatter plots indicate that

patients with high-risk scores have a poorer prognosis (Figures

S2A–F), and Kaplan-Meier survival curves demonstrated that

patients showed a significant difference between high and low-
Frontiers in Immunology 06
risk groups in survival rate (P< 0.001; Figures 3D–F). In the total

population, time-dependent receiver operating characteristic

(ROC) curves showed that the ICSs prognostic model had a

strong prognostic accuracy with the area under the curve (AUC)

of 0.870 in 1 year, 0.785 in 3 years and 0.774 in 5 years

(Figure 3G). The results of time-dependent ROC curves for

the training and validation sets were shown in Figures 3H, I.

Univariate and multivariate Cox regression showed that Risk

score and Stage were independent prognostic factors for CC

(Data Files S7). By combining the independent prognostic

factors, we constructed a nomogram that serves as a clinically

relevant quantitative method by which clinicians could predict

the mortality of CC patients (Figure 4A). In addition, calibration

plots indicated that the performance of the nomogram was

similar to that of the ideal model (Figure 4B). The decision
A B

D E F

G IH

C

FIGURE 3

Construction and validation of ICSs prognostic model in the TCGA cohort. (A) Heatmap depicted the expression levels of survival-related DEGs in
different ICSs clusters and the distribution of clinical traits of patients. The rows represent survival-related DEGs and the columns represent samples.
(B, C) Determination of the number of survival-related DEGs into the multivariate Cox regression model by LASSO analyses. (D–F) Kaplan-Meier
curves of OS for the high and low-risk groups in the total population, training set, and validation set (P< 0.001). (G–I) Time-dependent ROC curve in
the total population, training set, and validation set.
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curve analysis (DCA) also revealed that the nomogram had high

potential clinical utility (Figure 4C). We also compared the AUC

of the Risk score and Stage, and the results showed that the Risk

score had better predictive power (Figure 4D). Finally, we

compared the distribution of Stage between high and low-risk

groups, as shown in Figure 4E, with a higher proportion of Stage

I-II patients in the low-risk group.
Immunohistochemical results of FKBP10
and S1PR4

To verify our previous research results, IHC staining was

performed on tissue samples collected from patients with CC to

explore the expression of oncogenes (FKBP10) and tumor

suppressor genes (S1PR4) with the largest weight coefficient in

the ICSs prognostic model. Figures 5A and B show

immunohistochemical images of FKBP10 and S1PR4 in

different differentiation states. The immunohistochemical
Frontiers in Immunology 07
results showed that the expression level of oncogene FKBP10

was negatively correlated with the degree of differentiation, while

the expression of tumor suppressor gene S1PR4 was the

opposite. In addition, this study used immunohistochemical

images of tissues at different stages to demonstrate that the

expression level of FKBP10 gradually increased with increasing

tumor stage, and that of S1PR4 gradually decreased with

increasing tumor stage (Figures 5C, D). This evidence

confirmed the expression of two key genes in CC tissues, and

our results had a higher degree of confidence.
Immune infiltration landscape in high
and low-risk groups

To further explore the correlation between the prognosis and

TIME, we analyzed the immune infiltration landscape of CC.

Alluvial diagram illustrated that most patients in ICSs cluster B

have low Risk score and more alive status (Figure 6A; Figure S3A).
A B

D E

C

FIGURE 4

Independent prognostic analysis of Risk score. (A) Nomogram for predicting the probability of patient mortality at 1-, 3-, or 5- year OS based on
two independent prognosis factors (***P< 0.001). (B) Calibration curves of the nomogram for predicting the probability of OS at 1-, 3-, or 5-
year. (C) Decision curve analyses (DCAs) of the nomograms for 1-, 3-, or 5- year risk. (D) Time-dependent ROC curve of two independent
prognosis factors. (E) Heatmap and table showing the distribution of Stage I-IV between high and low-risk groups (P = 0.036).
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A B

D

C

FIGURE 5

Immunohistochemical results of FKBP10 and S1PR4. (A) Immunohistochemical images of FKBP10 in high and low differentiation groups.
(B) Immunohistochemical images of S1PR4 in high and low differentiation groups. (C) Immunohistochemical images of FKBP10 in four different
tumor stages (Stage I-IV). (D) Immunohistochemical images of S1PR4 in four different tumor stages (Stage I-IV).
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FIGURE 6

