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Characterization of two distant 
double-slits by chaotic light second-
order interference
Milena D’Angelo   1,2,3, Aldo Mazzilli1, Francesco V. Pepe2,4, Augusto Garuccio1,2,3 & Vincenzo 
Tamma5,6,7

We present the experimental characterization of two distant double-slit masks illuminated by chaotic 
light, in the absence of first-order imaging and interference. The scheme exploits second-order 
interference of light propagating through two indistinguishable pairs of disjoint optical paths passing 
through the masks of interest. The proposed technique leads to a deeper understanding of biphoton 
interference and coherence, and opens the way to the development of novel schemes for retrieving 
information on the relative position and the spatial structure of distant objects, which is of interest in 
remote sensing, biomedical imaging, as well as monitoring of laser ablation, when first-order imaging 
and interference are not feasible.

In the mid fifties Hanbury-Brown and Twiss (HBT) proposed to measure the angular dimension of stars by 
retrieving second-order interference in the absence of first-order interference (hence, coherence)1, 2. The debate 
concerning the interpretation, and even the correctness, of HBT’s predictions was quite intense due to the coun-
terintuitive aspects related with the second-order interference arising from intensity correlation measurements3, 4.  
In fact, HBT intensity interferometry imposed a deep change in the concept of coherence, and triggered the 
development of quantum optics5, 6.

In particular, the second-order correlation measurement at the heart of HBT effect has been the working tool 
of all entanglement-based protocols, from Bell’s inequality tests7 to quantum-enhanced technologies: quantum 
imaging and lithography8–11 information12–16, and teleportation17. Interestingly, starting from the early 2000s, 
many of these effects have been replicated by exploiting the correlation of chaotic light18–23. This development 
was enabled by the discovery that the spatio-temporal correlation exploited by HBT is not a peculiarity of the 
far-field of the chaotic source, but already exists in its near-field24. Similar to HBT, all such schemes lead to the 
observation of second-order interference in the absence of first-order interference. Their common element is that, 
given two separate detectors placed in r1 and r2, second-order interference occurs between the indistinguishable 
alternatives: 1) Light from point A of the source is detected in position r1, and light from point B of the source is 
detected in position r2; 2) light from point A of the source is detected in position r2, and light from point B of the 
source is detected in position r1

25. Most important, for second-order correlation measurement to give non-trivial 
results (HBT correlation peak, ghost image, ghost interference, etc.), r1 and r2 must fall within both the coherence 
length and the coherence area of the source.

Recently, a novel scheme has been proposed where second-order interference is predicted to occur between 
light propagating through two paths that fall outside the coherence length of the source26. Each interfering path is 
made of two disjoint, but correlated, optical paths, going from the source to a distant detector after passing though 
a specific arm (long or short) of an unbalanced interferometer. The unbalancing between the long and the short 
arm of the interferometers is such that no first-order interference exists at each detector, separately. However, 
a counterintuitive second-order interference between light propagating through the two pairs (long-long and 
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short-short) of disjoint optical paths, is predicted to appear by measuring the correlation between the intensity 
fluctuations at the two detectors. The novelty here is that second-order interference in the absence of first-order 
interference is enabled by a single choatic source; in fact, in all previous schemes, second-order interference with-
out first-order inteference relied on multiple incoherent sources11, 20, 27–29. Similar to HBT interferometry, this 
novel interference phenomenon leads to a deeper understanding of quantum optics, and has the potential to give 
rise to a new research area involving both theoretical and experimental developments. In fact, this effect, recently 
described also in the spatial domain30, enables sensing applications26, 30, as well as the simulation of a C-NOT gate 
with a single chaotic source26, 30, 31.

In this paper, we experimentally demonstrate the spatial interference effect and the sensing technique 
described in ref. 30 to monitor the transverse position and the spatial structure of two distant double-slit masks. 
The scheme is enabled by the possibility of exploiting and manipulating the relative phase characterizing the 
indistinguishable pairs of disjoint optical paths26, 30. Such a phase is set to zero in the case of a C-NOT gate simu-
lation26, 30, 31, while, here, it is fully exploited for a remote sensing application30.