Immune infiltration landscape in the high and low-risk groups. (A) Alluvial diagram of the distribution with patients in different ICSs clusters, risk
groups, and survival outcomes. (B) Heatmap depicted the infiltration of survival-related ICSs in the high and low-risk groups and the distribution
of clinical traits of patients. The rows represent survival-related ICSs and the columns represent samples. (C) Differential analysis of immune
score, stromal score and estimate score in the high and low-risk groups (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (D) Violin plots
of 22 tumor-infiltrating immune cell types of high and low-risk groups by CIBERSORT algorithm. (E) Violin plots of 10 tumor-infiltrating immune
cell types of high and low-risk groups by MCPcounter algorithm (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (F) Heatmap and table
showing the distribution of pan- SCC immune subtypes (IS1, IS2, IS3, IS4, IS5, and IS6) between high and low-risk groups (P = 0.001). (G)
Heatmap and table showing the distribution of immune subtypes (C1, C2, C3, C4, C5, and C6) between high and low-risk groups (P = 0.001).
(H) Biological processes of high and low-risk groups using GSVA analysis. Heatmap colors indicate ICSs infiltrate levels, with red indicating high
infiltrate levels and blue indicating low infiltrate levels. (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001).
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In addition, we assessed the differential correlation pattern of

prognosis-related ICSs in the high and low-risk groups, and the

result was shown in Figure 6B. Further analyses showed that low-

risk group had higher immune score, stromal score and estimate

score (Figure 6C). CIBERSORT and MCPcounter algorithm

displayed that the immune cell infiltrating types of the low-risk

group were similar to ICSs cluster B, and the high-risk group was

consistent with ICSs cluster A (Figures 6D, E). The association

heatmap visualized a negative correlation between Risk score and

multiple tumor-infiltrating immune cells (Figure S3B). The

distribution of immune subtypes showed that the low-risk

group was mainly distributed in IS4 and C2 types, which

reflected that the low-risk group had a more favorable anti-

tumor immune response (Figures 6F, G). GSVA was used to

further explore the potential role of Risk score in biological

processes, which identified that B cell receptor, T cell receptor

and ATP-binding cassette (ABC) transporters pathways were

significantly activated in the low-risk group (Figure 6H).

Detailed results of GSVA were listed in the Data Files S8.
Immunotherapy-related biomarkers
differences between high and
low-risk groups

To further elucidate the effects of Risk score in the context of

immunotherapy, we explored the associations between Risk

score and several well-known immune marker genes. It was

shown that immune marker genes were expressed at higher

levels in the low-risk group (Figure 7A). We analyzed 29

immune function-related characteristics and found that the

low-risk group had a more favorable immune activation

phenotype, suggesting that they may have a more intense

immune response (Figure 7B). Considering the great clinical

significance of TMB for immunotherapy, we sought to explore

the intrinsic correlation between TMB and Risk score. The

“maftools” R package was carried out for assessing the

distribution of somatic mutation in the high and low-risk

groups, and depicted the top 20 driver genes with the highest

alternative frequencies in Figures 7C, D. The heatmap of

correlation coefficient demonstrated the interrelationship of

the top 20 mutated genes in CC patients (Figure S3C). We

found no difference in the prognosis of patients in the high and

low TMB group (Figure S3D), as well as no significant

correlation between TMB and Risk score (Figures S3E, F). In

addition, we found that the expression levels of MHC molecules,

and chemokines, which were responsible for the movement of

immune cells, were comprehensively elevated in the low-risk

group (Figures 7E, F). CYT and STING were relatively higher in

the low-risk group (P< 0.001; Figures 7G, H), and Risk score was

significantly negatively associated with relatively higher
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(Figures 7I, J). Taken together, these results suggested that

Risk score based on eight IRGs may be potential predictors of

CC immunotherapy efficacy.
Prediction of clinical benefits of ICB

To assess the ability of the Risk score as a biomarker for

predicting clinical response to ICB treatment, we assessed the

immunogenicity of two prognostic subgroups by IPS analyses.