The sensing protocol implemented here may find applications in all those contexts where first-order imaging 
and interference cannot be used for monitoring remote objects (e.g., remote sensing and biomedical imaging), 
as well as objects immersed in noisy environments (e.g., laser ablation). From the fundamental point of view, the 
interference phenomenon at the heart of the present scheme deepens our understanding of higher-order coher-
ence and correlation, and may lead to applications in high-precision metrology and information processing18, 

20–23, 32 as well as in the development of novel optical algorithms33–37.

Results
As reported in Fig. 1, we implement the spatial counterpart of the scheme proposed in ref. 26 with the two 
Mach-Zehnder interferometers replaced by two Young (double-slit) interferometers30. In particular, two 
double-slit masks are placed at the same distance z from the source (S) in the transmission and reflection ports of 
a balanced beam splitter (BS), illuminated by chaotic light. Point-like detectors DC and DT are placed in the focal 
planes of the lenses (L) mounted behind each mask. The center-to-center distance between the slits lj and 2j (with 
j = C, T) in each mask is larger than the transverse coherence length of the chaotic source; hence, no first-order 
interference can be observed. Let us indicate with pj

i the optical path connecting the source with the detector 
j = C, T by going through slit i = 1, 2. We shall experimentally demonstrate that, despite paths pj

1 and pj
2 (with 

j = C, T) are distinguishable, second-order interference occurs between the indistinguishable pairs of disjoint 
optical paths =p p p( , )CT C T

11 1 1  and =p p p( , )CT C T
22 2 2 . In fact, interference can be retrieved at second order by meas-

uring correlation between the intensity fluctuations detected by DC  and DT, namely, ∆ ∆⟨ ⟩I IC T , where 
∆ = − < >I I Ij j j , with j = C, T and 〈…〉 denoting quantum ensemble average. Such an intriguing interference is 
shown experimentally to enable the sensing of both the relative transverse position and the spatial structure of the 
distant masks.

Let us look in more detail to the experimental setup. The chaotic light source is made of a single-mode laser 
diode with wavelength λ = 980 nm and power P = 300 mW, and a rotating ground-glass disk. The distance 
between the source and each double-slit mask is z = (70 ± 5) mm, and the transverse coherence length of the 
source, on the plane of the masks, is measured to be = . ± . (0 55 0 03)mmcoh . To ensure the absence of first-order 
interference, we have used double-slit masks with center-to-center distances = −d x xj 2 1j j

 (with =j C T, ) 
slightly larger than the transverse coherence length of the source (coh), namely = . ± .d (0 57 0 03)mmT  and 

= . ± .d (0 69 0 03)mmC . Still, the relative distance between the corresponding slits of the two masks is varied 

Figure 1.  Schematic representation of the experimental setup for sensing the transverse position and the spatial 
structure of two distant double-slit masks by second-order interference of chaotic light. See text for more details.
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within the transverse coherence length of the source; for instance, when the masks are centered with respect to 
each other, we have µ− = − = � �x x d d( )/2 60 m /10k k C T cohC T

, with =k 1,2. The slit width is about ten times 
smaller than coh, the collection lenses (L) behind the masks have focal length =f 200mm, and the detectors DC 
and DT are amplified photodiodes with a sensitive area delimited by 50 μm-wide slits. The detectors are 
AC-coupled to a fast oscilloscope and connected to a computer, where a LabVIEW program performs the corre-
lation ∆ ∆I IC T  between the fluctuations of the detected intensities.

As reported in Fig. 2, second-order interference between light propagating through pairs of remote slits is 
retrieved experimentally by moving one mask with respect to the other, while keeping both detectors DC and DT 
fixed. The results indicate the sensitivity of the protocol to changes in the relative transverse position of the remote 
masks. Interestingly, the sensitivity to the mask displacement = +X x x( )/2j 1 2j j

 increases for masks characterized 
by a larger center-to-center distance dj (with j = C, T). For example, by displacing the mask T with respect to the 
mask C, the expected fringe separation (see discussion below) is λ = . ± .z d/ (0 12 0 02)mmT ; this result is com-
patible with the measured value of . ± .(0 15 0 02)mm, which has been obtained by averaging the results of the 
three sets of data reported in Fig. 2. Notice that no first-order counterpart exists for the present results, namely, 
no information about the relative position of the two distant masks can be retrieved through first-order interfer-
ence measurement.