The low-risk group had higher ips_ctla4_pos_pd1_pos,

ips_ctla4_pos_pd1_neg, ips_ctla4_neg_pd1_pos, and

ips_ctla4_neg_pd1_neg scores in the TCGA-CC cohort

(Figures 8A–D). In the TCGA-CC and IMvigor210 cohort,

Risk score was negatively correlated with MHC scores, EC

scores and IPS scores. Regarding the SC score, opposite results

were obtained (Figures 8E, F). In the subsequent analyses,

IMvigor210 cohort were assigned high and low-risk score. As

shown in Figures 8G, H, while there was no statistical difference

in Risk scores between patients with complete response (CR)/

partial response (PR) and those with stable disease (SD)/

progressive disease (PD), clinical response rates with anti-PD-

L1 therapy were higher in patients with low-risk group than

those with high-risk group (P = 0.020). Noteworthy, patients

with low-risk score had a significantly better prognosis than

those with high-risk score in the IMvigor210 and two

gynecologic tumors (Figures 8I–K). In addition, IPS analyses

indicated consistent results for the TCGA-EC cohort with the

TCGA-CC cohort (Figures S4A–D), while only the

ips_ctla4_pos_pd1_neg score was higher in the low-risk group

of the TCGA-OC cohort (Figures S4E–H). These results

indicated that patients in the low-risk group may have a better

response to immunotherapy.
Discussion

Immunotherapy, as a novel treatment strategy for CC, only

benefit a minority of patients (24). In this study, we constructed ICSs

prognostic model based on eight IRGs. Patients in the low-risk group

had higher survival rates and immune activated cell infiltration. In

addition, we revealed a greater enrichment of immunotherapy-related

biomarkers in the low-risk group. Notably, we also evaluated the

prognostic and immunotherapeutic role of the Risk score in the

IMvigor210 and two gynecologic tumors cohorts.

Published work suggested that the TIME plays an

important role in improving prognosis and mediating the

therapeutic response to chemotherapy and immunotherapy

in patients with CC (7). In this study, we categorized the

patients with CC into two ICSs clusters. Our analyses

indicated that ICSs cluster B with higher densities of CD4 +
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T cells, CD8 + T cells, and M1 macrophages, as well as higher

immune score, were associated with patient prognosis, which is

in line with the previous studies (25, 26). In addition, cluster B

was enriched for more immunoreactive and signaling pathways

compared to ICSs cluster A. Therefore, patients with ICSs

cluster B may generate a more intense immune response.

However, despite the higher degree of immune infiltration,

the existing clinical studies reported lower response rates to

immunotherapy in patients with CC, suggesting that there may

be underlying molecular mechanisms in the anti-tumor

process (27, 28).
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In this study, we focused on the molecular characteristics that

regulate the immune system in CC.We screened eight IRGs (CA9,

FKBP10, CKB, GLIPR2, ISG20, S1PR4, SDS, VTCN1). Previous

studies observed that genes such as CA9, CKB and GLIPR2 were

strongly associated with the prognosis of cancer (29–31). FKBP10

and S1PR4 had the largest weight coefficients compared with

other genes in the model, suggesting that the expression levels of

these two genes have a greater impact on patient prognosis.

FKBP10, an endoplasmic reticulum chaperone, coordinates

protein translation to sustain lung cancer growth, but the

mechanism of action in CC has not been elucidated (32).
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FIGURE 7

Comparison of immunotherapy predictive biomarker. (A) Differential analysis of 27 immune marker genes in the high and low-risk groups (ns,
not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (B) Differences between high and low-risk groups in the degree of enrichment of indicator
signals for specific immune functions (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (C, D) The waterfall diagram of the top 20 driver
genes between the high (C) and low risk-score (D) of CC patients. (E, F) Differential analysis of MHC molecules (E) and chemokines (F) in the
high and low-risk groups (ns, not significant; *P< 0.050; **P< 0.010; ***P< 0.001). (G) CYT difference in the high and low-risk groups (ns, not
significant; *P< 0.050; **P< 0.010; ***P< 0.001). (H) STING difference in the high and low-risk groups (ns, not significant; *P< 0.050; **P< 0.010;
***P< 0.001). (I) Scatterplots depicting the correlation between Risk score and CYT (R = -0.380, P<0.001). (J) Scatterplots depicting the
correlation between Risk score and STING (R = -0.250, P<0.001).
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Bioinformatics analysis has shown that hypermethylation and low

expression of S1PR4 are associated with poor prognosis of CC, but

experimental verification is still lacking (33). In the present study,

based on immunohistochemical experiments, we verified the

differences in the expression levels of FKBP10 and S1PR4 in

different differentiation states and different tumor stages, further

demonstrating the plausibility of the results of this study. In

conclusion, the ICSs prognostic model constructed based on

eight IRGs quantified the risk of individual patients and

effectively identified high-risk patients.
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To further understand the immunological nature of the two