Figure 2 also indicates that second-order interference is robust against misalignment of the fixed mask: 
Interference is not compromised when mask C is displaced with respect to the optic axis. In fact, as we shall prove 
later, a displacement ∆XC of the mask C is expected to shift the fringes by ∆X d d/C C T; this result is experimentally 
confirmed by the two sets of data shown in Fig. 2. In fact, the associated fringe displacements is measured to be 

. ± .(0 14 0 02)mm for the (yellow) stars, and . ± .(0 20 0 02)mm for the (red) triangles, both referred to the (blue) 
circles; this result is in good agreement with the theoretical prediction mentioned above, which gives 

. ± .(0 13 0 01)mm and µ. ± .(0 21 0 02) m, respectively. It is worth noticing that the envelope of the interference 
pattern, which is determined by the transverse coherence length of the source, shifts while moving mask C. In 
fact, we have displaced mask C by a distance ∆XC that is not negligible with respect to coh; the envelope thus 
moves by ∆XC. The modified shape of the interference fringes in the three data sets is due to the correction factor 
dC/dT characterizing the displacement of the interference pattern with respect to the displacement of the envelope 
alone.

In Fig. 3a, we experimentally demonstrate the existence of a spatial beating effect associated with the simulta-
neous displacement of both detectors DC and DT. The fringes along the diagonal ( =x xT C) and the anti-diagonal 
(xT = −xC) of the bidimensional plot are the typical interference fringes of a double-slit having center-to-center 
distance dC − dT and dC + dT, respectively. The correlation measurement is thus sensitive to the characteristic 
dimensions of both masks, even in the absence of first-order interference. To emphasize the pure second-order 
nature of the phenomenon, in Fig. 3b,c we show the lack of first-order interference at both detectors DC and DT. 
In particular, we compare the interference fringes obtained at first-order when the rotating ground-glass disk is 
removed and the masks are illuminated by pure laser light (blue circles), with the pattern obtained by illuminating 
the masks with chaotic light (orange diamonds). For chaotic light, first-order interference is washed out, as 
expected. However, the absence of first-order interference does not affect second-order interference, as demon-
strated by Fig. 3a), where second-order interference fringes at both detectors DC and DT are clearly visible along 
the axis xC and xT, respectively. Their expected periodicity is determined by the center-to-center distance dj of the 

Figure 2.  Experimental demonstration of the sensitivity of second-order interference to the transverse position XT of 
a remote double-slits (T) whit respect to the other (C). The experimental results of the correlation measurement 
∆ ∆⟨ ⟩I IC T  are obtained by scanning the mask T in the transverse plane, while keeping fixed both the mask C and the 

two detectors DT and DC. The (blue) circles, (yellow) stars and (red) triangles correspond to different positions of the 
fixed mask C. In particular, the stars and triangles are obtained after displacing mask C by ∆ = .X 0 11mmC  and 
∆ = .X 0 17mmC , respectively, with respect to its original position (circles). The (green) diamonds represent the 
normalized intensity measured by DT while scanning mask T in the transverse plane; no interference effect appears at 
first order. Error bars are smaller than the point size for both first and second order data.
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double slits (with j = C, T), as λ∆ =x f d/ j, which gives . ± .(0 34 0 02)mm for mask T and . ± .(0 28 0 01)mm for 
mask C. The measured periodicities of . ± .(0 34 0 02)mm and . ± .(0 29 0 02)mm are thus in excellent agreement 
with the theoretical predictions.

T h e  e r r o r  o n  t h e  c o r r e l a t i o n  m e a s u r e m e n t s  h a s  b e e n  e v a l u a t e d  a s 3 8 
σ π〈∆ ∆ 〉 = ∼− −

I I N A/ (2 / ) 10corr c T coh mask
2 1/2 3,  where =N 104 is the number of measurements, and 

= .A 0 46mmmask
2 is the average mask transmission area. The error on the intensity measurement is also very 

small: σ = ∼− −I N/ 10I
1/2 2.