prognostic subgroups, we analyzed their immune infiltration

landscape. We found that the immune infiltration phenotype

of the low-risk group was consistent with ICSs cluster B,

suggesting that the low-risk group has a more favorable

immune activation phenotype and is a “hot” tumor (34). In

addition, we found more IS4 and C2 in the low-risk group of

CC patients. IS4 had the highest T-cell and IFNg gene

expression as well as low-reactive stroma and TGFb, and C2

had the highest M1/M2 macrophage polarization and strong
A B D

E F G

I

H

J K

C

FIGURE 8

The role of Risk score in immunotherapeutic response prediction. (A–D) The distribution plot of ips_ctla4_pos_pd1_pos (A), ips_ctla4_pos_pd1_neg
(B), ips_ctla4_neg_pd1_pos (C), and ips_ctla4_neg_pd1_neg (D) scores in TCGA-CC cohort. (E, F) Intrinsic connection of Risk score and MHC, EC,
SC, IPS score in TCGA-CC and IMvigor210 cohorts, with red indicating positive correlations and blue indicating negative correlations. The asterisks
represented the statistical P value (*P< 0.050). (G) Distribution of clinical response rates for anti-PD-L1 immunotherapy in the high and low-Risk
score groups in the IMvigor210 cohort (P = 0.020). (H) Risk score in groups with different anti-PD-L1 clinical response status (P = 0.160). (I) Kaplan-
Meier curves for OS in the IMvigor210 cohort for the high and low-risk groups (P = 0.001). (J) Kaplan-Meier curves for OS in the TCGA-OC cohort
for the high and low-risk groups (P = 0.002). (K) Kaplan-Meier curves for OS in the TCGA-EC cohort for the high and low-risk groups (P = 0.030).
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CD8 signaling, which means a more favorable antitumor

immune response in the low-risk group. In contrast, the

high-risk group pooled more IS6 and C1, implying low

inflammatory signaling and higher angiogenic gene

expression (16, 17). These findings reveal an active immune

response and lower tumor aggressiveness in the low-risk group

and a suppressed immune response and greater tumor

aggressiveness in the high-risk group.

Considering the individual heterogeneity of immunotherapy

efficacy, there is an urgent need to investigate new therapeutic

markers to identify ideal subgroups for CC immunotherapy. In

the present study, we found that common biomarkers

representing better immune efficacy were more enriched in the

low-risk group, which is in line with our previous study (35, 36).

However, the difference in TMB was not statistically significant

in the high and low-risk groups, probably due to the lower level

of TMB with the median index value was 1.908 (1.184-3.414).

Previous studies have indicated that there is no significant

difference in TMB between PD-L1-positive and PD-L1-

negative subsets at lower TMB levels in CC cohorts (mean and

median index value were 7.74 and 5.00, respectively), and

therefore it may not be appropriate to investigate its

application as a potential biomarker for immune checkpoint

therapy at low overall TMB levels (37). To further validate the

value of ICSs prognostic model, we evaluated the IPS scores in

the high and low-risk groups, the results also demonstrated that

patients in the low-risk group benefited more from

immunotherapy (38). Analyses of the IMvigor210 cohort

receiving anti-PD-L1 therapy also showed a better survival

advantage and higher objective remission rates in the low-risk

group as well. Gynecologic malignancies mainly include three

major types of cervical cancer, ovarian cancer and endometrial

cancer. It has been suggested that there may share a common

molecular mechanism among the three gynecologic

malignancies (39–41). Our findings for the other two

gynecologic tumors were consistent, which may provide some

references for further revealing the common molecular

mechanisms of the three gynecologic tumors.

Although the present study suggests that the ICSs prognostic

model may have clinical translational promise, there are still

limitations. First, the relationship between prognostic models

and immune efficacy was only preliminarily analyzed in the

IMvigor210 cohort, which needs to be validated in other

immunotherapy cohorts. Secondly, we only conducted IHC

experiments for FPBK10 and S1PR4, and deeper mechanistic

studies and clinical translation should be elucidated more

systematically in vitro and in vivo.