The presented measurement is useful for monitoring changes in both the spatial structure and the relative 
position of a remote mask with respect to a reference local mask; such changes may be caused by temperature 
variations, as well as deformations, wearing down and displacements due to interaction with the environment.

Discussion
The above experimental results can be quantitatively understood by considering the second-order correlation 
function of a quasi-monochromatic chaotic light source39

= + | |G x x G x G x G x x( , ) ( ) ( ) ( , ) , (1)j k j k j k
(2) (1) (1) (1) 2

where = ⟨ ⟩G x I x( ) ( )j j j
(1)  is the average intensity at the transverse position xj, and | | = ∆ ∆⟨ ⟩G x x I x I x( , ) ( ) ( )j k j j k k

(1) 2  
is the correlation between the fluctuations of the intensities detected at the remote transverse positions xj and xk, 
separately. The AC-coupling of signals from the detectors cancels the trivial contribution in Eq. (1), coming from 
the DC-components of the detected signals, thus leaving only the interesting part of the second-order correlation 
| |G x x( , )j k

(1) 2 40. This is how the constant background typical of chaotic light has been removed from our experi-
mental measurement.

Based on the position-position correlation at the heart of ghost imaging with chaotic light40–43 the fluctuation 
correlation measurement between the intensities detected by DC and DT is expected to yield a nonvanishing con-
tribution for all four possible pairs of paths =αβ α βp p p( , )CT C T , provided the relative transverse distance between 
each pair of remote slits α, β = 1, 2 is smaller than the transverse coherence length of the source, namely, 

| − |α β x x cohC T
. We shall now consider the more interesting case, studied in ref. 30 and here implemented 

Figure 3.  Second-order interference measurement of the center-to-center separations dC and dT of the two remote 
double-slits masks C and T. (a) Experimental results of the normalized correlation measurement ∆ ∆⟨ ⟩I IC T  
obtained by simultaneously scanning the transverse positions xC and xT of both detectors DC and DT, while keeping 
both masks fixed. From the fringe periodicity along each axis xj (j = C, T) it is possible to retrieve the value of the 
center to center distance dj characterizing the corresponding mask j. Moreover, the periodicity of the diagonal 
(solid red line) and anti-diagonal (dashed orange line) interference patterns provides the values of the difference 
dC − dT and the sum dC + dT of the center-to-center distances, respectively. The tilt of the equal-phase lines in the 
(xC, xT) plane is determined by the ratio dC/dT of the center-to-center distances characterizing the two masks [see 
Eqs (9) and (10)]. (b) Normalized intensity measured by detector DC while scanning the transverse plane xC, when 
either laser light (blue circles) or chaotic light (green diamonds) illuminates the mask. (c) Normalized intensity 
measured by detector DT while scanning the transverse plane xT, when either laser light (blue circles) or chaotic 
light (green diamonds) illuminates the mask. Notice the absence of chaotic-light interference at first-order in both 
cases (b) and (c). Error bars are smaller than the point size for both sets of data.
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experimentally, in which no first-order interference exists behind each mask, which occurs whenever the distance 
between the two slits of a given mask is larger than the transverse coherence length of the source:

| − | x x , (2)coh1 2j j

with j = C, T. We still keep the hypothesis that the corresponding slits at the two remote masks are within the 
transverse coherence length, that is

| − |α α x x , (3)cohj k

with α = 1, 2 and =j k C T, ,  (with j ≠ k). In this scenario, only the two pairs of remote paths pCT
11  and pCT

22 are 
expected to contribute to the correlation measurement, while no contribution is expected from the two pairs of 
paths αβpCT  with α ≠ β. An interesting question is whether these contributions add coherently or incoherently, 
hence, whether or not they can give rise to second-order interference.