In summary, we carried out a comprehensive assessment of

the immune infiltration landscape in CC patients and screened

the biomarkers based on immunotherapy relevance. In future

studies, systematic evaluation of ICSs in tumor patients is

important to achieve precision immunotherapy.
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Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture
from expression data. Nat Commun (2013) 4:2612. doi: 10.1038/ncomms3612

14. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015) 12
(5):453–7. doi: 10.1038/nmeth.3337

15. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al.
Estimating the population abundance of tissue-infiltrating immune and stromal
cell populations using gene expression. Genome Biol (2016) 17(1):218. doi: 10.1186/
s13059-016-1070-5

16. Li B, Cui Y, Nambiar DK, Sunwoo JB, Li R. The immune subtypes and
landscape of squamous cell carcinoma. Clin Cancer Res an Off J Am Assoc Cancer
Res (2019) 25(12):3528–37. doi: 10.1158/1078-0432.Ccr-18-4085

17. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al.
The immune landscape of cancer. Immunity (2019) 51(2):411–2. doi: 10.1016/
j.immuni.2019.08.004

18. Bai R, Lv Z, Xu D, Cui J. Predictive biomarkers for cancer immunotherapy
with immune checkpoint inhibitors. Biomark Res (2020) 8:34. doi: 10.1186/s40364-
020-00209-0
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.993118/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.993118/full#supplementary-material
https://doi.org/10.3322/caac.21660
https://doi.org/10.1002/cncr.30667
https://doi.org/10.3390/cancers13081880
https://doi.org/10.1038/s41573-021-00345-8
https://doi.org/10.1038/s41577-020-0306-5
https://doi.org/10.1200/jco.21.02091
https://doi.org/10.1038/s41416-020-01123-w
https://doi.org/10.1080/2162402x.2022.2034257
https://doi.org/10.1038/cmi.2010.56
https://doi.org/10.1038/cmi.2010.56
https://doi.org/10.1093/bib/bbaa311
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1038/nature25501
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1158/1078-0432.Ccr-18-4085
https://doi.org/10.1016/j.immuni.2019.08.004
https://doi.org/10.1016/j.immuni.2019.08.004
https://doi.org/10.1186/s40364-020-00209-0
https://doi.org/10.1186/s40364-020-00209-0
https://doi.org/10.3389/fimmu.2022.993118
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.993118
19. Garland KM, Sheehy TL, Wilson JT. Chemical and biomolecular strategies
for STING pathway activation in cancer immunotherapy. Chem Rev (2022) 122
(6):5977–6039. doi: 10.1021/acs.chemrev.1c00750

20. Märkl F, Huynh D, Endres S, Kobold S. Utilizing chemokines in cancer
immunotherapy. Trends in Cancer (2022) 8(8):670–82. doi: 10.1016/j.trecan.2022.04.001

21. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D,
et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep (2017) 18
(1):248–62. doi: 10.1016/j.celrep.2016.12.019

22. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al.
Genomic and transcriptomic features of response to anti-PD-1 therapy in
metastatic melanoma. Cell (2017) 168(3):542. doi: 10.1016/j.cell.2017.01.010

23. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR,
et al. IFN-g-related mRNA profile predicts clinical response to PD-1 blockade.
J Clin Invest (2017) 127(8):2930–40. doi: 10.1172/jci91190

24. Monk BJ, Enomoto T, Martin Kast W, McCormack M, Tan DSP, Wu X, et al.
Integration of immunotherapy into treatment of cervical cancer: Recent data and
ongoing trials. Cancer Treat Rev (2022) 106:102385. doi: 10.1016/j.ctrv.2022.102385

25. Liu Z, Sun T, Zhang Z, Bi J, Kong C. An 18-gene signature based on glucose
metabolism and DNA methylation improves prognostic prediction for urinary bladder
cancer. Genomics (2021) 113(1 Pt 2):896–907. doi: 10.1016/j.ygeno.2020.10.022

26. Zhang X, Zhao H, Shi X, Jia X, Yang Y. Identification and validation of an
immune-related gene signature predictive of overall survival in colon cancer. Aging
(2020) 12(24):26095–120. doi: 10.18632/aging.202317

27. Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R,
et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical
cancer: Results from the phase II KEYNOTE-158 study. J Clin Oncol Off J Am Soc
Clin Oncol (2019) 37(17):1470–8. doi: 10.1200/jco.18.01265

28. Tewari KS, Monk BJ, Vergote I, Miller A, de Melo AC, Kim HS, et al.
Survival with cemiplimab in recurrent cervical cancer. N Engl J Med (2022) 386
(6):544–55. doi: 10.1056/NEJMoa2112187

29. Olive PL, Aquino-Parsons C, MacPhail SH, Liao SY, Raleigh JA, LermanMI,
et al. Carbonic anhydrase 9 as an endogenous marker for hypoxic cells in cervical
cancer. Cancer Res (2001) 61(24):8924–9. doi: 10.1038/s42255-022-00583-z

30. Torres S, Garcia-Palmero I, Bartolomé RA, Fernandez-Aceñero MJ, Molina
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