One may attempt to answer this question based on ghost imaging, where a bucket detector is placed behind 
the object, and a point-like detector scans the imaging plane, whose distance from the source is equal to the 
object-to-source distance: The scanning detector retrieves the image of the object-mask through correlation 
measurements40, 41. In ghost imaging, a double-slit is resolved only if its center-to-center distance is larger than the 
transverse coherence length of the source, on the object plane44; this is exactly the case we are considering. Ghost 
images are well known to be incoherent images, given by the incoherent sum of the contributions coming from 
each slit, separately41. Now, in the setup of Fig. 1, we have made two important changes with respect to ghost 
imaging: 1) A mask has been placed in the ghost imaging plane of the other mask; 2) both detectors are point-like 
and have been moved in the far-field of the two masks. One may expect that, similar to ghost imaging, the contri-
butions associated with the two paths pCT

11 and pCT
22 would add incoherently. In fact, this would effectively be the 

case if we had left, behind either one of the object-masks, a bucket detector. However, our fluctuation correlation 
measurement is performed between two point-like detectors DC and DT. As we shall show, this scheme gives rise 
to a coherent superposition of the two indistinguishable alternatives pCT

11  and pCT
22, thus leading to the observed 

second-order interference effect Incidentally, it is known that the standard (incoherent) ghost image becomes 
coherent as soon as one replaces the bucket detector with a point-like detector45, 46. The use of a bucket detector 
washes out the coherence, and the related interference, by averaging all interference patterns associated with dif-
ferent detection positions in the far field of the mask). This interference effect can be formally demonstrated by 
evaluating the spatial correlation between the intensity fluctuations ∆I x( )C C  and ∆I x( )T T  measured at the same 
time t = tC = tT, by detectors DC and DT, namely

∆ ∆ ∝ | |
− +ˆ ˆI x I x E x E x( ) ( ) ( ) ( ) (4)C C T T C C T T

( ) ( ) 2

where Ê x( )j j , with j = C, T, is the electric field operator (in the scalar approximation) in the transverse position xi, 
with (±) denoting positive- and negative-frequency parts. In the paraxial approximation, we obtain30

∆ ∆ ∝ + + +I x I x G x x G x x G x x G x x( ) ( ) ( , ) ( , ) ( , ) ( , ) , (5)C C T T C T C T C T C T1 ,1
(1)

1 ,2
(1)

2 ,1
(1)

2 ,2
(1) 2

C T C T C T C T

where α βG ,
(1)

C T
 indicates the contribution to the correlation measurement coming from the optical path αβpCT , link-

ing the remote slits α = 1 ,2C C C and β = 1 ,1T T T by passing through the source. For simplicity, we shall neglect the 
slit width. In this hypothesis, the first-order correlation function associated with the generic disjoint optical path 

αβpCT  is given by30:

ϕ ϕ
λ

= 
 − 






− 

α β β α

β αG x x
x x

z
( , ) exp i( ) ,

(6)C T,
(1)

C T T C
T C

where   is the Fourier transform of the source intensity profile, and

ϕ π
λ

=





−







x
z

x x
f

2
2

,
(7)

j
j d j
2

with d = C,T and j = αC, βT. The dependence of the result of Eq. (6) from the Fourier transform of the light source 
profile, evaluated in the object-mask plane, explicitly indicates the important role played by the conditions in Eqs 
(2) and (3): They imply G1 ,2

(1)
C T

 and G2 ,1
(1)

C T
 to vanish, within a good degree of approximation, thus reducing Eq. (5) 

to30:

∆ ∆ ∝ | + |I x I x G x x G x x( ) ( ) ( , ) ( , ) , (8)C C T T C T C T1 ,1
(1)

2 ,2
(1) 2

C T C T

In this condition, the intensity fluctuation correlation measurement [Eq. (8)] enables retrieving the 
second-order interference between the first-order correlation functions G1 ,1

(1)
C T

 and G2 ,2
(1)

C T
 associated with the two 

disjoint optical paths pCT
11 and pCT

22, respectively. Such second-order interference between paths pCT
11 and pCT

22 is quite 
counterintuitive, considering the absence of coherence between the composing paths pC

1 and pC
2 (or pT

1 and pT
2). 

Interference between pCT
11 and pCT

22 stems from their indistinguishability, which is preserved even if the double-slit 
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interference pattern produced by each mask, separately, is hindered by the conditions = | − | d x xj coh2 1j j
 for 

j = C, T.
Plugging in the results of Eqs (6) and (7), we shall rewrite Eq. (8) in a more explicit form30:

λ λ
∆ ∆ ∝





− 

 +





− 



φI x I x
x x

z

x x

z
e( ) ( ) ,

(9)C C T T
i X d X d x x1 1 2 2 ( , , , , , )

2
C T C T C C T T C T 

with

φ π
λ

π
λ

= − − −X d X d x x
z

X d X d
f

x d x d( , , , , , ) 2 ( ) 2 ( ),
(10)C C T T C T T T C C T T C C

where = −d x xj 2 1j j
 is the center-to-center separation between the slits in each mask, and = +X x x( )/2j 1 2j j

 is 
the center of each mask. The phase of Eq. (10) is at the core of our remote sensing experiment.

In fact, the experimental results reported in Fig. 2 are related with the first term of the phase defined in Eq. 
(10), and correspond to the situation in which both the mask C and the detectors are kept fixed, while the mask 
T is moved in the transverse plane. The results of Eqs (9) and (10) thus formally demonstrate the observed sen-
sitivity of the intensity fluctuation correlation measurement to the relative positions of the double-slit masks30.

The results shown in Fig. 3a are instead related with the last term of the phase given in Eq. (10). On one hand, 
based on Eqs (9) and (10), by scanning xC = ±xT one can foresee the observed spatial beating effect, namely, 
fringes with a periodicity determined by the combination of the center-to-center distances characterizing the 
remote masks ( d dT C)30. On the other hand, Eqs (9) and (10) indicate the possibility of retrieving, at 
second-order, the standard Young-type interference pattern associated with each double-slit mask; the pattern 
can be obtained by scanning only one detector along the transverse direction xj (with j = C, T), and is centered in 

=x x d d/i j j i, with i, j = C, T and i ≠ j. This formally demonstrates the sensitivity of the intensity fluctuation corre-
lation measurement to the spatial structure of both double-slit masks. Interestingly, the scheme is feasible at 
arbitrary distances between the masks, since it only requires the chaotic source to be placed at the same optical 
distance from each mask.

In summary, the sensing technique implemented here enables retrieving information about the spatial struc-
ture and position of distant masks despite the absence of first order coherence. When first order interference 
exists, the information about the two masks may be encoded in the second order interference resulting from all 
four pairs of paths (When first-order interference has 100% visibility, the second-order correlation function in Eq. 
(5) reduces to the mere product of the interference patterns measured at the two detectors, separately: 

ϕ ϕ∝ + −G 1 cos( )1 ,2
(1)

2 1d d d d
, with d = C, T; hence, in this case, the correlation measurement does not add any 

information with respect to the one already retrievable at first order); however, decoding the relevant information 
from the measured correlation is not trivial in such situations and will be studied elsewhere.

Conclusion
In conclusion, we have experimentally demonstrated the possibility of exploiting an intriguing second-order 
interference effect of chaotic light for monitoring the transverse position and the spatial structure of two distant 
double-slit masks. In fact, we have shown that the experimental results are due to the interference between two 
effective optical paths ααpCT , with α = 1, 2, each one made of the disjoint, but correlated, paths αpC  and αpT  associated 
with the remote slits αC and αT, respectively (see Fig. 1). Interestingly, such interference occurs even if the two 
slits 1i and 2i of both masks i = C, T are outside the coherence area of the source, so that no first-order interference 
exists. Interference is recovered at second-order because the planar distance between the remote slits αC and αT is 
smaller than the transverse coherence length of the source. The generalization of our results to more general 
objects may lead to the development of novel methods for retrieving information about the position and the spa-
tial structure of two distant objects30. Our results are thus of potential interest for applications in imaging, sensing 
and metrology, also in the presence of noise. In addition, the extension of this technique to correlation measure-
ments of order larger than two26 might be used both to spatially resolve a larger number of remote objects and to 
improve the imaging precision20, 22, 47. Future research will also aim at replacing the chaotic illumination with both 
entangled light sources (e.g., spontaneous parametric down-conversion), which would enable sub-shot noise 
sensing48, and atomic systems for fundamental tests with quantum matter49.
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